# Stochastic Optimization

Hi! PARIS Summer School 2021 on AI & Data for Science, Business and Society

Aymeric Dieuleveut

July 2021

# Today's Roadmap

- Motivation: why is Optimization important and why it is useful?
- From GD to SGD.
- Advanced algorithms: Variance Reduction, Deep Learning
- Statistical point of view on Optimization.





#### Who knows ?

• His/her own name



- His/her own name
- What GD is?



- His/her own name
- What GD is?
- What a smooth function is?



- His/her own name
- What GD is?
- What a smooth function is?
- How fast GD converges for smooth functions?



- His/her own name
- What GD is?
- What a smooth function is?
- How fast GD converges for smooth functions?
- Which algorithm is fastest SGD or GD?



- His/her own name
- What GD is?
- What a smooth function is?
- How fast GD converges for smooth functions?
- Which algorithm is fastest SGD or GD?
- What SVRG is?



- His/her own name
- What GD is?
- What a smooth function is?
- How fast GD converges for smooth functions?
- Which algorithm is fastest SGD or GD?
- What SVRG is?
- About Rademacher complexities?



- His/her own name
- What GD is?
- What a smooth function is?
- How fast GD converges for smooth functions?
- Which algorithm is fastest SGD or GD?
- What SVRG is?
- About Rademacher complexities?

# Outline

# 1 Motivation: what is Optimization and why study it?

- What makes optimization difficult?
- Detailed Examples

## 2 Gradient descent procedures

- Visualization and intuition
- Gradient Descent
- Convergence rates for GD and interpretation
- Stochastic Gradient Descent

# 3 Advanced Stochastic Optimization Algorithms

- Variance reduced methods
- Gradient descent for neural networks

#### Insights from Statistical Learning Theory

- Set-up
- Convex functions: basic ideas
- Empirical risk minimization: convergence rates

Optimization : finding the minimal (maximal) value of a function over a set

$$\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$$

#### Optimization is everywhere

Many problems are formalized as finding the **optimum** of a function:  $\min_{w} f(w)$ . In various domains:

#### Economics





Aeronautics



#### In Machine learning related applications Supervised Learning Unsupervised







Optimal transport



#### Is it difficult ? Why study it?

 $\rightarrow$ It depends !



 $\rightarrow$ It depends !

The problem can be easily solved numerically

Yet, important to understand the methods



**↔It depends** !

The problem can be easily solved numerically Yet, important to understand the methods The problem is hard to solve The choice of the algorithm impacts the performance  $\Rightarrow$  Crucial to understand the algorithms !

**↔lt depends** !

The problem can be easily solved numerically Yet, important to understand the methods The problem is hard to solve The choice of the algorithm impacts the performance  $\Rightarrow$  Crucial to understand the algorithms !

Last 20 years?

 More computational power

- New algorithms, new models
- ↔ Large scale framework
   r, d are very large.
- $\leftrightarrow \text{ Deep Learning}$

#### Example 1: Logistic regression on Scikit-Learn

solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, default='lbfgs'

Algorithm to use in the optimization problem.

- For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones.
- For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes.
- 'newton-cg', 'lbfgs', 'sag' and 'saga' handle L2 or no penalty
- 'liblinear' and 'saga' also handle L1 penalty
- 'saga' also supports 'elasticnet' penalty
- 'liblinear' does not support setting penalty='none'

Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

Changed in version 0.22: The default solver changed from 'liblinear' to 'lbfgs' in 0.22.

Figure: Scikit-Learn documentation, logistic regression.

# Example 2: Neural Network Playground

#### Neural Network playground (try it!)



Figure: Model learned after 500 epochs depending on the learning rate, deep Learning

#### SCAFFOLD: CORRECTING LOCAL UPDATES [Karimireddy et al., 2020]



- Correction terms  $c_1, \ldots, c_K$  are a form of variance reduction (cf Aymeric's tutorial)
- Can show convergence rates which beat parallel SGD

18

#### Figure: In Federated Learning, crucial to adapt the algorithm!

# Today's Approach

#### Part 1: Introduction

- Understand what can make optimization hard
- Briefly review some classical learning situations from this perspective

#### Part 2: From GD to SGD

- First order Optimization, Stochastic Optimization
- Tradeoffs
- What influences the convergence of SGD

#### Part 3: Advanced Stochastic Optimization methods\*

- Variance Reduction
- Methods for Deep Learning

#### Part 4: Insights from Statistical Learning theory\*

- How precisely should I optimize?
- Rademacher complexities

What makes optimization hard:



# What makes optimizing $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$ hard: 1. Convexity.

Why?



- A non-convex function can have many local minima
- For a convex function, a local minimum is always global.

Challenges: Non-convexity, ...

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 1. Convexity.

Why?



- A non-convex function can have many local minima
- For a convex function, a local minimum is always global.

a. Dimension  $d: \Theta \subset \mathbb{R}^d$ , d might be very large (typically millions)

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 2. Dimension of w, set  $\Theta$ , complexity of f

- a. Dimension d:  $\Theta \subset \mathbb{R}^d$ , d might be very large (typically millions)
- **b.** Set  $\Theta$ : (if  $\Theta$  is a convex set.)
  - May be described implicitly (via equations):
     Θ = {w ∈ ℝ<sup>d</sup> s.t. ||w||<sub>2</sub> ≤ R and ⟨w, 1⟩ = r}.
     ↔ Use dual formulation of the problem.
  - Projection might be difficult or impossible.
     ↔ use only first order methods

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 2. Dimension of w, set  $\Theta$ , complexity of f

- a. Dimension d:  $\Theta \subset \mathbb{R}^d$ , d might be very large (typically millions)
- b. Set  $\Theta$ : (if  $\Theta$  is a convex set.)
  - May be described implicitly (via equations):
     Θ = {w ∈ ℝ<sup>d</sup> s.t. ||w||<sub>2</sub> ≤ R and ⟨w, 1⟩ = r}.
     ↔ Use dual formulation of the problem.
  - Projection might be difficult or impossible.
     ↔ use only first order methods

c. Structure of f. If  $f(w) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} F_i(w)}_{n}$ , is the average of n functions, computing a gradient has a cost proportional to n.

**Challenges:** Non-convexity of f, large d, large n, implicit set  $\Theta$ , ...

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} \widehat{f(w)}$  hard: 3. Irregularity of the function

- a. Smoothness
  - A function f is L-smooth if it is twice differentiable and  $\forall w \in \mathbb{R}^d$ , eig.  $[f''(w)] \leq L$

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 3. Irregularity of the function

- a. Smoothness
  - A function f is L-smooth if it is twice differentiable and  $\forall w \in \mathbb{R}^d$ , eig.  $[f''(w)] \leq L$



What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 3. Irregularity of the function

- a. Smoothness
  - A function f is L-smooth if it is twice differentiable and  $\forall w \in \mathbb{R}^d$ , eig.  $[f''(w)] \leq L$



- b. Strong Convexity
  - A twice differentiable f is  $\mu$ -strongly convex iif.  $\forall w \in \mathbb{R}^d$ ,  $\operatorname{eig}[f''(w)] \ge \mu$ .

What makes optimizing  $\min_{w \in \Theta \subset \mathbb{R}^d} f(w)$  hard: 3. Irregularity of the function

- a. Smoothness
  - A function f is L-smooth if it is twice differentiable and  $\forall w \in \mathbb{R}^d$ , eig.  $[f''(w)] \leq L$



- b. Strong Convexity
  - A twice differentiable f is  $\mu$ -strongly convex iif.  $\forall w \in \mathbb{R}^d$ ,  $\operatorname{eig}[f''(w)] \ge \mu$ .



**Challenges:** Non-convexity of f, large d, large n, implicit set  $\Theta$ , non-smoothness, non-strongly-convex.

Conclusion: Those are the most frequent challenges. What happens for the examples?

# Focus on the 4 Machine learning examples given before









Examples and Challenges 1/4, Supervised Machine Learning

Consider an input/output pair  $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ ,  $(X, Y) \sim \rho$ .

Function  $w : \mathcal{X} \to \mathbb{R}$ , s.t. w(X) good prediction for Y. Model w parametrized in  $\mathbb{R}^d$ 



Examples and Challenges 1/4, Supervised Machine Learning Consider an input/output pair  $(X, Y) \in \mathcal{X} \times \mathcal{Y}, (X, Y) \sim \rho$ .

Function  $w : \mathcal{X} \to \mathbb{R}$ , s.t. w(X) good prediction for Y. Model w parametrized in  $R^d$ 

Consider a loss function  $\ell : \mathcal{Y} \times \mathbb{R} \to \mathbb{R}_+$ 

Define the Generalization risk:

 $\mathcal{R}(w) := \mathbb{E}_{\rho} \left[ \ell(Y, w(X) \rangle) \right].$ 

**Empirical Risk minimization Data**: *n* observations  $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, **i.i.d**. Find  $\hat{w}$  solution of

$$\min_{w \in \Theta \subset \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, w(x_i)) + \mu \Omega(w).$$
convex data fitting term + regularizer

**Challenges**: *n* potentially large (very often!)

17



Examples and Challenges 1/4, Supervised Machine Learning

ERM:

$$\min_{w \in \Theta \subset \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, w(x_i)) + \mu \Omega(w).$$

#### **Encompasses many methods:**

| Model w(X)         | Linear Models $\langle w, \Phi(X) \rangle^*$ |               |               |            |        | Non-linear  |
|--------------------|----------------------------------------------|---------------|---------------|------------|--------|-------------|
| Name               | Least Squares                                | Lasso         | Logistic Reg. | SVM        | Binary | Neural Nets |
| Loss $\ell$        | Square loss                                  |               | Logistic loss | Hinge loss | 01     | (Sq. loss)  |
| Regul. $\Omega(w)$ | (Ridge)                                      | $  \cdot  _1$ |               |            |        |             |


#### Reminder: Different losses for classification

• Logistic loss, 
$$\ell(y, y') = \log(1 + e^{-yy'})$$

- Hinge loss,  $\ell(y, y') = (1 yy')_+$
- Quadratic hinge loss,  $\ell(y, y') = \frac{1}{2}(1 yy')^2_+$
- Huber loss  $\ell(y, y') = -4yy' \mathbb{1}_{yy' < -1} + (1 yy')^2_+ \mathbb{1}_{yy' \ge -1}$



• These losses can be understood as a convex approximation of the 0/1 loss  $\ell(y,y') = \mathbbm{1}_{yy'\leqslant 0}$ 

# Examples and Challenges 2/4 Unspervised

**PCA** (k = 1):

- $max_{w/||w|| \leq 1} w^{\top} Aw.$
- **2** Set  $\Theta = \mathcal{B}(0,1) \subset \mathbb{R}^d$  is convex
- Convex function  $w \mapsto w^{\top} A w$

# We look for the max:

this is thus equivalent to minimizing a concave function and not a "convex problem".

#### **Challenges:**

- Non convex
- Large d



Examples and Challenges 3/4: Optimal transport

**Objective function:** 

$$\min_{\pi\in\Pi}\int c(x,y)\mathrm{d}\pi(x,y)$$

- $\Pi$  set of probability distributions
- c(x, y) "distance" from x to y.
- + regularization

Kantorovic formulation of OT.

 $\hookrightarrow$  alternating directions algorithms,  $\ldots$ 

#### **Challenges:**

- Non convex
- Optimization over a complex set (measures), etc.



Examples and Challenges 4/4: Generative Adversarial Networks Objective function:

$$\min_{G} \max_{D} \left\{ \mathbb{E}_{x \sim p_{data}} \left[ \log D(x) \right] + \mathbb{E}_{z \sim p_z} \left[ \log (1 - D(G(z))) \right] \right\}$$

- *D* discriminator: tries to discriminate between real and fake images
- *G* generator: tries to fool the discriminator.



Examples and Challenges 4/4: Generative Adversarial Networks Objective function:

$$\min_{G} \max_{D} \left\{ \mathbb{E}_{x \sim p_{data}} \left[ \log D(x) \right] + \mathbb{E}_{z \sim p_z} \left[ \log (1 - D(G(z))) \right] \right\}$$

- *D* discriminator: tries to discriminate between real and fake images
- *G* generator: tries to fool the discriminator.



- minimax optimization  $\rightarrow$  non convex optimization
- Deep networks for generator and discriminator: non convex functions, extremely high dimension d
- Trained with extremely large quantities of data (large *n*)...

#### **Overall Summary**

- We express problems as minimizing a function over a set
- We have listed the main challenges and given examples in classical frameworks esp. Supervised Learning.
- We have to propose algorithms that can be efficient :
  - In large dimension
  - With a high number of observations n



Examples and Challenges 4/4: Generative Adversarial Networks Objective function:

$$\min_{G} \max_{D} \left\{ \mathbb{E}_{x \sim p_{data}} \left[ \log D(x) \right] + \mathbb{E}_{z \sim p_z} \left[ \log (1 - D(G(z))) \right] \right\}$$

- *D* discriminator: tries to discriminate between real and fake images
- G generator: tries to fool the discriminator.

**Challenges:** 

- $\bullet$  minimax optimization  $\rightarrow$  non convex optimization
- Deep networks for generator and discriminator: non convex functions, extremely high dimension d
- Trained with extremely large quantities of data (large *n*)...

#### **Overall Summary**

- We express problems as minimizing a function over a set
- We have listed the main challenges and given examples in classical frameworks esp. Supervised Learning.
- We have to propose algorithms that can be efficient :
  - In large dimension
  - With a high number of observations n

#### Let's now dive into the optimization algorithms themselves !



# Outline

# 1 Motivation: what is Optimization and why study it?

- What makes optimization difficult?
- Detailed Examples

### 2 Gradient descent procedures

- Visualization and intuition
- Gradient Descent
- Convergence rates for GD and interpretation
- Stochastic Gradient Descent

#### 3 Advanced Stochastic Optimization Algorithms

- Variance reduced methods
- Gradient descent for neural networks

#### Insights from Statistical Learning Theory

- Set-up
- Convex functions: basic ideas
- Empirical risk minimization: convergence rates

Minimization problems

Aim: minimizing a function  $f : \mathbb{R}^d \to \mathbb{R}$ 

d: dimension of the search space.



Level sets

One-dimensional (1-D) representations are often misleading, we therefore often represent level-sets of functions

$$\mathcal{C}_c = \{ w \in \mathbb{R}^d, f(w) = c \}.$$



# Gradient - Definition

The gradient of a function  $f : \mathbb{R}^d \to \mathbb{R}$  in w denoted as  $\nabla f(w)$  is the vector of partial derivatives

$$\nabla f(w) = \begin{pmatrix} \frac{\partial f}{\partial w_1} \\ \vdots \\ \frac{\partial f}{\partial w_d} \end{pmatrix}$$

#### Exercise

- If  $f : \mathbb{R} \to \mathbb{R}$ ,  $\nabla f(w) = f'(w)$
- $f(w) = \langle a, w \rangle$ :  $\nabla f(w) = a$
- $f(w) = w^T A w$ :  $\nabla f(w) = (A + A^T) w$
- Particular case:  $f(w) = ||w||^2$ ,  $\nabla f(w) = 2w$ .

# Optimality conditions with convexity

#### Convexity - Three characterizations

• We say that  $f : \mathbb{R}^d \to \mathbb{R}$  is convex if  $(\mathbb{R}^d \text{ is convex and if})$  $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y), \text{ for all } x, y \in \mathbb{R}^d, \lambda \in [0, 1].$ 

A differentiable function *f* : ℝ<sup>d</sup> → ℝ is convex if and only if
  $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ , for all *x*, *y* ∈ ℝ<sup>d</sup>.

that is  $h^T \nabla^2 f(x) h \ge 0$ , for all  $h \in \mathbb{R}^d$ .



# Optimality conditions with convexity

#### Convexity - Three characterizations

• We say that  $f : \mathbb{R}^d \to \mathbb{R}$  is convex if  $(\mathbb{R}^d \text{ is convex and if})$  $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y), \text{ for all } x, y \in \mathbb{R}^d, \lambda \in [0, 1].$ 

A differentiable function *f* : ℝ<sup>d</sup> → ℝ is convex if and only if
  $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ , for all *x*, *y* ∈ ℝ<sup>d</sup>.

③ A twice differentiable function  $f : \mathbb{R}^d \to \mathbb{R}$  is convex if and only if  $\nabla^2 f(x) \ge 0, \quad \text{for all } x,$ 

that is  $h^T \nabla^2 f(x) h \ge 0$ , for all  $h \in \mathbb{R}^d$ .



For a convex function, any local minimum is a global minimum.

# Optimality conditions with convexity

#### Convexity - Three characterizations

• We say that  $f : \mathbb{R}^d \to \mathbb{R}$  is convex if  $(\mathbb{R}^d \text{ is convex and if})$  $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y), \text{ for all } x, y \in \mathbb{R}^d, \lambda \in [0, 1].$ 

A differentiable function *f* : ℝ<sup>d</sup> → ℝ is convex if and only if
  $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ , for all *x*, *y* ∈ ℝ<sup>d</sup>.

③ A twice differentiable function  $f : \mathbb{R}^d \to \mathbb{R}$  is convex if and only if  $\nabla^2 f(x) \ge 0, \quad \text{for all } x,$ 

that is  $h^T \nabla^2 f(x) h \ge 0$ , for all  $h \in \mathbb{R}^d$ .



For a convex function, any local minimum is a global minimum.  $\Rightarrow$  Algorithmically, how to can we find the optimal point

## First attempt: Exhaustive search

Consider the problem

 $w^* \in \operatorname*{argmin}_{w \in [0,1]^d} f(w).$ 

One can optimize this problem on a grid of  $[0,1]^d$ . For example, if the function f is regular enough, in dimension 1, to achieve a precision of  $\varepsilon$  we need  $\lfloor 1/\varepsilon \rfloor$  evaluation of f. In dimension d, we need  $\lfloor 1/\varepsilon \rfloor^d$  evaluations.

For example, evaluating the expression

$$f(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2,$$

to obtain a precision of  $\varepsilon = 10^{-2}$  requires:

- $1,75.10^{-3}$  seconds in dimension 1
- 1,75.10<sup>15</sup> seconds in dimension 10, i.e., nearly 32 millions years.

 $\rightarrow$  Prohibitive in high dimensions (curse of dimensionality, term introduced by **bellman1961adaptive**)

 $\rightarrow$  Solution Use local information.

Use local information: two Classes of algorithms

**Key idea:** At any point  $w_0$  we can compute the value of the function  $f(w_0)$ , but also the direction in which the function increases the most  $\nabla f(w_0)$  and the curvature  $\nabla^2 f(w_0)$ .

**First-order algorithms** that use f and  $\nabla f$ . Standard algorithms when f is differentiable and convex.

**Second-order algorithms** that use  $f, \nabla f$  and  $\nabla^2 f$ . They are useful when computing the Hessian matrix is not too costly.

First fundamental characteristic of algorithms.

# Gradient - Level sets

The gradient is orthogonal to level sets.





Reminder: Taylor expansion around a point  $f(w) = f(w^{(0)}) + \langle \nabla f(w^{(0)}), w - w^{(0)} \rangle + O(\|w - w^{(0)}\|^2).$ 

# Gradient descent algorithm

Gradient descent

**Input**: Function *f* to minimize.

**Initialization**: initial weight vector  $w^{(0)}$ 

**Parameters:** step size  $\eta > 0$ .

While not converge do

- $w^{(k+1)} \leftarrow w^{(k)} \eta \nabla f(w^{(k)})$
- $k \leftarrow k + 1$ .

**Output**:  $w^{(k)}$ .

gradient of f .

#### Gradient Descent on a convex function

For a function  $f : \mathbb{R}^d \to \mathbb{R}$ , define the level sets:  $\mathcal{C}_c = \{ w \in \mathbb{R}^d, f(w) = c \}.$ 



Figure: Gradient descent for function  $f : (x, y) \mapsto x^2 + 2y^2$ 

### Gradient Descent on a Bad objective functions



Figure: Gradient descent for  $f: (x, y) \mapsto \operatorname{sinks}(1/(2x^2) - 1/(4y^2) + 3) \cos(2x + 1 - \exp(y))$ 

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

**Informal statement**: GD converges, for a correct choice of steps, for most convex functions.

Why do we want convergence rates and proofs:

- Proofs help us choose hyperparameters (the learning rate sequence)
- Rates allow us to compare algorithms.

Today, we will see convergence results (without proofs) for :

- GD and SGD
- For convex and smooth functions, and smooth and strongly convex functions.

Thanks to those rates, we will be able to say in which situation GD or SGD should be preferred.

## Formal definition: smoothness

#### L-smooth function

A function f is said to be L-smooth if f is differentiable and if, for all  $x, y \in \mathbb{R}^d$ ,  $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|.$ 

Equivalently,

$$f(w) \leq f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{L}{2} \|w - w'\|^2$$
(1)

**Smooth-convex:** the function above the tangent and below the tangent line + quadratic:



Co-coercivity:  $\|\nabla f'(w) - \nabla f'(w')\|^2 \leq L \langle \nabla f(w') - \nabla f(w'), w - w' \rangle$ 

## Interpretation of GD in the smooth case

Assuming the descent Lemma holds, remark that  

$$\underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(w^{k}) + \langle \nabla f(w^{k}), w - w^{k} \rangle + \frac{L}{2} \|w - w^{k}\|_{2}^{2} \right\}$$

$$= \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\| w - \left( w^{k} - \frac{1}{L} \nabla f(w^{k}) \right) \right\|_{2}^{2}$$



$$7 = \frac{1}{22}$$
 by  $t$ 

Jor. SGD ) decrecoing

Hence, it is natural to choose

$$w^{k+1} = w^k - \frac{1}{L}\nabla f(w^k)$$

10

GD

This is the basic gradient descent algorithm

### Interpretation of GD in the smooth case



## Convergence of GD



In particular, for  $\eta = 1/L$ ,

$$L \| w^{(0)} - w^{\star} \|_2^2 / 2$$

iterations are sufficient to get an  $\varepsilon$ -approximation of the minimal value of f.

## Faster rate for strongly convex function

Strong convexity: function above the tangent line  $+ \mu \times$  quadratic. A function  $f : \mathbb{R}^d \to R$  is  $\mu$ -strongly convex if  $w \mapsto f(w) - \frac{\mu}{2} \|w\|_2^2$ .

is convex.

If f is differentiable it is equivalent to writing, for all  $w \in \mathbb{R}^d$ ,

 $\lambda_{\min}(\nabla^2 f(w)) \ge \mu.$ 

This is also equivalent to, for all  $w, w' \in \mathbb{R}^d$ :

$$f(w) \ge f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{\mu}{2} \|w - w'\|^2$$



Useful inequality in the proofs:  $\langle \nabla f'(w') - \nabla f'(w), w' - w \rangle \ge \mu \|w - w'\|^2$ 

(2)

## Convergence of GD with strong convexity

0,9 20,1

$$\frac{1}{2}\left(\frac{\omega}{\omega}\right) - \frac{1}{2}\left(\frac{\omega}{\omega}\right) \leq \frac{1}{2}\left\|\frac{\omega}{\omega} - \frac{\omega}{\omega}\right\|^{2}$$
$$\leq \frac{1}{2}\left(1 - \frac{1}{2}\mu\right)^{2}\left\|\frac{\omega}{\omega} - \frac{\omega}{\omega}\right\|^{2}$$

#### Theorem

Let  $f : \mathbb{R}^d \to \mathbb{R}$  be a *L*-smooth,  $\mu$  strongly convex function. Let  $w^*$  be the minimum of f on  $\mathbb{R}^d$ . Then, Gradient Descent with step size  $\eta \leq 1/L$  satisfies

$$f(w^{(k)}) - f(w^*) \leq \frac{L}{2} \left(1 - \eta \mu\right) \|w^{(0)} - w^*\|_2^2.$$



p = 0,9

### Condition number

Gradient descent uses iterations

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla f(\mathbf{w}^{(k)})$$

• For L smooth convex function and  $\eta = 1/L$ ,

$$f(w^{(k)}) - f(w^{\star}) \leq \frac{L \|w^{(0)} - w^{\star}\|_{2}^{2}}{2k}$$

• For L smooth,  $\mu$  strongly convex function and  $\eta=1/L$ ,

$$f(w^{(k)}) - f(w^{\star}) \leq \left(1 - \frac{\mu}{L}\right)^{k} \left(f(w^{(0)}) - f(w^{\star})\right)$$

Condition number  $\kappa = L/\mu \geqslant 1$  stands for the difficulty of the learning problem.



# Convergence vs condition number

Why? Rates typically depend on the condition number  $\kappa = \frac{L}{\mu}$ :



Full gradients...

We say that these methods are based on **full gradients**, since at each iteration we need to compute

$$abla f(w) = rac{1}{n} \sum_{i=1}^{n} \nabla f_i(w),$$

n= 10<sup>9</sup>

which depends on the whole dataset

**Question.** If *n* is large, computing  $\nabla f(w)$  is long: need to pass on the whole data before doing a step towards the minimum!

Idea. Large datasets make your modern computer look old

Go back to "old" algorithms.



- Initial Condition
- Impact of the learning rate?

Stochastic Gradient Descent (SGD)

[robbins1985stochastic robbins1985stochastic]

Stochastic gradient descent algorithm

**Initialization**: initial weight vector  $w^{(0)}$ ,

**Parameter**: step size/learning rate  $\eta_k$ 

For  $k = 1, 2, \ldots$  until *convergence* do

- Pick at random (uniformly)  $i_k$  in  $\{1, \ldots, n\}$
- Compute

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla f_{i_k}(w^{(k-1)})$$

#### Remarks

- Each iteration has complexity O(d) instead of O(nd) for full gradient methods
- Possible to reduce this to O(s) when features are *s*-sparse using **lazy-updates**.

Convergence rate of SGD  $\# \left[ \left( \overline{\omega}_{h} \right) - \int_{*}^{*} \leq \frac{\left\| \left( \omega_{u} - \omega^{*} \right) \right\|^{2}}{\left( \int_{*}^{*} \frac{1}{2} \right)^{2}} \right]$ 

Consider the stochastic gradient descent algorithm introduced previously but where each iteration is projected into the ball B(0, R) with R > 0 fixed.

Let  
Sebastion Bubeck's book 
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

#### Theorem

Assume that f is convex and that there exists b > 0 satisfying, for all  $x \in B(0, R)$ ,

 $\|\nabla f_i(x)\| \leq b.$ 

Besides, assume that all minima of f belong to B(0, R). Then, setting  $\eta_k = 2R/(b\sqrt{k})$ ,

$$\mathbb{E}\left[f\left(\frac{1}{k}\sum_{t=1}^{k}w^{(t)}\right)\right] - f(w^{*}) \leq \frac{3Rb}{\sqrt{k}}$$

$$||w^{*}\cdot w^{*}||^{2} = ||w^{*} - w^{*}|| \quad -2\eta < \nabla f_{*}(w^{*}), w^{*} \cdot w^{*} > +\eta^{2} ||\nabla f_{*}|| \qquad \eta^{2} b^{2}$$

$$\mathbb{E}\left[\nabla f_{*}\right] = \nabla f_{*} \qquad ||\nabla f_{*} \in || \rightarrow \int^{2} \nabla^{2} d^{2}$$

# Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each iteration is projected into the ball B(0, R) with R > 0 fixed.

Let

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$$

#### Theorem

Assume that f is  $\mu$  strongly convex and that there exists b > 0 satisfying, for all  $x \in B(0, R)$ ,

 $\|\nabla f_i(x)\| \leq b.$ 

Besides, assume that all minima of f belong to B(0, R). Then, setting  $\eta_k = 2/(\mu(k+1))$ ,

$$\mathbb{E}\left[f\left(\frac{2}{k(k+1)}\sum_{t=1}^{k}t w^{(t-1)}\right)\right] - f(w^{\star}) \leq \frac{2b^2}{\mu(k+1)}.$$
# Comparison of GD and SGD



## Comparison GD versus SGD

Under strong convexity, GD versus SGD is

$$O\Big(rac{nL}{\mu}\logig(rac{1}{arepsilon}ig)\Big)$$
 versus  $O\Big(rac{1}{\muarepsilon}\Big)$ 

GD leads to a more accurate solution, but what if n is very large?

#### Recipe

- SGD is extremely fast in the early iterations (first two passes on the data)
- But it fails to converge accurately to the minimum

#### Beyond SGD

- Bottou and LeCun (2005),
- Shalev-Shwartz et al (2007, 2009),
- Nesterov et al. (2008, 2009),
- Bach et al. (2011, 2012, 2014, 2015),
- T. Zhang et al. (2014, 2015).

## Summary of the first part

Convergence rates for GD and SGD: no universal algorithm !

Convergence rates for smooth functions (see previous slides for model and learning rate):



• Batch gradient descent:  $w_t = w_{t-1} - \eta_t f'(w_{t-1}) = w_{t-1} - \frac{\eta_t}{n} \sum_{i=1}^n f'_i(w_{t-1})$ 



• Stochastic gradient descent:  $w_t = w_{t-1} - \eta_t f'_{i(t)}(w_{t-1})$ 



#### Which one to choose?



Depends on the precision we want.



Which one to choose?

Depends on the precision we want.



Example: non strongly convex case.

2 If our goal is to get a convergence of  $1/\sqrt{n}$ , then

- ▸ Complexity of GD: n<sup>3/2</sup>d
- Complexity of SGD: *nd*.

#### Which one to choose?

Depends on the precision we want.



Example: non strongly convex case.

2 If our goal is to get a convergence of  $1/\sqrt{n}$ , then

- Complexity of GD: n<sup>3/2</sup>d
- Complexity of SGD: nd.

If our goal is to get a convergence of  $1/n^2$ , then

- Complexity of GD:  $n^3d$  ( $n^2$  iterations)
- Complexity of SGD:  $n^4d$  ( $n^4$  iterations).

#### Which one to choose?

Depends on the precision we want.



# SGD vs GD

#### Recipe

- SGD is extremely fast in the early iterations (first two passes on the data)
- But it fails to converge accurately to the minimum

Machine Learning  $\Rightarrow$  Low complexity is often enough !

### Indeed,

- the minimization of the empirical risk is mostly a surrogate for the unknown generalization risk.
- no need to optimize below statistical error

# Outline

## 1 Motivation: what is Optimization and why study it?

- What makes optimization difficult?
- Detailed Examples

## 2 Gradient descent procedures

- Visualization and intuition
- Gradient Descent
- Convergence rates for GD and interpretation
- Stochastic Gradient Descent

# 3 Advanced Stochastic Optimization Algorithms

- Variance reduced methods \_\_\_\_
- Gradient descent for neural networks

### Insights from Statistical Learning Theory

- Set-up
- Convex functions: basic ideas
- Empirical risk minimization: convergence rates

Goal: best of both worlds The problem

- Let  $X = \nabla f_I(w)$  with I uniformly chosen at random in  $\{1, \ldots, n\}$
- In SGD we use  $X = \nabla f_l(w)$  as an approximation of  $\mathbb{E}X = \nabla f(w)$
- How to reduce VX ?

#### An idea

- Reduce it by finding C s.t.  $\mathbb{E}C$  is "easy" to compute and such that C is highly correlated with X
- Let  $Z_{\alpha} = \alpha(X C) + \mathbb{E}C$  for  $\alpha \in [0, 1]$ . We have

$$\mathbb{E}Z_{\alpha} = \alpha \mathbb{E}X + (1-\alpha)\mathbb{E}C$$

and

$$\mathbf{V}Z_{\alpha} = \alpha^{2}(\mathbf{V}X + \mathbf{V}C - 2\mathbb{C}(X, C))$$

• Standard variance reduction:  $\alpha = 1$ , so that  $\mathbb{E}Z_{\alpha} = \mathbb{E}X$  (unbiased)

#### Variance reduction of the gradient In the iterations of SGD, replace $\nabla f_{i_k}(w^{(k-1)})$ by $\alpha(\nabla f_{i_k}(w^{(k-1)}))$ $-\nabla f_{i_k}(\widetilde{w}) + \nabla f(\widetilde{w})$ $\mathcal{E} \nabla \Big|_{i_{\mu}} (\omega_{i_{\mu}})$ where $\tilde{w}$ is an "old" value of the iterate. $\ll$ (X - C) ー Several cases last i at which ] ŵ • $\alpha = 1/n$ : SAG (Bach et al. 2013) • $\alpha = 1$ : SVRG (T. Zhang et al. 2015, 2015) • $\alpha = 1$ : SAGA (Bach et al., 2014) a while cate Ghee in Important remark • In these algorithms, the step-size $\eta$ is kept **constant** • Leads to linearly convergent algorithms, with a numerical complexity comparable to SGD!

• **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$ 

- **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$
- **SGD**: at step k, sample  $i_k \sim \mathcal{U}[1; n]$ , use  $\nabla f_{i_k}(w_k)$

- **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$
- **SGD**: at step k, sample  $i_k \sim \mathcal{U}[1; n]$ , use  $\nabla f_{i_k}(w_k)$
- **SAG**: at step k,
  - keep a "full gradient"  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_{k_i})$ , with  $w_{k_i} \in \{w_1, \dots, w_k\}$

• **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$ 

- **SGD**: at step k, sample  $i_k \sim \mathcal{U}[1; n]$ , use  $\nabla f_{i_k}(w_k)$
- **SAG**: at step *k*,
  - keep a "full gradient"  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_{k_i})$ , with  $w_{k_i} \in \{w_1, \dots, w_k\}$  sample  $i_k \sim \mathcal{U}[1; n]$ , use

$$\frac{1}{n}\left(\sum_{i=0}^{n}\nabla f_{i}(\mathbf{w}_{k_{i}})-\nabla f_{i_{k}}(\mathbf{w}_{k_{i_{k}}})+\nabla f_{i_{k}}(\mathbf{w}_{k})\right),$$

- **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$
- **SGD**: at step k, sample  $i_k \sim \mathcal{U}[1; n]$ , use  $\nabla f_{i_k}(w_k)$
- **SAG**: at step *k*,
  - keep a "full gradient"  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_{k_i})$ , with  $w_{k_i} \in \{w_1, \dots, w_k\}$
  - sample  $i_k \sim \mathcal{U}[1; n]$ , use

$$\frac{1}{n}\left(\sum_{i=0}^{n}\nabla f_{i}(\boldsymbol{w}_{k_{i}})-\nabla f_{i_{k}}(\boldsymbol{w}_{k_{i_{k}}})+\nabla f_{i_{k}}(\boldsymbol{w}_{k})\right),$$

- **GD**: at step k, use  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_k)$
- **SGD**: at step k, sample  $i_k \sim \mathcal{U}[1; n]$ , use  $\nabla f_{i_k}(\mathbf{w}_k)$
- **SAG**: at step *k*,
  - keep a "full gradient"  $\frac{1}{n} \sum_{i=0}^{n} \nabla f_i(w_{k_i})$ , with  $w_{k_i} \in \{w_1, \ldots, w_k\}$
  - sample  $i_k \sim \mathcal{U}[1; n]$ , use

$$\frac{1}{n} \left( \sum_{i=0}^{n} \nabla f_i(\mathbf{w}_{k_i}) - \nabla f_{i_k}(\mathbf{w}_{k_{i_k}}) + \nabla f_{i_k}(\mathbf{w}_k) \right),$$

In other words:

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement

• Iteration: 
$$w_k = w_{k-1} - \frac{\eta}{n} \sum_{i=1}^n g_k(i)$$
 with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$ 

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement

• Iteration: 
$$w_k = w_{k-1} - \frac{\eta}{n} \sum_{i=1}^n g_k(i)$$
 with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$ 

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement

• Iteration: 
$$w_k = w_{k-1} - \frac{\eta}{n} \sum_{i=1}^n g_k(i)$$
 with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$   
functions  $g = \frac{1}{n} \sum_{i=1}^n f_i$   $f_1$   $f_2$   $f_3$   $f_4$   $\cdots$   $f_{n-1}$   $f_n$   
gradients  $\in \mathbb{R}^d$   $\frac{1}{n} \sum_{i=1}^n y_i^t$   $y_1^t$   $y_2^t$   $y_3^t$   $y_4^t$   $\cdots$   $y_{n-1}^t$   $y_n^t$ 

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement

• Iteration: 
$$w_k = w_{k-1} - \frac{\eta}{n} \sum_{i=1}^n g_k(i)$$
 with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$   
functions  $g = \frac{1}{n} \sum_{i=1}^n f_i$   $f_1$   $f_2$   $f_3$   $f_4$   $\cdots$   $f_{n-1}$   $f_n$   
gradients  $\in \mathbb{R}^d$   $\frac{1}{n} \sum_{i=1}^n y_i^t$   $y_1^t$   $y_2^t$   $y_3^t$   $y_4^t$   $\cdots$   $y_{n-1}^t$   $y_n^t$ 

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement

• Iteration: 
$$w_k = w_{k-1} - \frac{\eta}{n} \sum_{i=1}^n g_k(i)$$
 with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$   
functions  $g = \frac{1}{n} \sum_{i=1}^n f_i$   $f_1$   $f_2$   $f_3$   $f_4$   $\cdots$   $f_{n-1}$   $f_n$   
gradients  $\in \mathbb{R}^d$   $\frac{1}{n} \sum_{i=1}^n y_i^t$   $y_1^t$   $y_2^t$   $y_3^t$   $y_4^t$   $\cdots$   $y_{n-1}^t$   $y_n^t$ 

- Keep in memory past gradients of all functions  $f_i$ , i = 1, ..., n
- Random selection  $i_k \in \{1, \ldots, n\}$  with replacement
- Iteration:  $w_k = w_{k-1} \frac{\eta}{n} \sum_{i=1}^n g_k(i)$  with  $g_k(i) = \begin{cases} \nabla f_i(w_{k-1}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$ functions  $g = \frac{1}{n} \sum_{i=1}^n f_i$   $f_1$   $f_2$   $f_3$   $f_4$   $\cdots$   $f_{n-1}$   $f_n$  gradients  $\in \mathbb{R}^d$   $\frac{1}{n} \sum_{i=1}^n y_i^t$   $y_1^t$   $y_2^t$   $y_3^t$   $y_4^t$   $\cdots$   $y_{n-1}^t$   $y_n^t$
- $\hookrightarrow \oplus$  update costs the same as SGD
- $\hookrightarrow \ominus$  needs to store all gradients  $\nabla f_i(w_{k_i})$  at "points in the past"

Stochastic Average Gradient Prowbed: store n grednis One loop **Initialization**: initial weight vector  $w^{(0)}$ **Parameter**: learning rate  $\eta > 0$ For  $k = 1, 2, \ldots$  until *convergence* do • Pick uniformly at random  $i_k$  in  $\{1, \ldots, n\}$ • Put  $g_k(i) = \begin{cases} \nabla f_i(w^{(k-1)}) & \text{if } i = i_k \\ g_{k-1}(i) & \text{otherwise} \end{cases}$  Compute  $w^{(k)} = w^{(k-1)} - \eta \left(\frac{1}{n} \sum_{k=1}^{n} g_k(i)\right)$ **Output**: Return last  $w^{(k)}$ 



**Output**: Return  $\tilde{w}$ .

### SAGA

**Initialization**: initial weight vector  $w^{(0)}$ 

**Parameter**: learning rate  $\eta > 0$ 

For all i = 1, ..., n, compute  $g_0(i) \leftarrow \nabla f_i(w^{(0)})$ 

For  $k = 1, 2, \ldots$  until *convergence* do

- Pick uniformly at random  $i_k$  in  $\{1, \ldots, n\}$
- Compute  $\nabla f_{i_k}(w^{(k-1)})$
- Apply

$$w^{(k)} \leftarrow w^{(k-1)} - \eta \Big( \nabla f_{i_k}(w^{(k-1)}) - g_{k-1}(i_k) + \frac{1}{n} \sum_{i=1}^n g_{k-1}(i) \Big)$$

• Store  $g_k(i_k) \leftarrow \nabla f_{i_k}(w^{(k-1)})$ 

**Output**: Return last  $w^{(k)}$ 

# Variance reduced methods

Some references:

- SAG Sch\_LeR\_Bac\_2013 SAGA Def\_Bac\_Lac\_2014
- SVRG Joh\_Zha\_2013 (reduces memory cost but 2 epochs...)
- FINITO Def\_Dom\_Cae\_2014
- S2GD Kon\_Ric\_2013..

And many others... See for example Niao He's lecture notes for a nice overview.

Convergence rate for  $f(\tilde{w}_k) - f(\theta_*)$ , smooth objective f.



Convergence rate for  $f(\tilde{w}_k) - f(\theta_*)$ , smooth objective f.



GD, SGD, SAG (Fig. from Sch\_LeR\_Bac\_2013)

Convergence rate for  $f(\tilde{w}_k) - f(\theta_*)$ , smooth objective f.



GD, SGD, SAG (Fig. from Sch\_LeR\_Bac\_2013)

Remarks:

- Proof technique
- Related to control variates in Federated Learning (Scaffold, DIANA, etc.)!

## Summary

we converge

l'interpolation regime

we reduce the raise as

we don't need to reduce of

• Variance reduced algorithms can have both:

11

- Iow iteration cost
- fast asymptotic convergence

However:

- High precision is not always useful
- Ypically not used in deep learning:
  - Memory constraints for SAG
  - Convergence to "bad" (?) minima  $\Rightarrow$  bad generalization...

1 1

1,



Algorithm that converge tp "high precision" may converge to sharper minima.

# Bad generalization in Deep Learning

#### Reasoning:

- There are 2 types of local minima: flat and sharp.
- Algorithm that converge tp "high precision" may converge to sharper minima.
- Sharp minima have poorer generalization performance.

# Challenges in Deep Learning

#### Challenges

- $I Non convex \Rightarrow Local minima$
- 2 Extremely large dimension
- Extremely large number of parameters (+ different scales)
- Bad conditioning + flat areas + saddle points

#### Ingredients of popular algorithms:

- First order
- 2 Stochastic
- Momentum
- Different steps per coordinates : adaptive methods

# Challenges in Deep Learning

#### Challenges

- **1** Non convex  $\Rightarrow$  Local minima
- 2 Extremely large dimension
- Extremely large number of parameters (+ different scales)
- Bad conditioning + flat areas + saddle points

#### Ingredients of popular algorithms:

- First order
- Stochastic
- Momentum
- Different steps per coordinates : adaptive methods

#### Generalization and overfitting problems are poorly understood but:

- Noise helps
- "Too precise" methods (e.g. variance reduction, second order) are not used.
  e.g.: SVRG is great for convex, but not even implemented in Keras.

### Adaptation: notations

Same learning rate for all coordinates. Could we use a different learning rate for all coordinates ?
 i.e., for 1 ≤ j ≤ d:

$$(\mathbf{w}^{k})_{j} = (\mathbf{w}^{k-1})_{j} - \eta_{k,j} (\nabla f_{k}(\mathbf{w}^{k-1}))_{j}$$

Equivalently:

$$w^{k} = w^{k-1} - \begin{pmatrix} \eta_{k,1} \\ \eta_{k,2} \\ \cdots \\ \eta_{k,d} \end{pmatrix} \odot \begin{pmatrix} (\nabla f_{k}(w^{k-1}))_{1} \\ (\nabla f_{k}(w^{k-1}))_{2} \\ \cdots \\ (\nabla f_{k}(w^{k-1}))_{d} \end{pmatrix}$$

Indexes:

$$(w_t)_j = (w_{k-1})_j - \eta_{k,k} (\nabla f_{l_k}(w_{k-1}))_j$$

 g<sub>k</sub> = ∇f<sub>l<sub>k</sub></sub>(w<sub>k-1</sub>) stochastic gradient at time t (w<sub>k</sub>)<sub>j</sub> = (w<sub>k-1</sub>)<sub>j</sub> − η<sub>k,j</sub>(g<sub>k</sub>)<sub>j</sub>
 Avoiding double subscript:

$$(w^k)_j = (w^{k-1})_j - \eta^k_j (g^k)_j$$
$$w^k_j = w^{k-1}_j - \eta^k_j g^t_j$$
# ADAGRAD

Most following algos are in the following framework: First order method.  $w_j^k = w_j^{k-1} - \eta_j^k g_j^k + (momentum)$ 

Special choice for step-sizes:

$$w_j^k = w_j^{k-1} - \frac{\eta}{\sqrt{C_{k,j} + \epsilon}} g_j^k$$

[duchi2011adaptive duchi2011adaptive]

ADAptive GRADient algorithm

**Initialization**: initial weight vector  $w^{(0)}$ 

**Parameter**: learning rate  $\eta > 0$ 

For k = 1, 2, ... until *convergence* do, component-wise.

• For all  $j = 1, \dots, d$ ,  $w_j^k \leftarrow w_j^{k-1} - \frac{\eta}{\sqrt{\sum_{j=1}^k (g_j^\tau)^2 + \epsilon}} g_j^k$ 

• Equivalently

$$w^{k} \leftarrow \tilde{w}^{(k-1)} - \frac{\eta}{\sqrt{\sum_{\tau=1}^{k} (\nabla f_{i_{\tau}}(w^{(\tau-1)}))^{2} + \epsilon}} \odot g^{k}$$

**Output**: Return last  $w^{(k)}$ 

# ADAGRAD

### Update equation for ADAGRAD

$$w^{k} \leftarrow \tilde{w}^{(k-1)} - \frac{\eta}{\sqrt{\sum_{t=1}^{k} (g_{j}^{\tau})^{2} + \epsilon}} \odot g^{k}$$

Pros:

- Different dynamic rates on each coordinate
- Dynamic rates grow as the inverse of the gradient magnitude:
  - Large/small gradients have small/large learning rates
  - 2 The dynamic over each dimension tends to be of the same order
  - Interesting for neural networks in which gradient at different layers can be of different order of magnitude.
- Accumulation of gradients in the denominator act as a decreasing learning rate.

Cons:

- Very sensitive to initial condition: large initial gradients lead to small learning rates.
- Can be fought by increasing the learning rate thus making the algorithm sensitive to the choice of the learning rate.

# ADAGRAD - Summary of parameters

ADAGRAD:

$$w_{j}^{k} = w_{j}^{k-1} - \eta_{j}^{k} g_{j}^{k} + \beta(momentum)$$

Special choice for step-sizes:

$$w_j^k = w_j^{k-1} - \frac{\eta}{\sqrt{C_{k,j} + \epsilon}} g_j^k$$

# ADAGRAD - Summary of parameters

ADAGRAD:

$$\mathbf{w}_{j}^{k} = \mathbf{w}_{j}^{k-1} - \eta_{j}^{k} \mathbf{g}_{j}^{k} + \beta(\mathbf{momentum})$$

Special choice for step-sizes:

$$w_j^k = w_j^{k-1} - \frac{\eta}{\sqrt{C_{k,j} + \epsilon}} g_j^k$$

### ADAptive GRADient algorithm

- starting point  $w^0$ ,
- 2 learning rate  $\eta > 0$ , (default value of 0.01)
- **6** momentum  $\beta$ , constant  $\varepsilon$ .

For  $t = 1, 2, \ldots$  until *convergence* do for  $1 \leq j \leq d$ 

$$w_j^k \leftarrow w_j^{k-1} - \frac{\eta}{\sqrt{\sum_{\tau=1}^k (g_j^{\tau})^2 + \epsilon}} g_j^k$$

**Return** last  $w^k$ 

# Improving upon AdaGrad: RMS-prop

Idea : restricts the window of accumulated past gradients to some limited size through moving average.

- starting point  $w^0$ , constant  $\varepsilon$ ,
- **2** new params : decay rate  $\rho > 0$

Update:

$$w_j^{k+1} = w_j^k - \frac{\eta_j^k}{\sqrt{C_{j,k} + \varepsilon}} g_j^k$$

Adagrad:

**1** 
$$C_{j,k} = \sum_{\tau=1}^{k} (g_j^{\tau})^2$$
  
**2**  $\eta_j^k = \eta$ 

RMS prop:

• 
$$C_{j,k} = \rho C_j^{k-1} + (1-\rho) (g_j^k)^2$$

•  $\eta_j^k = \eta$  constant.

# RMSprop

### Unpublished method, from the course of Geoff Hinton

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture\_slides\_lec6.pdf

RMSprop algorithm

**Initialization**: initial weight vector  $w^{(0)}$ 

**Parameters**: learning rate  $\eta > 0$  (default  $\eta = 0.001$ ), decay rate  $\rho$  (default  $\rho = 0.9$ )

For  $k = 1, 2, \ldots$  until *convergence* do

• First, compute the accumulated gradient

$$\overline{(\nabla f)^2}^{(k)} = \rho \overline{(\nabla f)^2}^{(k-1)} + (1-\rho)(g^k)^2$$

• Compute

$$w^{(k)} \leftarrow w^{(k-1)} - \frac{\eta}{\sqrt{(\nabla f)^2} + \varepsilon} \odot g^k$$

**Output**: Return last  $w^{(k)}$ 

# Improving upon AdaGrad & RMS prop: AdaDelta

Idea :RMS-prop + Second order style approach. Less sensitivity to initial parameters. Update:

$$w_j^{k+1} = w_j^k - \frac{\eta_j^k}{\sqrt{C_{j,k} + \varepsilon}} g_j^k$$

Adagrad:

**1**  $C_{j,k} = \sum_{\tau=1}^{t} (g_j^{\tau})^2$ **2**  $\eta_i^k = \eta$ 

RMS prop:

$$C_{j,k} = \rho C_j^{k-1} + (1-\rho) (g_j^k)^2$$
 $\eta_j^k = \eta \text{ constant.}$ 

Adadelta:

**1** 
$$C_{j,k} = \rho C_j^{k-1} + (1-\rho)(g_j^k)^2$$

**2**  $\eta_j^k$  variable.

# ADADELTA

# Determining a good learning rate becomes more of an art than science for many problems.

M.D. Zeiler

Update equation for adadelta

$$w^{(k+1)} = w^{(k)} - \frac{\sqrt{(\overline{\Delta w})^2}^{(k-1)} + \varepsilon}{\sqrt{(\overline{\nabla f})^2}^{(k)} + \varepsilon} \odot g^k$$

Interpretation:

- The numerator keeps the size of the previous step in memory and enforce larger steps along directions in which large steps were made.
- The denominator keeps the size of the previous gradients in memory and acts as a decreasing learning rate. Weights are lower than in Adagrad due to the decay rate ρ.
   Inspired by second order methods (unit invariance + Hessian approximation)

$$\Delta w \simeq (\nabla^2 f)^{-1} \nabla f.$$

Roughly,

$$\Delta w = \frac{\frac{\partial f}{\partial w}}{\frac{\partial^2 f}{\partial w^2}} \Leftrightarrow \frac{1}{\frac{\partial^2 f}{\partial w^2}} = \frac{\Delta w}{\frac{\partial f}{\partial w}}.$$

See also zeiler2012adadelta; schaul2013no

# ADADELTA

#### AdaDelta algorithm

**Initialization**: initial weight vector  $w^{(0)}$ ,  $(\overline{\nabla f})^2^0 = 0$ ,  $(\overline{\Delta x})^2^0 = 0$ 

**Parameters**: decay rate  $\rho > 0$ , constant  $\varepsilon$ ,

For  $k = 1, 2, \ldots$  until *convergence* do

• For all 
$$j = 1, ..., d$$
,

Compute the accumulated gradient

$$\overline{(\nabla f)^2}^{(k)} = \rho \overline{(\nabla f)^2}^{(k-1)} + (1-\rho)(g^k)^2$$

Occupie Compute the update

$$w^{(k)} = w^{(k-1)} - \frac{\sqrt{(\overline{\Delta w})^2}^{(k-1)} + \varepsilon}{\sqrt{(\overline{\nabla f})^2}^{(k)} + \varepsilon} \odot g^k$$

Occupies the aggregated update

$$(\overline{\Delta w})^{2^{(k)}} = \rho(\overline{\Delta w})^{2^{(k-1)}} + (1-\rho)(w^{(k+1)} - w^{(k)})^{2^{(k-1)}}$$

**Output**: Return last  $w^{(k)}$ 

# ADAM: ADAptive Moment estimation

[kingma2014adam kingma2014adam]

General idea: store the estimated first and second moment of the gradient and use them to update the parameters.

Equations - first and second moment Let  $m_k$  be an exponentially decaying average over the past gradients  $m_k = \beta_1 m_{k-1} + (1 - \beta_1) g^k$ Similarly, let  $v_t$  be an exponentially decaying average over the past square gradients  $v_k = \beta_2 v_{k-1} + (1 - \beta_2) (g^k)^2$ . Initialization:  $m_0 = v_0 = 0$ .

With this initialization, estimates  $m_t$  and  $v_t$  are biased towards zero in the early steps of the gradient descent.

### Final equations

$$\widetilde{m}_k = rac{m_k}{1-eta_1^k} \quad \widetilde{v}_k = rac{v_k}{1-eta_2^k}.$$
 $w^{(k)} = w^{(k-1)} - rac{\eta}{\sqrt{\widetilde{v}_k}+arepsilon}\widetilde{m}_k.$ 

#### Adam algorithm

**Initialization**:  $m_0 = 0$  (Initialization of the first moment vector),  $v_0 = 0$  (Initialization of the second moment vector),  $w_0$  (initial vector of parameters).

**Parameters**: stepsize  $\eta$  (default  $\eta = 0.001$ ), exponential decay rates for the moment estimates  $\beta_1, \beta_2 \in [0, 1)$  (default:  $\beta_1 = 0.9, \beta_2 = 0.999$ ), numeric constant  $\varepsilon$  (default  $\varepsilon = 10^{-8}$ ).

For  $k = 1, 2, \ldots$  until *convergence* do

• Compute first and second moment estimate

$$m^{(k)} = \beta_1 m^{(k-1)} + (1 - \beta_1) g^k \quad v^{(k)} = \beta_2 v_{(k-1)} + (1 - \beta_2) (g^k)^2$$

• Compute their respective correction

$$ilde{m}^{(k)} = rac{m^{(k)}}{1-eta_1^k} \quad ilde{\mathbf{v}}^{(k)} = rac{\mathbf{v}^{(k)}}{1-eta_2^k}.$$

• Update the parameters accordingly

$$\mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} - \frac{\eta}{\sqrt{\mathbf{\tilde{v}}^{(k)}} + \varepsilon} \odot \mathbf{\tilde{m}}^{(k)}.$$

**Output**: Return last  $w^{(k)}$ 

Convergence results: [kingma2014adam kingma2014adam], [reddi2018convergence reddi2018convergence].

#### Adamax algorithm

**Initialization**:  $m_0 = 0$  (Initialization of the first moment vector),  $u_0 = 0$  (Initialization of the exponentially weighted infinity norm),  $w_0$  (initial vector of parameters).

**Parameters**: stepsize  $\eta$  (default  $\eta = 0.001$ ), exponential decay rates for the moment estimates  $\beta_1, \beta_2 \in [0, 1)$  (default:  $\beta_1 = 0.9, \beta_2 = 0.999$ )

For  $k = 1, 2, \ldots$  until *convergence* do

• Compute first moment estimate and its correction

$$m^{(k)} = \beta_1 m_{(k-1)} + (1 - \beta_1) g^k, \qquad \tilde{m}^{(k)} = \frac{m^{(k)}}{1 - \beta_1^k}$$

(L)

• Compute the quantity

$$u^{(k)} = \max(\beta_2 u^{(k-1)}, |\boldsymbol{g}^k|).$$

• Update the parameters accordingly

$$w^{(k+1)} = w^{(k)} - \frac{\eta}{u^{(k)}} \odot \tilde{m}^{(k)}.$$

**Output**: Return last  $w^{(k)}$ 

#### [kingma2014adam kingma2014adam]

# Animation of Stochastic Gradient algorithms

https://imgur.com/a/Hqolp Credits to Alec Radford for the animations.

# The Notebook

Goal: Code

- gradient descent (GD)
- accelerated gradient descent (AGD)
- S coordinate gradient descent (CD)
- stochastic gradient descent (SGD)
- Stochastic variance reduced gradient descent (SAG)
- 6 Adagrad

for the linear regression and logistic regression models, with the ridge penalization.



# Summary

What we have seen so far !

- Why optimization is important, what makes it difficult
- Simple first order methods, from GD to SGD
- Advanced first order methods, variance reduction and coordinate adaptive step-sizes

•

What we have missed and won't cover

- Acceleration techniques (momentum, Nesterov)
- Second order methods
- Federated Learning algorithms.

What's next

• Statistical approach.

# Outline

# 1 Motivation: what is Optimization and why study it?

- What makes optimization difficult?
- Detailed Examples

### 2 Gradient descent procedures

- Visualization and intuition
- Gradient Descent
- Convergence rates for GD and interpretation
- Stochastic Gradient Descent

# 3 Advanced Stochastic Optimization Algorithms

- Variance reduced methods
- Gradient descent for neural networks

# Insights from Statistical Learning Theory

- Set-up
- Convex functions: basic ideas
- Empirical risk minimization: convergence rates

- Data: *n* observations  $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, i.i.d.
- Prediction as a linear function  $\langle \theta, \Phi(x) \rangle$  of features  $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find  $\hat{\theta}$  solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \quad + \quad \mu \Omega(\theta)$$

convex data fitting term + regularizer

- **Regression**:  $y \in \mathbb{R}$ , prediction  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ 
  - quadratic loss  $\ell(y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2} (y \langle \theta, \Phi(x) \rangle)^2$

- **Regression**:  $y \in \mathbb{R}$ , prediction  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ 
  - quadratic loss  $\ell(y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2} (y \langle \theta, \Phi(x) \rangle)^2$
- **Classification** :  $y \in \{-1, 1\}$ , prediction  $\phi_{\theta}(x) = \operatorname{sign}(\langle \theta, \Phi(x) \rangle)$ 
  - 0 1 loss:  $\ell(y, \langle \theta, \Phi(x) \rangle) = \mathbf{1}_{\{y \cdot \langle \theta, \Phi(x) \rangle < 0\}}$ .
  - convex losses

Convex loss



- Support vector machine (hinge loss)  $\ell(Y, \langle \theta, \Phi(x) \rangle) = \max\{1 - Y \langle \theta, \Phi(x) \rangle, 0\}$
- Logistic regression:  $\ell(Y, \langle \theta, \Phi(x) \rangle) = \log(1 + \exp(-Y \langle \theta, \Phi(x) \rangle))$
- Least-squares regression  $\ell(Y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2} (Y - \langle \theta, \Phi(x) \rangle)^2$

### Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm:  $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
- Sparsity-inducing norms
  - LASSO :  $\ell_1$ -norm  $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
  - Perform model selection as well as regularization
  - Non-smooth optimization and structured sparsity
  - See, e.g., Bach, Jenatton, Mairal and Obozinski (2012a,b)

- Data: *n* observations  $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, i.i.d.
- Prediction as a linear function  $\langle \theta, \Phi(x) \rangle$  of features  $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find  $\hat{\theta}$  solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \text{ such that } \Omega(\theta) \leq D$$

convex data fitting term + constraint

- Data: *n* observations  $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, i.i.d.
- Prediction as a linear function  $\langle \theta, \Phi(x) \rangle$  of features  $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find  $\hat{\theta}$  solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \text{ such that } \Omega(\theta) \leq D$$

• Empirical risk:  $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$ 

- Data: *n* observations  $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, i.i.d.
- Prediction as a linear function  $\langle \theta, \Phi(x) \rangle$  of features  $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find  $\hat{\theta}$  solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \text{ such that } \Omega(\theta) \leq D$$

convex data fitting term + constraint

- Empirical risk:  $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- **Expected risk**:  $f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, \Phi(X) \rangle)]$ .

# General assumptions

- Data: *n* observations  $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ , i = 1, ..., n, i.i.d.
- Bounded features  $\Phi(x) \in \mathbb{R}^d$ :  $\|\Phi(x)\|_2 \leq R$
- Empirical risk  $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- Expected risk  $f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, \Phi(X) \rangle)]$
- Loss for a single observation:  $f_i(\theta) = \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$ . For all  $i, f(\theta) = \mathbb{E}[f_i(\theta)]$
- Properties of  $f_i, f, \hat{f}$ 
  - Convex on  $\mathbb{R}^d$
  - Additional regularity assumptions: Lipschitz-continuity, smoothness and strong convexity

# Lipschitz continuity

Bounded gradients of g ( ⇔ Lipschitz-continuity): the function g if convex, differentiable and has gradients uniformly bounded by B on the ball of center 0 and radius D: for all θ ∈ ℝ<sup>d</sup>,

 $\|\theta\|_{2} \leq D \Rightarrow \|\nabla g(\theta)\|_{2} \leq B$  $\Leftrightarrow$  $|g(\theta) - g(\theta')| \leq B \|\theta - \theta'\|_{2}$ 

- Machine learning
  - $g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
  - G-Lipschitz loss and R-bounded data: B = GR

A function g : ℝ<sup>d</sup> → ℝ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz: for all θ, θ' ∈ ℝ<sup>d</sup>;
 ||∇g(θ<sub>1</sub>) - ∇g(θ')||<sub>2</sub> ≤ L||θ - θ'||<sub>2</sub>

• If g is twice differentiable, for all  $\theta \in \mathbb{R}^d$ ,  $\nabla^{\otimes 2}g(\theta) \leq L \cdot \mathsf{Id}$ 



A function g : ℝ<sup>d</sup> → ℝ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz: for all θ, θ' ∈ ℝ<sup>d</sup>;

 $\|\nabla g(\theta_1) - \nabla g(\theta')\|_2 \leq L \|\theta - \theta'\|_2$ 

• If g is twice differentiable, for all  $\theta \in \mathbb{R}^d$ ,  $\nabla^{\otimes 2}g(\theta) \leq L \cdot \mathrm{Id}$ 

**Machine learning** 

- $g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- Hessian  $\approx$  covariance matrix

$$n^{-1}\sum_{i=1}^{n} \Phi(X_i) \Phi^{\top}(X_i) \ddot{\ell}(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

•  $L_{\text{loss}}$ -smooth loss and R-bounded data:  $L = L_{\text{loss}}R^2$ 

- A function  $g : \mathbb{R}^d \to \mathbb{R}$  is  $\mu$ -strongly convex if and only if, for all  $\theta, \theta' \in \mathbb{R}^d$ , 
  $$\begin{split} g(\theta) \geq g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2 \\ \bullet \text{ If } g \text{ is twice differentiable: for all } \theta \in \mathbb{R}^d, \ \nabla^2 g(\theta) \geq \mu \cdot \mathrm{Id} \end{split}$$



- A function  $g : \mathbb{R}^d \to \mathbb{R}$  is  $\mu$ -strongly convex if and only if, for all  $\theta, \theta' \in \mathbb{R}^d$ ,  $g(\theta) \ge g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$ • If g is twice differentiable: for all  $\theta \in \mathbb{R}^d$ ,  $\nabla^2 g(\theta) \ge \mu \cdot \mathrm{Id}$

#### **Machine learning**

- $g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- Hessian  $\approx$  covariance matrix

$$n^{-1}\sum_{i=1}^{n}\Phi(X_i)\Phi(X_i)^{\top}\ddot{\ell}(Y_i,\langle\theta,\Phi(X_i)\rangle)$$

• Data with invertible covariance matrix

- A function  $g : \mathbb{R}^d \to \mathbb{R}$  is  $\mu$ -strongly convex if and only if, for all  $\theta, \theta' \in \mathbb{R}^d$ ,  $g(\theta) \ge g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$
- If g is twice differentiable: for all  $\theta \in \mathbb{R}^d$ ,  $\nabla^2 g(\theta) \ge \mu \cdot \operatorname{Id}^2$

**Machine learning** 

- $g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- Hessian  $\approx$  covariance matrix

$$n^{-1}\sum_{i=1}^{n}\Phi(X_i)\Phi(X_i)^{\top}\ddot{\ell}(Y_i,\langle\theta,\Phi(X_i)\rangle)$$

• Data with invertible covariance matrix

Adding regularization by  $\frac{\mu}{2} \|\theta\|^2$  [! creates a bias (controlled by  $\mu$ )]

Smoothness/convexity assumptions: summary

• Bounded gradients of g (Lipschitz-continuity): the function g if convex, differentiable and has gradients uniformly bounded by B on the ball of center 0 and radius D:

for all 
$$\theta \in \mathbb{R}^d$$
,  $\|\theta\|_2 \leq D \Rightarrow \|\nabla g(\theta)\|_2 \leq B$ 

 Smoothness of g: the function g is convex, differentiable with L-Lipschitz-continuous gradient ∇g: for all θ, θ' ∈ ℝ<sup>d</sup>, ||∇g(θ) - ∇g(θ')||<sub>2</sub> ≤ L||θ - θ'||<sub>2</sub>

• Strong convexity of g: The function f is strongly convex with respect to the norm  $\|\cdot\|_2$ , with convexity constant  $\mu > 0$ : for all  $\theta, \theta' \in \mathbb{R}^d$ ,

$$g( heta) \geqslant g( heta') + \langle 
abla g( heta'), heta - heta' 
angle + rac{\mu}{2} \| heta - heta' \|_2^2$$

# Empirical risk minimization: rationale

- The expected risk  $f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, X, \rangle)]$  is not tractable.
- Only the empirical risk  $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} [\ell(Y_i, \langle \theta, X_i, \rangle)]$  is.
- Minimizing  $\hat{f}$  instead of f?
- A simple observation:

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq \sup_{\theta \in \Theta} \{\hat{f}(\theta) - f(\theta)\} + \sup_{\theta \in \Theta} \{f(\theta) - \hat{f}(\theta)\}$$

• Can we have a bound on  $\sup_{\theta\in\Theta}|\hat{f}(\theta)-f(\theta)|?$ 

### Motivation from least-squares

• For least-squares, we have  $\ell(y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2}(y - \langle \theta, \Phi(x) \rangle)^2$ , and

$$\begin{split} f(\theta) - \hat{f}(\theta) &= \frac{1}{2} \theta^{\top} \bigg( \frac{1}{n} \sum_{i=1}^{n} \Phi(X_{i}) \Phi(X_{i})^{\top} - \mathbb{E} \Phi(X) \Phi(X)^{\top} \bigg) \theta \\ &- \theta^{\top} \bigg( \frac{1}{n} \sum_{i=1}^{n} Y_{i} \Phi(X_{i}) - \mathbb{E} Y \Phi(X) \bigg) + \frac{1}{2} \bigg( \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2} - \mathbb{E} Y^{2} \bigg), \\ \sup_{\|\theta\|_{2} \leqslant D} |f(\theta) - \hat{f}(\theta)| &\leq \frac{D^{2}}{2} \bigg\| \frac{1}{n} \sum_{i=1}^{n} \Phi(X_{i}) \Phi(X_{i})^{\top} - \mathbb{E} \Phi(X) \Phi(X)^{\top} \bigg\|_{\text{op}} \\ &+ D \bigg\| \frac{1}{n} \sum_{i=1}^{n} Y_{i} \Phi(X_{i}) - \mathbb{E} Y \Phi(X) \bigg\|_{2} + \frac{1}{2} \bigg| \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2} - \mathbb{E} Y^{2} \bigg|, \end{split}$$

 $\sup_{\|\theta\|_2\leqslant D}|f(\theta)-\hat{f}(\theta)|\leqslant \textit{O}(1/\sqrt{\textit{n}}) \text{ with high probability}$ 

Assumptions (f is the expected risk,  $\hat{f}$  the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$  (Euclidean norm)
- "Linear" predictors:  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ , with  $\|\Phi(x)\|_2 \leq R$
- G-Lipschitz loss:  $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$  is GR-Lipschitz on  $\Theta = \{ \|\theta\|_2 \leq D \}$
- No convexity assumption

# Slow rate for supervised learning

Assumptions (f is the expected risk,  $\hat{f}$  the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$  (Euclidean norm)
- "Linear" predictors:  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ , with  $\|\Phi(x)\|_2 \leq R$
- *G*-Lipschitz loss:  $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$  is *GR*-Lipschitz on  $\Theta = \{ \|\theta\|_2 \leq D \}$
- No convexity assumption

**High-probability bounds:** With probability greater than  $1 - \delta$ ,

$$\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \leq \frac{\sup |\ell(Y,0)| + GRD}{\sqrt{n}} \left[ 2 + \sqrt{2\log \frac{2}{\delta}} \right]$$
# Slow rate for supervised learning

**Assumptions** (f is the expected risk,  $\hat{f}$  the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$  (Euclidean norm)
- "Linear" predictors:  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ , with  $\|\Phi(x)\|_2 \leq R$
- *G*-Lipschitz loss:  $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$  is *GR*-Lipschitz on  $\Theta = \{ \|\theta\|_2 \leq D \}$
- No convexity assumption

**Risk bounds** 

$$\mathbb{E}\Big[\sup_{\theta\in\Theta}|\hat{f}(\theta)-f(\theta)|\Big] \leqslant \frac{4\sup|\ell(Y,0)|+4GRL}{\sqrt{n}}$$

# Slow rate for supervised learning

Assumptions (f is the expected risk,  $\hat{f}$  the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$  (Euclidean norm)
- "Linear" predictors:  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ , with  $\|\Phi(x)\|_2 \leq R$
- *G*-Lipschitz loss:  $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$  is *GR*-Lipschitz on  $\Theta = \{ \|\theta\|_2 \leq D \}$
- No convexity assumption

#### Method

- **Tools**: Symmetrization, Rademacher complexity (see Boucheron et al., 2012), McDiarmid inequality.
- Lipschitz functions  $\Rightarrow$  slow rate

#### Symmetrization with Rademacher variables

• Let  $\mathcal{D}' = \{X'_1, Y'_1, \dots, X'_n, Y'_n\}$  an independent copy of the data  $\mathcal{D} = \{X_1, Y_1, \dots, X_n, Y_n\}$ , with corresponding loss functions  $f'_i(\theta)$ ,  $\mathbb{E}\left[\sup_{\theta \in \Theta} \left\{f(\theta) - \hat{f}(\theta)\right\}\right] = \mathbb{E}\left[\sup_{\theta \in \Theta} \left\{f(\theta) - \frac{1}{n}\sum_{i=1}^n f_i(\theta)\right\}\right]$   $= \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n}\sum_{i=1}^n \mathbb{E}\left[f'_i(\theta) - f_i(\theta)\middle|\mathcal{D}\right]\right]$  $\leq \mathbb{E}\left[\mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n}\sum_{i=1}^n \left\{f'_i(\theta) - f_i(\theta)\right\}\middle|\mathcal{D}\right]\right]$ 

#### Symmetrization with Rademacher variables

• Let  $\mathcal{D}' = \{X'_1, Y'_1, \dots, X'_n, Y'_n\}$  an independent copy of the data  $\mathcal{D} = \{X_1, Y_1, \dots, X_n, Y_n\}$ , with corresponding loss functions  $f'_i(\theta)$ ,  $\mathbb{E}\left[\sup_{\theta \in \Theta} \left\{f(\theta) - \hat{f}(\theta)\right\}\right] = \mathbb{E}\left[\sup_{\theta \in \Theta} \left\{f(\theta) - \frac{1}{n}\sum_{i=1}^n f_i(\theta)\right\}\right]$   $= \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n}\sum_{i=1}^n \left\{f'_i(\theta) - f_i(\theta)\right\}\right]$   $= \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n}\sum_{i=1}^n \varepsilon_i \left\{f'_i(\theta) - f_i(\theta)\right\}\right]$  with  $\varepsilon_i$  uniform in  $\{-1, 1\}$  $\leq 2\mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n}\sum_{i=1}^n \varepsilon_i f_i(\theta)\right] = \text{Rademacher complexity}$ 

### Rademacher complexity

- Define the Rademacher complexity of the class of functions  $(x, y) \mapsto \ell(y, \langle \theta, \Phi(x) \rangle)$  as  $R_n = \mathbb{E} \bigg[ \sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(\theta) \bigg], \quad f_i(\theta) = \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- Main property:

$$\mathbb{E}\left[\sup_{\theta\in\Theta}\left\{f(\theta)-\hat{f}(\theta)\right\}\right]=\mathbb{E}\left[\sup_{\theta\in\Theta}\left\{\hat{f}(\theta)-f(\theta)\right\}\right]\leqslant 2R_{n}$$

From Rademacher complexity to uniform bound

$$Z = \sup_{\theta \in \Theta} \{ f(\theta) - \hat{f}(\theta) \}$$
$$= \sup_{\theta \in \Theta} \left\{ f(\theta) - n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \right\}$$

- By changing one pair  $(X_i, Y_i)$ , Z may only change by  $\frac{2}{n} \sup |\ell(Y, \langle \theta, \Phi(x) \rangle)| \leq \frac{2}{n} (\sup |\ell(Y, 0)| + GRD) \leq \frac{2}{n} (\ell_0 + GRD) = c$ with  $\sup |\ell(Y, 0)| = \ell_0$
- MacDiarmid inequality: with probability greater than  $1 \delta$ ,  $Z \leq \mathbb{E}Z + \sqrt{\frac{n}{2}}c \cdot \sqrt{\log \frac{1}{\delta}} \leq 2R_n + \frac{\sqrt{2}}{\sqrt{n}}(\ell_0 + GRD)\sqrt{\log \frac{1}{\delta}}$

# Bounding the Rademacher average

• Empirical Rademacher averages

$$\hat{R}_{n} = \mathbb{E}\bigg[\sup_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f_{i}(\theta)\Big|\mathbb{X}\bigg]$$

$$\leq \mathbb{E}\bigg[\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f_{i}(0)\Big|\mathbb{X}\bigg] + \mathbb{E}\bigg[\sup_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\big[f_{i}(\theta) - f_{i}(0)\big]\Big|\mathbb{X}\bigg]$$

$$\leq 0 + \mathbb{E}\bigg[\sup_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\big[f_{i}(\theta) - f_{i}(0)\big]\Big|\mathbb{X}\bigg]$$

$$= 0 + \mathbb{E}\bigg[\sup_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\varphi_{i}(\langle\theta,\Phi(X_{i})\rangle)\Big|\mathbb{X}\bigg]$$

Using Ledoux-Talagrand concentration results for Rademacher averages (since φ<sub>i</sub> is G-Lipschitz), we get:

$$\hat{R}_n \leq 2G \cdot \mathbb{E}\left[\sup_{\|\theta\|_2 \leq D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \langle \theta, \Phi(X_i) \rangle \Big| \mathbb{X}\right]$$

# Bounding the Rademacher average - II

$$\begin{aligned} R_n &\leq 2G\mathbb{E}\bigg[\sup_{\|\theta\|_2 \leq D} \frac{1}{n} \sum_{i=1}^n \varepsilon_i \langle \theta, \Phi(X_i) \rangle \bigg] \\ &= 2GD\mathbb{E} \bigg\| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \Phi(X_i) \bigg\|_2 \\ &\leq 2GD \sqrt{\mathbb{E}} \bigg\| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \Phi(X_i) \bigg\|_2^2 \\ &\leq \frac{2GRD}{\sqrt{n}} \end{aligned}$$
  
With probability  $1 - \delta$ :  
$$\sup_{\theta \in \Theta} |f(\theta) - \hat{f}(\theta)| \leq \frac{1}{\sqrt{n}} (\ell_0 + GRD) (4 + \sqrt{2\log(1/\delta)}) \end{aligned}$$

### Empirical Risk vs Fluctuation

- We have, with probability  $1 \delta$ , for all  $\theta \in \Theta$ :  $f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq \sup_{\theta \in \Theta} \{\hat{f}(\theta) - f(\theta)\} + \sup_{\theta \in \Theta} \{f(\theta) - \hat{f}(\theta)\}$  $\leq \frac{2}{\sqrt{n}} (\ell_0 + GRD)(4 + \sqrt{2\log \frac{1}{\delta}})$
- Only need to optimize with precision  $\approx 1/\sqrt{n}$

### Slow rate for supervised learning

**Assumptions** (f is the expected risk,  $\hat{f}$  the empirical risk)

- $\Omega(\theta) = \|\theta\|_2$  (Euclidean norm)
- "Linear" predictors:  $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ , with  $\|\Phi(x)\|_2 \leq R$  a.s.
- *G*-Lipschitz loss: f and  $\hat{f}$  are *GR*-Lipschitz on  $\Theta = \{ \|\theta\|_2 \leq D \}$
- No assumptions regarding convexity
- ullet With probability greater than  $1-\delta$

$$\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \leq \frac{\ell_0 + GRD}{\sqrt{n}} \left[ 2 + \sqrt{2\log \frac{2}{\delta}} \right]$$

- Expected estimation error:  $\mathbb{E}\left[\sup_{\theta \in \Theta} |\hat{f}(\theta) f(\theta)|\right] \leq \frac{4\ell_0 + 4GRD}{\sqrt{n}}$
- Under other conditions on the model, can we improve the rate  $1/\sqrt{n}$ ?

# Motivation from mean estimation

#### Estimator

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \arg\min_{\theta \in \mathbb{R}} \hat{f}(\theta)$$

where

$$\hat{f}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (Z_i - \theta)^2 \quad f(\theta) = \mathbb{E}\left[ (Z - \theta)^2 \right]$$

**Slow rate** 

$$f(\theta) = \frac{1}{2}(\theta - \mathbb{E}[Z])^2 + \frac{1}{2}\operatorname{var}(Z) = \hat{f}(\theta) + O(n^{-1/2})$$

### Motivation from mean estimation

Estimator

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \arg\min_{\theta \in \mathbb{R}} \hat{f}(\theta)$$

where

$$\hat{f}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (Z_i - \theta)^2 \quad f(\theta) = \mathbb{E}\left[ (Z - \theta)^2 \right]$$

**Fast rate** 

$$f(\hat{\theta}) - f(\mathbb{E}[Z]) = \frac{1}{2}(\hat{\theta} - \mathbb{E}[Z])^2$$
$$\mathbb{E}[f(\hat{\theta}) - f(\mathbb{E}[Z])] = \frac{1}{2}\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n Z_i - \mathbb{E}[Z]\right)^2 = \frac{1}{2n}\operatorname{var}(Z)$$

Bound only at  $\hat{\theta}$  + strong convexity

**Assumptions** (*f* is the expected risk,  $\hat{f}$  the empirical risk)

• Same as before (bounded features, Lipschitz loss) + **strong convexity** For any a > 0, with probability greater than  $1 - \delta$ , for all  $\theta \in \mathbb{R}^d$ ,  $f(\hat{\theta}) - \min_{\eta \in \mathbb{R}^d} f(\eta) \leq \frac{8(1 + a^{-1})G^2R^2(32 + \log(\delta^{-1}))}{\mu n}$ 

- Results from (Sridharan et al., 2008), (Boucheron et al., 2012).
- Strongly convex functions ⇒ fast rate

# Minimization of the expected and empirical risk

- Conclusion:  $\hat{\theta} \in \arg\min_{\theta \in \Theta} \hat{f}(\theta)$  is a good proxy as a minimizer of f as n is large.
- Question: How to find  $\hat{\theta}$ ?
- Answer: gradient descent algorithms!
- Recall  $\hat{f}$  is assumed to be convex.
- Very efficient methods from convex optimization are available: see part 2 and 3!

# Conclusion

### SLT insights

- Statistical approach sheds light on optimization techniques
- High precision is not (always) very relevant in ML

#### Directions:

- Faster Rates (Least squares regression)
- Markov chain interpretations
- Beyond Convex, beyond gradients (EM algorithm)

#### References

- Sebastien Bubeck's book and blog on optimization.
- Francis Bach's book on Learning.





