
Stochastic Optimization

Hi! PARIS Summer School 2021 on
AI & Data for Science, Business and Society

Aymeric Dieuleveut

July 2021

1

Today’s Roadmap

Motivation: why is Optimization important and why it is useful?

From GD to SGD.

Advanced algorithms: Variance Reduction, Deep Learning

Statistical point of view on Optimization.

2

Some questions for you first :D

Who knows ?

His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name

What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?

What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?

How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?

Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?

What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?

About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Some questions for you first :D

Who knows ?
His/her own name
What GD is?
What a smooth function is?
How fast GD converges for smooth functions?
Which algorithm is fastest SGD or GD?
What SVRG is?
About Rademacher complexities?

3

Outline

1 Motivation: what is Optimization and why study it?
What makes optimization di�cult?
Detailed Examples

2 Gradient descent procedures
Visualization and intuition
Gradient Descent
Convergence rates for GD and interpretation
Stochastic Gradient Descent

3 Advanced Stochastic Optimization Algorithms
Variance reduced methods
Gradient descent for neural networks

4 Insights from Statistical Learning Theory
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

4

Optimization : finding the minimal (maximal) value of a function over a set

minwP�ÄRd f pwq

5

Optimization is everywhere

Many problems are formalized as finding the optimum of a function: minw f pwq.
In various domains:

Economics GPS Aeronautics

In Machine learning related applications
Supervised Learning Unsupervised Gans Optimal transport

Is it di�cult ? Why study it?

6

Is Optimization a (hard) problem? Why study it

íIt depends !

The problem can be easily solved numerically

Yet, important to understand the methods

The problem is hard to solve

The choice of the algorithm impacts the performance

ñ Crucial to understand the algorithms !

Ò

Last 20 years?
1 More computational

power
2 More data
3 New algorithms, new

models

Ø Large scale framework

Ø Deep Learning

7

Is Optimization a (hard) problem? Why study it

íIt depends !

The problem can be easily solved numerically

Yet, important to understand the methods

The problem is hard to solve

The choice of the algorithm impacts the performance

ñ Crucial to understand the algorithms !

Ò

Last 20 years?
1 More computational

power
2 More data
3 New algorithms, new

models

Ø Large scale framework

Ø Deep Learning

7

Is Optimization a (hard) problem? Why study it

íIt depends !

The problem can be easily solved numerically

Yet, important to understand the methods

The problem is hard to solve

The choice of the algorithm impacts the performance

ñ Crucial to understand the algorithms !

Ò

Last 20 years?
1 More computational

power
2 More data
3 New algorithms, new

models

Ø Large scale framework

Ø Deep Learning

7

Is Optimization a (hard) problem? Why study it

íIt depends !

The problem can be easily solved numerically

Yet, important to understand the methods

The problem is hard to solve

The choice of the algorithm impacts the performance

ñ Crucial to understand the algorithms !

Ò

Last 20 years?
1 More computational

power
2 More data
3 New algorithms, new

models

Ø Large scale framework

Ø Deep Learning
7

n

d

n d are very large

Example 1: Logistic regression on Scikit-Learn

Figure: Scikit-Learn documentation, logistic regression.

8

Example 2: Neural Network Playground

Neural Network playground (try it!)

Figure: Model learned after 500 epochs depending on the learning rate, deep Learning

9

http://playground.tensorflow.org/

Example 3: Federated Learning

Figure: In Federated Learning, crucial to adapt the algorithm!

10

Today’s Approach

Part 1: Introduction
Understand what can make optimization hard
Briefly review some classical learning situations from this perspective

Part 2: From GD to SGD
First order Optimization, Stochastic Optimization
Tradeo�s
What influences the convergence of SGD

Part 3: Advanced Stochastic Optimization methods*
Variance Reduction
Methods for Deep Learning

Part 4: Insights from Statistical Learning theory*
How precisely should I optimize?
Rademacher complexities

11

What makes optimization hard:

min
wP�ÄRd

f pwq

12

What makes optimizing min
wP�ÄRd

f pwq hard: 1. Convexity.

Why?

A non-convex function can have many local minima
For a convex function, a local minimum is always global.

Challenges: Non-convexity, ...
13

What makes optimizing min
wP�ÄRd

f pwq hard: 1. Convexity.

Why?

A non-convex function can have many local minima
For a convex function, a local minimum is always global.

Challenges: Non-convexity, ...
13

What makes optimizing min
wP�ÄRd

f pwq hard: 2. Dimension of w , set �,
complexity of f

a. Dimension d : � Ä Rd , d might be very large (typically millions)

b. Set �: (if � is a convex set.)
May be described implicitly (via equations):
� “ tw P Rd s.t.}w}2 § R and xw , 1y “ ru.
í Use dual formulation of the problem.
Projection might be di�cult or impossible.
í use only first order methods

c. Structure of f . If f pwq “ 1
n

∞
n

i“1 Fi pwq, is the average of n functions, computing a
gradient has a cost proportional to n.

Challenges: Non-convexity of f , large d , large n, implicit set �, ...

14

Ee

W E CA

What makes optimizing min
wP�ÄRd

f pwq hard: 2. Dimension of w , set �,
complexity of f

a. Dimension d : � Ä Rd , d might be very large (typically millions)

b. Set �: (if � is a convex set.)
May be described implicitly (via equations):
� “ tw P Rd s.t.}w}2 § R and xw , 1y “ ru.
í Use dual formulation of the problem.
Projection might be di�cult or impossible.
í use only first order methods

c. Structure of f . If f pwq “ 1
n

∞
n

i“1 Fi pwq, is the average of n functions, computing a
gradient has a cost proportional to n.

Challenges: Non-convexity of f , large d , large n, implicit set �, ...

14

What makes optimizing min
wP�ÄRd

f pwq hard: 2. Dimension of w , set �,
complexity of f

a. Dimension d : � Ä Rd , d might be very large (typically millions)

b. Set �: (if � is a convex set.)
May be described implicitly (via equations):
� “ tw P Rd s.t.}w}2 § R and xw , 1y “ ru.
í Use dual formulation of the problem.
Projection might be di�cult or impossible.
í use only first order methods

c. Structure of f . If f pwq “ 1
n

∞
n

i“1 Fi pwq, is the average of n functions, computing a
gradient has a cost proportional to n.

Challenges: Non-convexity of f , large d , large n, implicit set �, ...
14

d

O
n nb of examples large n 109

What makes optimizing min
wP�ÄRd

f pwq hard: 3. Irregularity of the function

a. Smoothness
A function f is L-smooth iif it is twice di�erentiable and @w P Rd , eig.

“
f

2pwq‰ § L

b. Strong Convexity
A twice di�erentiable f is µ-strongly convex iif. @w P Rd , eig

“
f

2pwq‰ • µ.

Challenges: Non-convexity of f , large d , large n, implicit set �, non-smoothness,
non-strongly-convex.
Conclusion: Those are the most frequent challenges. What happens for the examples?

15

O

What makes optimizing min
wP�ÄRd

f pwq hard: 3. Irregularity of the function

a. Smoothness
A function f is L-smooth iif it is twice di�erentiable and @w P Rd , eig.

“
f

2pwq‰ § L

smooth non−smooth

b. Strong Convexity
A twice di�erentiable f is µ-strongly convex iif. @w P Rd , eig

“
f

2pwq‰ • µ.

Challenges: Non-convexity of f , large d , large n, implicit set �, non-smoothness,
non-strongly-convex.
Conclusion: Those are the most frequent challenges. What happens for the examples?

15

What makes optimizing min
wP�ÄRd

f pwq hard: 3. Irregularity of the function

a. Smoothness
A function f is L-smooth iif it is twice di�erentiable and @w P Rd , eig.

“
f

2pwq‰ § L

smooth non−smooth

b. Strong Convexity
A twice di�erentiable f is µ-strongly convex iif. @w P Rd , eig

“
f

2pwq‰ • µ.

Challenges: Non-convexity of f , large d , large n, implicit set �, non-smoothness,
non-strongly-convex.
Conclusion: Those are the most frequent challenges. What happens for the examples?

15

What makes optimizing min
wP�ÄRd

f pwq hard: 3. Irregularity of the function

a. Smoothness
A function f is L-smooth iif it is twice di�erentiable and @w P Rd , eig.

“
f

2pwq‰ § L

smooth non−smooth

b. Strong Convexity
A twice di�erentiable f is µ-strongly convex iif. @w P Rd , eig

“
f

2pwq‰ • µ.

convex

strongly
convex

Challenges: Non-convexity of f , large d , large n, implicit set �, non-smoothness,
non-strongly-convex.
Conclusion: Those are the most frequent challenges. What happens for the examples?

15

Focus on the 4 Machine learning examples given before

Supervised Learning Unspervised

Gans Optimal transport

16

Examples and Challenges 1/4 , Supervised Machine Learning
Consider an input/output pair pX , Y q P X ˆ Y, pX , Y q „ fl.

Function w : X Ñ R, s.t. wpXq good prediction for Y .
Model w parametrized in R

d

Consider a loss function ¸ : Y ˆ R Ñ R`

Define the Generalization risk:
Rpwq :“ Efl r¸pY , wpXqyqs .

Empirical Risk minimization
Data: n observations pxi , yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Find ŵ solution of

min
wP�ÄRd

1
n

nÿ

i“1
¸
`
yi , wpxi q

˘ ` µ�pwq.

convex data fitting term + regularizer

Challenges: n potentially large (very often!)

17

Examples and Challenges 1/4 , Supervised Machine Learning
Consider an input/output pair pX , Y q P X ˆ Y, pX , Y q „ fl.

Function w : X Ñ R, s.t. wpXq good prediction for Y .
Model w parametrized in R

d

Consider a loss function ¸ : Y ˆ R Ñ R`

Define the Generalization risk:
Rpwq :“ Efl r¸pY , wpXqyqs .

Empirical Risk minimization
Data: n observations pxi , yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Find ŵ solution of

min
wP�ÄRd

1
n

nÿ

i“1
¸
`
yi , wpxi q

˘ ` µ�pwq.

convex data fitting term + regularizer

Challenges: n potentially large (very often!)

17

Examples and Challenges 1/4 , Supervised Machine Learning

ERM:

min
wP�ÄRd

1
n

nÿ

i“1
¸
`
yi , wpxi q

˘ ` µ�pwq.

Encompasses many methods:

Model wpXq Linear Models xw , �pXqy⇤ Non-linear
Name Least Squares Lasso Logistic Reg. SVM Binary Neural Nets
Loss ¸ Square loss Logistic loss Hinge loss 01 (Sq. loss)
Regul. �pwq (Ridge) || ¨ ||1

Large d , n

Convex

Smooth

Strongly convex

⇤for features �pXq P Rd .
18

Examples and Challenges 1/4 , Supervised Machine Learning

ERM:

min
wP�ÄRd

1
n

nÿ

i“1
¸
`
yi , wpxi q

˘ ` µ�pwq.

Encompasses many methods:

Model wpXq Linear Models xw , �pXqy⇤ Non-linear
Name Least Squares Lasso Logistic Reg. SVM Binary Neural Nets
Loss ¸ Square loss Logistic loss Hinge loss 01 (Sq. loss)
Regul. �pwq (Ridge) || ¨ ||1

Large d , n

Convex

Smooth

Strongly convex

⇤for features �pXq P Rd .
18

accuracy Il w x Ti

Regal
avoidnerf
incorprote prier
studire castrats

casier optin nboffectures d

O
O always d n large disevenleg

x x

X X X activat
unlessregularized X

Xix Yn Id µ 0

Reminder: Di�erent losses for classification

Logistic loss, ¸py , y
1q “ logp1 ` e

´yy
1 q

Hinge loss, ¸py , y
1q “ p1 ´ yy

1q`
Quadratic hinge loss, ¸py , y

1q “ 1
2 p1 ´ yy

1q2
`

Huber loss ¸py , y
1q “ ´4yy

11yy 1†´1 ` p1 ´ yy
1q2

`1yy 1•´1

These losses can be understood as a convex approximation of the 0/1 loss
¸py , y

1q “ 1yy 1§0

19

Examples and Challenges 2/4 Unspervised

PCA (k “ 1):
1 maxw{||w ||§1 w

J
Aw .

2 Set � “ Bp0, 1q Ä Rd is convex
3 Convex function w fiÑ w

J
Aw

4 we look for the max:
this is thus equivalent to minimizing a concave function and not a “convex problem”.

Challenges:
Non convex
Large d

20

Examples and Challenges 3/4: Optimal transport

Objective function:

min
fiP�

ª
cpx , yqdfipx , yq

� set of probability distributions
cpx , yq “distance” from x to y .

+ regularization

Kantorovic formulation of OT.

í alternating directions algorithms,

Challenges:
Non convex
Optimization over a complex set (measures), etc.

21

Examples and Challenges 4/4: Generative Adversarial Networks
Objective function:

min
G

max
D

tEx„pdata
rlog Dpxqs ` Ez„pz

rlogp1 ´ DpGpzqqsu

D discriminator: tries to discriminate between
real and fake images
G generator: tries to fool the discriminator.

Challenges:
minimax optimization Ñnon convex optimization
Deep networks for generator and discriminator: non convex functions, extremely
high dimension d

Trained with extremely large quantities of data (large n)...

Overall Summary
We express problems as minimizing a function over a set
We have listed the main challenges and given examples in classical frameworks esp.
Supervised Learning.
We have to propose algorithms that can be e�cient :

§ In large dimension
§ With a high number of observations n

Let’s now dive into the optimization algorithms themselves !

22

Examples and Challenges 4/4: Generative Adversarial Networks
Objective function:

min
G

max
D

tEx„pdata
rlog Dpxqs ` Ez„pz

rlogp1 ´ DpGpzqqsu

D discriminator: tries to discriminate between
real and fake images
G generator: tries to fool the discriminator.

Challenges:
minimax optimization Ñnon convex optimization
Deep networks for generator and discriminator: non convex functions, extremely
high dimension d

Trained with extremely large quantities of data (large n)...

Overall Summary
We express problems as minimizing a function over a set
We have listed the main challenges and given examples in classical frameworks esp.
Supervised Learning.
We have to propose algorithms that can be e�cient :

§ In large dimension
§ With a high number of observations n

Let’s now dive into the optimization algorithms themselves !

22

Examples and Challenges 4/4: Generative Adversarial Networks
Objective function:

min
G

max
D

tEx„pdata
rlog Dpxqs ` Ez„pz

rlogp1 ´ DpGpzqqsu

D discriminator: tries to discriminate between
real and fake images
G generator: tries to fool the discriminator.

Challenges:
minimax optimization Ñnon convex optimization
Deep networks for generator and discriminator: non convex functions, extremely
high dimension d

Trained with extremely large quantities of data (large n)...

Overall Summary
We express problems as minimizing a function over a set
We have listed the main challenges and given examples in classical frameworks esp.
Supervised Learning.
We have to propose algorithms that can be e�cient :

§ In large dimension
§ With a high number of observations n

Let’s now dive into the optimization algorithms themselves ! 22

Outline

1 Motivation: what is Optimization and why study it?
What makes optimization di�cult?
Detailed Examples

2 Gradient descent procedures
Visualization and intuition
Gradient Descent
Convergence rates for GD and interpretation
Stochastic Gradient Descent

3 Advanced Stochastic Optimization Algorithms
Variance reduced methods
Gradient descent for neural networks

4 Insights from Statistical Learning Theory
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

23

Minimization problems

Aim: minimizing a function f : Rd Ñ R

d : dimension of the search space.

24

Level sets

One-dimensional (1-D) representations are often misleading, we therefore often represent
level-sets of functions

Cc “ tw P Rd , f pwq “ cu.

Example of level sets in dimension two

25

I

Gradient - Definition

The gradient of a function f : Rd Ñ R in w denoted as Òf pwq is the vector of
partial derivatives

Òf pwq “

¨

˚̋
Bf

Bw1...
Bf

Bwd

˛

‹‚

Exercise
If f : R Ñ R, Òf pwq “ f 1pwq
f pwq “ xa, wy: Òf pwq “ a
f pwq “ wT Aw : Òf pwq “ pA ` AT qw
Particular case: f pwq “ }w}2, Òf pwq “ 2w .

26

Optimality conditions with convexity

Convexity - Three characterizations
1 We say that f : Rd Ñ R is convex if (Rd is convex and if)

f p⁄x ` p1 ´ ⁄qyq § ⁄f pxq ` p1 ´ ⁄qf pyq, for all x , y P Rd , ⁄ P r0, 1s.
2 A di�erentiable function f : Rd Ñ R is convex if and only if

f pxq • f pyq ` xÒf pyq, x ´ yy, for all x , y P Rd .

3 A twice di�erentiable function f : Rd Ñ R is convex if and only if
Ò2

f pxq © 0, for all x ,

that is h
T Ò2

f pxqh • 0, for all h P Rd .

For a convex function, any local minimum is a global minimum.
ñ Algorithmically, how to can we find the optimal point

27

Optimality conditions with convexity

Convexity - Three characterizations
1 We say that f : Rd Ñ R is convex if (Rd is convex and if)

f p⁄x ` p1 ´ ⁄qyq § ⁄f pxq ` p1 ´ ⁄qf pyq, for all x , y P Rd , ⁄ P r0, 1s.
2 A di�erentiable function f : Rd Ñ R is convex if and only if

f pxq • f pyq ` xÒf pyq, x ´ yy, for all x , y P Rd .

3 A twice di�erentiable function f : Rd Ñ R is convex if and only if
Ò2

f pxq © 0, for all x ,

that is h
T Ò2

f pxqh • 0, for all h P Rd .

For a convex function, any local minimum is a global minimum.

ñ Algorithmically, how to can we find the optimal point

27

Optimality conditions with convexity

Convexity - Three characterizations
1 We say that f : Rd Ñ R is convex if (Rd is convex and if)

f p⁄x ` p1 ´ ⁄qyq § ⁄f pxq ` p1 ´ ⁄qf pyq, for all x , y P Rd , ⁄ P r0, 1s.
2 A di�erentiable function f : Rd Ñ R is convex if and only if

f pxq • f pyq ` xÒf pyq, x ´ yy, for all x , y P Rd .

3 A twice di�erentiable function f : Rd Ñ R is convex if and only if
Ò2

f pxq © 0, for all x ,

that is h
T Ò2

f pxqh • 0, for all h P Rd .

For a convex function, any local minimum is a global minimum.
ñ Algorithmically, how to can we find the optimal point

27

First attempt: Exhaustive search

Consider the problem
w

‹ P argmin
wPr0,1sd

f pwq.

One can optimize this problem on a grid of r0, 1sd . For example, if the function f is
regular enough, in dimension 1, to achieve a precision of Á we need t1{Áu evaluation of f .
In dimension d , we need t1{Áud evaluations.

For example, evaluating the expression
f pwq “ }w}2

2,

to obtain a precision of Á “ 10´2 requires:
1, 75.10´3 seconds in dimension 1
1, 75.1015 seconds in dimension 10, i.e., nearly 32 millions years.

Ñ Prohibitive in high dimensions (curse of dimensionality, term introduced by
bellman1961adaptive)

Ñ Solution Use local information.

28

Use local information: two Classes of algorithms

Key idea: At any point w0 we can compute the value of the function f pw0q, but
also the direction in which the function increases the most Òf pw0q and the
curvature Ò2f pw0q.

First-order algorithms that use f and Òf . Standard algorithms when f is
di�erentiable and convex.

Second-order algorithms that use f , Òf and Ò2f . They are useful when
computing the Hessian matrix is not too costly.

First fundamental characteristic of algorithms.

29

Gradient - Level sets

The gradient is orthogonal to level sets.

Reminder: Taylor expansion around a point
f pwq “ f pw p0qq ` xÒf pw p0qq, w ´ w

p0qy ` Op}w ´ w
p0q}2q.

30

Yhighest
increase

direction

go in the opposed direct t.lk gradient

Gradient descent algorithm

Gradient descent
Input: Function f to minimize.

Initialization: initial weight vector w
p0q

Parameters: step size ÷ ° 0.

While not converge do
w

pk`1q – w
pkq ´ ÷Òf pw pkqq

k – k ` 1.

Output: w
pkq.

31

Of gradient off

Gradient Descent on a convex function

For a function f : Rd Ñ R, define the level sets:
Cc “ tw P Rd , f pwq “ cu.

Figure: Gradient descent for function f : px , yq fiÑ x2 ` 2y2

32

Gradient Descent on a Bad objective functions

Figure: Gradient descent for f : px , yq fiÑ sinksp1{p2x2q ´ 1{p4y2q ` 3q cosp2x ` 1 ´ exppyqq

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

33

http://yulijia.net/vistat/2013/03/gradient-descent-algorithm-with-r

When does gradient descent converge?

Informal statement: GD converges, for a correct choice of steps, for most convex
functions.

Why do we want convergence rates and proofs:
Proofs help us choose hyperparameters (the learning rate sequence)
Rates allow us to compare algorithms.

Today, we will see convergence results (without proofs) for :
1 GD and SGD
2 For convex and smooth functions, and smooth and strongly convex functions.

Thanks to those rates, we will be able to say in which situation GD or SGD should be
preferred.

34

Formal definition: smoothness

L-smooth function
A function f is said to be L-smooth if f is di�erentiable and if, for all x , y P Rd ,

}Òf pxq ´ Òf pyq} § L}x ´ y}.

Equivalently,
f pwq § f pw 1q ` xÒf pw 1q, w ´ w

1y ` L

2 }w ´ w
1}2 (1)

Smooth-convex: the function above the tangent and below the tangent line + quadratic:

Co-coercivity:}Òf
1pwq ´ Òf

1pw 1q}2 § LxÒf pw 1q ´ Òf pw 1q, w ´ w
1y

35

Interpretation of GD in the smooth case

Assuming the descent Lemma holds, remark that
argmin

wPRd

!
f pw kq ` xÒf pw kq, w ´ w

ky ` L

2 }w ´ w
k}2

2

)

“ argmin
wPRd

›››w ´
´

w
k ´ 1

L
Òf pw kq

¯›››
2

2

Hence, it is natural to choose
w

k`1 “ w
k ´ 1

L
Òf pw kq

This is the basic gradient descent algorithm

36

for GD
7 21

kept

constant

for.SI y decreasing

Interpretation of GD in the smooth case

37

min we w 1,0f w

flw.kflw.ly
p

110f2L

WzWy

Convergence of GD

Theorem
Let f : Rd Ñ R be a L-smooth convex function. Let w

‹ be the minimum of f on Rd .
Then, Gradient Descent with step size ÷ § 1{L satisfies

f pw pkqq ´ f pw‹q § }w
p0q ´ w

‹}2
2

2÷k
.

In particular, for ÷ “ 1{L,
L}w

p0q ´ w
‹}2

2{2
iterations are su�cient to get an Á-approximation of the minimal value of f .

38

L is smoothness castant

Faster rate for strongly convex function

Strong convexity: function above the tangent line + µˆ quadratic.
A function f : Rd Ñ R is µ-strongly convex if

w fiÑ f pwq ´ µ
2 }w}2

2

is convex.

If f is di�erentiable it is equivalent to writing, for
all w P Rd ,

⁄minpÒ2
f pwqq • µ.

This is also equivalent to, for all w , w
1 P Rd :

f pwq • f pw 1q ` xÒf pw 1q, w ´ w
1y ` µ

2 }w ´ w
1}2

Useful inequality in the proofs:
xÒf

1pw 1q ´ Òf
1pwq, w

1 ´ wy • µ}w ´ w
1}2 (2)

39

L

e

Convergence of GD with strong convexity

Theorem
Let f : Rd Ñ R be a L-smooth, µ strongly convex function. Let w

‹ be the minimum of f

on Rd . Then, Gradient Descent with step size ÷ § 1{L satisfies

f pw pkqq ´ f pw‹q § L

2

´
1 ´ ÷µ

¯
k

}w
p0q ´ w

‹}2
2.

40

flot fluo a Ellie waf

Ile yn two way

Tu
f 0,9

0,9 10,1
k h 12

112

Convergence of ED for
www.m jiiiitifj

Hwhwp 2yLOf'oy.wt.wsSmoothness cuxty w w

a
j'Hoftwyll

Stig cuxty

Était 2 1 E Lofa
Vw w W un

w w
KIII

lu will _y 20ff wk

wDLOfiwy.wh.wsellwhil'Il y 1 whip
Ë G yn Hwa nik

Condition number

Gradient descent uses iterations

w
pk`1q – w

pkq ´ ÷Òf pw pkqq

For L smooth convex function and ÷ “ 1{L,

f pw pkqq ´ f pw‹q § L}w
p0q ´ w

‹}2
2

2k
.

For L smooth, µ strongly convex function and ÷ “ 1{L,

f pw pkqq ´ f pw‹q §
´

1 ´ µ
L

¯
k

}f pw p0qq ´ f pw‹q}2
2.

Condition number Ÿ “ L{µ • 1 stands for the di�culty of the learning problem.

41

Convergence vs condition number

Why?
Rates typically depend on the condition number Ÿ “ L

µ :

Large Ÿ Small Ÿ
harder to optimize easier to optimize

42

what oh H Of Én 1

n'F À Kw

menentian

k large a
knell n1

Newtonalg
2nd

Key algorithms to improve wir t K Nesterov
acc

Momentum

Convergence vs condition number

Why?
Rates typically depend on the condition number Ÿ “ L

µ :

Large Ÿ Small Ÿ
harder to optimize easier to optimize

42

Full gradients...

We say that these methods are based on full gradients, since at each iteration we need
to compute

Òf pwq “ 1
n

nÿ

i“1
Òfi pwq,

which depends on the whole dataset

Question. If n is large, computing Òf pwq is long: need to pass on the whole data before
doing a step towards the minimum!

Idea. Large datasets make your modern computer look old

Go back to “old” algorithms.

43

ne 109

Stochastic Gradient Descent (SGD)

Stochastic gradients

If I choose uniformly at random I P t1, . . . , nu, then

ErÒfIpwqs “ 1
n

nÿ

i“1
Òfi pwq “ Òf pwq

ÒfIpwq is an unbiased but very noisy estimate of the full gradient Òf pwq

Computation of ÒfIpwq only requires the I-th line of data

Ñ Opdq and smaller for sparse data

Crucial Balance:
Noise
Initial Condition

Impact of the learning rate?

44

IÏ E we

We

minibotch points

T I Ewi
Polyah Ruppert
averaging

OD Und

SOD Old

D T up to I
î

Stochastic Gradient Descent (SGD)

[robbins1985stochastic robbins1985stochastic]

Stochastic gradient descent algorithm
Initialization: initial weight vector w

p0q,

Parameter: step size/learning rate ÷k

For k “ 1, 2, . . . until convergence do

Pick at random (uniformly) ik in t1, . . . , nu
Compute

w
pkq “ w

pk´1q ´ ÷kÒfik
pw pk´1qq

Output: Return last w
pkq

Remarks
Each iteration has complexity Opdq instead of Opndq for full gradient methods
Possible to reduce this to Opsq when features are s-sparse using lazy-updates.

45

Robins Mo ro 51

a

Eh

Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball Bp0, Rq with R ° 0 fixed.

Let

f pxq “ 1
n

nÿ

i“1
fi pxq.

Theorem
Assume that f is convex and that there exists b ° 0 satisfying, for all x P Bp0, Rq,

}Òfi pxq} § b.

Besides, assume that all minima of f belong to Bp0, Rq. Then, setting ÷k “ 2R{pb
?

kq,

E
„
f

´ 1
k

kÿ

t“1
w

ptq
¯⇢

´ f pw‹q § 3Rb?
k

46

El flon f 4
ll re

Sebastien
Brubeck's book

pr
lui'il W w ll _2,20f oh wh wa tg Il fill

Eff Of Mf et JE

Convergence rate of SGD

Consider the stochastic gradient descent algorithm introduced previously but where each
iteration is projected into the ball Bp0, Rq with R ° 0 fixed.

Let

f pxq “ 1
n

nÿ

i“1
fi pxq.

Theorem
Assume that f is µ strongly convex and that there exists b ° 0 satisfying, for all
x P Bp0, Rq,

}Òfi pxq} § b.

Besides, assume that all minima of f belong to Bp0, Rq. Then, setting ÷k “ 2{pµpk ` 1qq,

E
”
f

´ 2
kpk ` 1q

kÿ

t“1
t w

pt´1q
¯ı

´ f pw‹q § 2b
2

µpk ` 1q .

47

l

Comparison of GD and SGD

Full gradient descent

w
pk`1q – w

pkq ´ ÷k

´ 1
n

nÿ

i“1
Òfi pw pkqq

¯

Opndq iterations
Upper bound Opp1 ´ pµ{Lqqkq
Numerical complexity Opn L

µ logp 1
Á qqq

Stochastic gradient descent
w

pk`1q – w
pkq ´ ÷kÒfik

pw pkqq.

Opdq iterations
Upper bound Op1{pµkqq
Numerical complexity Op 1

µÁ q

It does not depend on n for SGD !

48

L'itération x épeler
Ok

d clyt to reach sac

whois best none

n to SGD

d x 0 GD

Comparison GD versus SGD

Under strong convexity, GD versus SGD is
O

´
nL

µ
log

` 1
Á

˘¯
versus O

´ 1
µÁ

¯

GD leads to a more accurate solution, but what if n is very large?

Recipe
SGD is extremely fast in the early iterations (first two passes on the data)
But it fails to converge accurately to the minimum

Beyond SGD

Bottou and LeCun (2005),
Shalev-Shwartz et al (2007, 2009),
Nesterov et al. (2008, 2009),
Bach et al. (2011, 2012, 2014, 2015),
T. Zhang et al. (2014, 2015).

49

Summary of the first part

Convergence rates for GD and SGD: no universal algorithm !

Convergence rates for smooth functions (see previous slides for model and learning rate):

min R̂ min R
SGD GD SAG SGD

Convex O

´
1?
k

¯
O

` 1
k

˘
O

´
1?
k

¯

Stgly-Cvx O

´
1

µk

¯
Ope´µkq O

`
1 ´ pµ ^ 1

n
q˘

k
O

´
1

µk

¯

Batch gradient descent: wt “ wt´1 ´ ÷t f
1pwt´1q “ wt´1 ´ ÷t

n

nÿ

i“1
f

1
i pwt´1q

Stochastic gradient descent: wt “ wt´1 ´ ÷t f
1

iptqpwt´1q

50

Comparison of convergence : SGD vs GD

Which one to choose?
1 Depends on the precision we want.

time
lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

Example: non strongly convex case.
2 If our goal is to get a convergence of 1{?

n, then
§ Complexity of GD: n3{2d

§ Complexity of SGD: nd .
3 If our goal is to get a convergence of 1{n

2, then
§ Complexity of GD: n3d (n2 iterations)
§ Complexity of SGD: n4d (n4 iterations).

Cplxty/step Best Cplxty, low precision Best Cplxty, high precision
GD nd X

SGD d X

51

Ï

l'Lecision

very high earlyitera
preciso

r

SOD GD
GD SGD

Comparison of convergence : SGD vs GD

Which one to choose?
1 Depends on the precision we want.

time
lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

Example: non strongly convex case.
2 If our goal is to get a convergence of 1{?

n, then
§ Complexity of GD: n3{2d

§ Complexity of SGD: nd .

3 If our goal is to get a convergence of 1{n
2, then

§ Complexity of GD: n3d (n2 iterations)
§ Complexity of SGD: n4d (n4 iterations).

Cplxty/step Best Cplxty, low precision Best Cplxty, high precision
GD nd X

SGD d X

51

Comparison of convergence : SGD vs GD

Which one to choose?
1 Depends on the precision we want.

time
lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

Example: non strongly convex case.
2 If our goal is to get a convergence of 1{?

n, then
§ Complexity of GD: n3{2d

§ Complexity of SGD: nd .
3 If our goal is to get a convergence of 1{n

2, then
§ Complexity of GD: n3d (n2 iterations)
§ Complexity of SGD: n4d (n4 iterations).

Cplxty/step Best Cplxty, low precision Best Cplxty, high precision
GD nd X

SGD d X

51

Comparison of convergence : SGD vs GD

Which one to choose?
1 Depends on the precision we want.

time
lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

Example: non strongly convex case.
2 If our goal is to get a convergence of 1{?

n, then
§ Complexity of GD: n3{2d

§ Complexity of SGD: nd .
3 If our goal is to get a convergence of 1{n

2, then
§ Complexity of GD: n3d (n2 iterations)
§ Complexity of SGD: n4d (n4 iterations).

Cplxty/step Best Cplxty, low precision Best Cplxty, high precision
GD nd X

SGD d X
51

variance
reduction

0

SGD vs GD

Recipe
SGD is extremely fast in the early iterations (first two passes on the data)
But it fails to converge accurately to the minimum

Machine Learning ñ Low complexity is often enough !

Indeed,
the minimization of the empirical risk is mostly a surrogate for the unknown
generalization risk.
no need to optimize below statistical error

52

Outline

1 Motivation: what is Optimization and why study it?
What makes optimization di�cult?
Detailed Examples

2 Gradient descent procedures
Visualization and intuition
Gradient Descent
Convergence rates for GD and interpretation
Stochastic Gradient Descent

3 Advanced Stochastic Optimization Algorithms
Variance reduced methods
Gradient descent for neural networks

4 Insights from Statistical Learning Theory
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

53

Improving stochastic gradient descent

Goal: best of both worlds
The problem

Let X “ ÒfIpwq with I uniformly chosen at random in t1, . . . , nu

In SGD we use X “ ÒfIpwq as an approximation of EX “ Òf pwq

How to reduce VX ?

54

Improving stochastic gradient descent

An idea

Reduce it by finding C s.t. EC is “easy” to compute and such that C is highly
correlated with X

Let Z– “ –pX ´ Cq ` EC for – P r0, 1s. We have

EZ– “ –EX ` p1 ´ –qEC

and

VZ– “ –2pVX ` VC ´ 2CpX , Cqq

Standard variance reduction: – “ 1, so that EZ– “ EX (unbiased)

55

Improving stochastic gradient descent

Variance reduction of the gradient

In the iterations of SGD, replace Òfik
pw pk´1qq by

–pÒfik
pw pk´1qq ´ Òfik

pw̃qq ` Òf pw̃q
where w̃ is an “old” value of the iterate.

Several cases
– “ 1{n: SAG (Bach et al. 2013)
– “ 1: SVRG (T. Zhang et al. 2015, 2015)
– “ 1: SAGA (Bach et al., 2014)

Important remark
In these algorithms, the step-size ÷ is kept constant
Leads to linearly convergent algorithms, with a numerical complexity comparable
to SGD!

56

C

EOfilwin
F C E C

à lastplat whid Iriled off

once in a while apte

full gode auf

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq

SGD: at step k, sample ik „ Ur1; ns, use Òfik
pwkq

SAG: at step k,
§ keep a “full gradient” 1

n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u
§ sample ik „ Ur1; ns, use

1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq
SGD: at step k, sample ik „ Ur1; ns, use Òfik

pwkq

SAG: at step k,
§ keep a “full gradient” 1

n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u
§ sample ik „ Ur1; ns, use

1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq
SGD: at step k, sample ik „ Ur1; ns, use Òfik

pwkq
SAG: at step k,

§ keep a “full gradient” 1
n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u

§ sample ik „ Ur1; ns, use
1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq
SGD: at step k, sample ik „ Ur1; ns, use Òfik

pwkq
SAG: at step k,

§ keep a “full gradient” 1
n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u
§ sample ik „ Ur1; ns, use

1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

g

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq
SGD: at step k, sample ik „ Ur1; ns, use Òfik

pwkq
SAG: at step k,

§ keep a “full gradient” 1
n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u
§ sample ik „ Ur1; ns, use

1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

Methods for finite sum minimization

GD: at step k, use 1
n

∞
n

i“0 Òfi pwkq
SGD: at step k, sample ik „ Ur1; ns, use Òfik

pwkq
SAG: at step k,

§ keep a “full gradient” 1
n

∞
n

i“0 Òfi pwki
q, with wki

P tw1, . . . wk u
§ sample ik „ Ur1; ns, use

1
n

˜
nÿ

i“0
Òfi pwki

q ´ Òfik pwkik
q ` Òfik pwk q

¸
,

In other words:
Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

57

store

C

SAG

Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

í ‘ update costs the same as SGD
í a needs to store all gradients Òfi pwki

q at “points in the past”

58

SAG

Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

yt1 yt2 yt3 yt4 ytn�1 ytn

f1 f2 f3 f4 fnfn�1

1
n

Pn
i=1 y

t
i

g = 1
n

Pn
i=1 fifunctions

gradients 2 Rd

í ‘ update costs the same as SGD
í a needs to store all gradients Òfi pwki

q at “points in the past”

58

SAG

Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

yt1 yt2 yt3 yt4 ytn�1 ytn

f1 f2 f3 f4 fnfn�1

1
n

Pn
i=1 y

t
i

g = 1
n

Pn
i=1 fifunctions

gradients 2 Rd

í ‘ update costs the same as SGD
í a needs to store all gradients Òfi pwki

q at “points in the past”

59

SAG

Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

yt1 yt2 yt3 yt4 ytn�1 ytn

f1 f2 f3 f4 fnfn�1

1
n

Pn
i=1 y

t
i

g = 1
n

Pn
i=1 fifunctions

gradients 2 Rd

í ‘ update costs the same as SGD
í a needs to store all gradients Òfi pwki

q at “points in the past”

60

SAG

Keep in memory past gradients of all functions fi , i “ 1, . . . , n

Random selection ik P t1, . . . , nu with replacement

Iteration: wk “ wk´1 ´ ÷
n

nÿ

i“1
gkpiq with gkpiq “

#
Òfi pwk´1q if i “ ik

gk´1piq otherwise

yt1 yt2 yt3 yt4 ytn�1 ytn

f1 f2 f3 f4 fnfn�1

1
n

Pn
i=1 y

t
i

g = 1
n

Pn
i=1 fifunctions

gradients 2 Rd

í ‘ update costs the same as SGD
í a needs to store all gradients Òfi pwki

q at “points in the past”

60

Improving stochastic gradient descent

Stochastic Average Gradient
Initialization: initial weight vector w

p0q

Parameter: learning rate ÷ ° 0

For k “ 1, 2, . . . until convergence do
Pick uniformly at random ik in t1, . . . , nu
Put

gkpiq “
#

Òfi pw pk´1qq if i “ ik

gk´1piq otherwise
Compute

w
pkq “ w

pk´1q ´ ÷
´ 1

n

nÿ

i“1
gkpiq

¯

Output: Return last w
pkq

61

Prowbach store n grade

clap

Improving stochastic gradient descent

Stochastic Variance Reduced Gradient (SVRG)

Initialization: initial weight vector w̃

Parameters: learning rate ÷ ° 0, phase size (typically m “ n or m “ 2n).

For k “ 1, 2, . . . until convergence do
Compute Òf pw̃q
Put w

p0q – w̃

For t “ 1, . . . , m

§ Pick uniformly at random it in t1, . . . , nu
§ Apply the step

w
pt`1q – w

ptq ´ ÷pÒfit pw
ptqq ´ Òfit pw̃q ` Òf pw̃qq

Set

w̃ – 1
m

mÿ

t“1
w

ptq

Output: Return w̃ .

62

Draub.ch

2graden cartel perstp
c
diffilt

inner outer lap studio
I I

Improving stochastic gradient descent

SAGA

Initialization: initial weight vector w
p0q

Parameter: learning rate ÷ ° 0

For all i “ 1, . . . , n, compute g0piq – Òfi pw p0qq
For k “ 1, 2, . . . until convergence do

Pick uniformly at random ik in t1, . . . , nu
Compute Òfik

pw pk´1qq
Apply

w
pkq – w

pk´1q ´ ÷
´

Òfik
pw pk´1qq ´ gk´1pikq ` 1

n

nÿ

i“1
gk´1piq

¯

Store gkpikq – Òfik
pw pk´1qq

Output: Return last w
pkq

63

Variance reduced methods

Some references:
SAG Sch_LeR_Bac_2013 SAGA Def_Bac_Lac_2014
SVRG Joh_Zha_2013 (reduces memory cost but 2 epochs...)
FINITO Def_Dom_Cae_2014
S2GD Kon_Ric_2013..

And many others... See for example Niao He’s lecture notes for a nice overview.

64

http://niaohe.ise.illinois.edu/IE598_2016/pdf/IE598-lecture23-incremental%20gradient%20algorithms.pdf

Convergence rate for f pw̃kq ´ f p◊˚q, smooth objective f .

min R̂ min R
SGD GD SAG SGD

Convex O

´
1?
k

¯
O

` 1
k

˘
O

´
1?
k

¯

Stgly-Cvx O

´
1

µk

¯
Ope´µkq O

`
1 ´ pµ ^ 1

n
q˘

k
O

´
1

µk

¯

GD, SGD, SAG (Fig. from Sch_LeR_Bac_2013)

Remarks:
Proof technique
Related to control variates in Federated Learning (Sca�old, DIANA, etc.)!

65

Convergence rate for f pw̃kq ´ f p◊˚q, smooth objective f .

min R̂ min R
SGD GD SAG SGD

Convex O

´
1?
k

¯
O

` 1
k

˘
O

´
1?
k

¯

Stgly-Cvx O

´
1

µk

¯
Ope´µkq O

`
1 ´ pµ ^ 1

n
q˘

k
O

´
1

µk

¯

GD, SGD, SAG (Fig. from Sch_LeR_Bac_2013)

Remarks:
Proof technique
Related to control variates in Federated Learning (Sca�old, DIANA, etc.)!

65

Convergence rate for f pw̃kq ´ f p◊˚q, smooth objective f .

min R̂ min R
SGD GD SAG SGD

Convex O

´
1?
k

¯
O

` 1
k

˘
O

´
1?
k

¯

Stgly-Cvx O

´
1

µk

¯
Ope´µkq O

`
1 ´ pµ ^ 1

n
q˘

k
O

´
1

µk

¯

GD, SGD, SAG (Fig. from Sch_LeR_Bac_2013)

Remarks:
Proof technique
Related to control variates in Federated Learning (Sca�old, DIANA, etc.)!

65

Summary

1 Variance reduced algorithms can have both:
§ low iteration cost
§ fast asymptotic convergence

However:
1 High precision is not always useful
2 Typically not used in deep learning:

§ Memory constraints for SAG
§ Convergence to “bad” (?) minima ñ bad generalization...

66

great behavior

noise is reduced I at theoptinelpt
ï

interpolation regime

we converge

we don't need to reduce

ref
same G ctrl variete

HwkÉgl CEHOf.tw fileAurélien on FL
laditer SCAFFOLD C 1page pouf FB 15rose
cuisson DIANA roof

Bad generalization in Deep Learning

Reasoning:
1 There are 2 types of local minima: flat and sharp.
2 Algorithm that converge tp “high precision” may converge to sharper minima.

67

RT Rtw

Va

à
l

en or

surgn

SAG

Bad generalization in Deep Learning

Reasoning:
1 There are 2 types of local minima: flat and sharp.
2 Algorithm that converge tp “high precision” may converge to sharper minima.
3 Sharp minima have poorer generalization performance.

68

Challenges in Deep Learning

Challenges
1 Non convex ñ Local minima

2 Extremely large dimension

3 Extremely large number of
parameters (+ di�erent scales)

4 Bad conditioning + flat areas +
saddle points

Ingredients of popular algorithms:
1 First order

2 Stochastic

3 Momentum

4 Di�erent steps per coordinates :
adaptive methods

Generalization and overfitting problems are poorly understood but:
1 Noise helps
2 “Too precise” methods (e.g. variance reduction, second order) are not used.

e.g.: SVRG is great for convex, but not even implemented in Keras.

69

Challenges in Deep Learning

Challenges
1 Non convex ñ Local minima

2 Extremely large dimension

3 Extremely large number of
parameters (+ di�erent scales)

4 Bad conditioning + flat areas +
saddle points

Ingredients of popular algorithms:
1 First order

2 Stochastic

3 Momentum

4 Di�erent steps per coordinates :
adaptive methods

Generalization and overfitting problems are poorly understood but:
1 Noise helps
2 “Too precise” methods (e.g. variance reduction, second order) are not used.

e.g.: SVRG is great for convex, but not even implemented in Keras.

69

Adaptation: notations

1 Same learning rate for all coordinates. Could we use a di�erent learning rate for all
coordinates ?
i.e., for 1 § j § d :

pw kqj “ pw k´1qj ´ ÷k,j pÒfkpw k´1qqj

Equivalently:

w
k “ w

k´1 ´

¨

˚̊
˝

÷k,1
÷k,2
. . .
÷k,d

˛

‹‹‚d

¨

˚̊
˝

pÒfkpw k´1qq1
pÒfkpw k´1qq2

. . .
pÒfkpw k´1qqd

˛

‹‹‚

2 Indexes:
pwtqj “ pwk´1qj ´ ÷k,kpÒfIk

pwk´1qqj

1 gk “ ÒfIk pwk´1q stochastic gradient at time t

pwk qj “ pwk´1qj ´ ÷k,j pgk qj

2 Avoiding double subscript:
pw

k qj “ pw
k´1qj ´ ÷k

j
pg

k qj

w
k

j
“ w

k´1
j

´ ÷k

j
g

t

j

70

ADAGRAD

Most following algos are in the following framework: First order method.
w

k

j “ w
k´1
j ´ ÷k

j g
k

j ` pmomentumq
Special choice for step-sizes:

w
k

j “ w
k´1
j ´ ÷a

Ck,j ` ‘
g

k

j

[duchi2011adaptive duchi2011adaptive]

ADAptive GRADient algorithm
Initialization: initial weight vector w

p0q

Parameter: learning rate ÷ ° 0

For k “ 1, 2, . . . until convergence do, component-wise.
For all j “ 1, . . . , d ,

w
k

j – w
k´1
j ´ ÷b∞

k

·“1pg·
j

q2 ` ‘
g

k

j

Equivalently
w

k – w̃
pk´1q ´ ÷b∞

k

·“1pÒfi· pw p·´1qqq2 ` ‘
d g

k

Output: Return last w
pkq

71

ADAGRAD

Update equation for ADAGRAD

w
k – w̃

pk´1q ´ ÷b∞
k

t“1pg·
j

q2 ` ‘
d g

k

Pros:
Di�erent dynamic rates on each coordinate
Dynamic rates grow as the inverse of the gradient magnitude:

1 Large/small gradients have small/large learning rates
2 The dynamic over each dimension tends to be of the same order
3 Interesting for neural networks in which gradient at di�erent layers can be of di�erent

order of magnitude.
Accumulation of gradients in the denominator act as a decreasing learning rate.

Cons:
Very sensitive to initial condition: large initial gradients lead to small learning rates.
Can be fought by increasing the learning rate thus making the algorithm sensitive to
the choice of the learning rate.

72

ADAGRAD - Summary of parameters

ADAGRAD:
w

k

j “ w
k´1
j ´ ÷k

j g
k

j ` —pmomentumq
Special choice for step-sizes:

w
k

j “ w
k´1
j ´ ÷a

Ck,j ` ‘
g

k

j

ADAptive GRADient algorithm
1 starting point w

0,
2 learning rate ÷ ° 0, (default value of 0.01)
3 momentum —, constant Á.

For t “ 1, 2, . . . until convergence do for 1 § j § d

w
k

j – w
k´1
j ´ ÷b∞

k

·“1pg·
j

q2 ` ‘
g

k

j

Return last w
k

73

ADAGRAD - Summary of parameters

ADAGRAD:
w

k

j “ w
k´1
j ´ ÷k

j g
k

j ` —pmomentumq
Special choice for step-sizes:

w
k

j “ w
k´1
j ´ ÷a

Ck,j ` ‘
g

k

j

ADAptive GRADient algorithm
1 starting point w

0,
2 learning rate ÷ ° 0, (default value of 0.01)
3 momentum —, constant Á.

For t “ 1, 2, . . . until convergence do for 1 § j § d

w
k

j – w
k´1
j ´ ÷b∞

k

·“1pg·
j

q2 ` ‘
g

k

j

Return last w
k

73

Improving upon AdaGrad: RMS-prop

Idea : restricts the window of accumulated past gradients to some limited size through
moving average.

1 starting point w
0, constant Á,

2 new params : decay rate fl ° 0

Update:

w
k`1
j “ w

k

j ´ ÷k

ja
Cj,k ` Á

g
k

j

Adagrad:
1 Cj,k “ ∞

k

·“1pg·
j q2

2 ÷k

j “ ÷

RMS prop:
1 Cj,k “ flCj

k´1 ` p1 ´ flqpgk

j q2

2 ÷k

j “ ÷ constant.

74

RMSprop

Unpublished method, from the course of Geo� Hinton

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSprop algorithm
Initialization: initial weight vector w

p0q

Parameters: learning rate ÷ ° 0 (default ÷ “ 0.001), decay rate fl (default fl “ 0.9)

For k “ 1, 2, . . . until convergence do
First, compute the accumulated gradient

ápÒf q2pkq “ flápÒf q2pk´1q ` p1 ´ flqpgkq2

Compute

w
pkq – w

pk´1q ´ ÷b
ápÒf q2pkq ` Á

d g
k

Output: Return last w
pkq

75

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Improving upon AdaGrad & RMS prop: AdaDelta

Idea :RMS-prop + Second order style approach.
Less sensitivity to initial parameters.
Update:

w
k`1
j “ w

k

j ´ ÷k

ja
Cj,k ` Á

g
k

j

Adagrad:
1 Cj,k “ ∞

t

·“1pg·
j q2

2 ÷k

j “ ÷

RMS prop:
1 Cj,k “ flCj

k´1 ` p1 ´ flqpgk

j q2

2 ÷k

j “ ÷ constant.
Adadelta:

1 Cj,k “ flCj
k´1 ` p1 ´ flqpgk

j q2

2 ÷k

j variable.

76

ADADELTA
Determining a good learning rate becomes more of an art than science for many

problems.

M.D. Zeiler

Update equation for adadelta

w
pk`1q “ w

pkq ´

b
áp�wq2pk´1q ` Á

b
ápÒf q2pkq ` Á

d g
k

Interpretation:
The numerator keeps the size of the previous step in memory and enforce larger
steps along directions in which large steps were made.
The denominator keeps the size of the previous gradients in memory and acts as a
decreasing learning rate. Weights are lower than in Adagrad due to the decay rate fl.

Inspired by second order methods (unit invariance + Hessian approximation)
�w » pÒ2

f q´1Òf .

Roughly,

�w “
Bf

Bw

B2f

Bw2

ô 1
B2f

Bw2

“ �w

Bf

Bw

.

See also zeiler2012adadelta; schaul2013no 77

ADADELTA

AdaDelta algorithm

Initialization: initial weight vector w
p0q, ápÒf q20 “ 0, áp�xq20 “ 0

Parameters: decay rate fl ° 0, constant Á,

For k “ 1, 2, . . . until convergence do

For all j “ 1, . . . , d ,
1 Compute the accumulated gradient

ápÒf q2pkq “ flápÒf q2pk´1q ` p1 ´ flqpg
k q2

2 Compute the update

w
pkq “ w

pk´1q ´

b
áp�wq2pk´1q ` Á

b
ápÒf q2pkq ` Á

d g
k

3 Compute the aggregated update
áp�wq2pkq “ fl áp�wq2pk´1q ` p1 ´ flqpw

pk`1q ´ w
pkqq2

Output: Return last w
pkq

78

ADAM: ADAptive Moment estimation

[kingma2014adam kingma2014adam]

General idea: store the estimated first and second moment of the gradient and use them
to update the parameters.

Equations - first and second moment
Let mk be an exponentially decaying average over the past gradients

mk “ —1mk´1 ` p1 ´ —1qgk

Similarly, let vt be an exponentially decaying average over the past square gradients
vk “ —2vk´1 ` p1 ´ —2qpgkq2.

Initialization: m0 “ v0 “ 0.

With this initialization, estimates mt and vt are biased towards zero in the early steps of
the gradient descent.

Final equations

m̃k “ mk

1 ´ —k

1
ṽk “ vk

1 ´ —k

2
.

w
pkq “ w

pk´1q ´ ÷?
ṽk ` Á

m̃k .

79

Adam algorithm
Initialization: m0 “ 0 (Initialization of the first moment vector), v0 “ 0 (Initialization of
the second moment vector), w0 (initial vector of parameters).

Parameters: stepsize ÷ (default ÷ “ 0.001), exponential decay rates for the moment
estimates —1, —2 P r0, 1q (default: —1 “ 0.9, —2 “ 0.999), numeric constant Á (default
Á “ 10´8).

For k “ 1, 2, . . . until convergence do
Compute first and second moment estimate

m
pkq “ —1m

pk´1q ` p1 ´ —1qgk
v

pkq “ —2vpk´1q ` p1 ´ —2qpgkq2.

Compute their respective correction

m̃
pkq “ m

pkq

1 ´ —k

1
ṽ

pkq “ v
pkq

1 ´ —k

2
.

Update the parameters accordingly
w

pkq “ w
pk´1q ´ ÷?

ṽ pkq ` Á
d m̃

pkq.

Output: Return last w
pkq

Convergence results: [kingma2014adam kingma2014adam], [reddi2018convergence reddi2018convergence].

80

Adamax algorithm
Initialization: m0 “ 0 (Initialization of the first moment vector), u0 “ 0 (Initialization of
the exponentially weighted infinity norm), w0 (initial vector of parameters).

Parameters: stepsize ÷ (default ÷ “ 0.001), exponential decay rates for the moment
estimates —1, —2 P r0, 1q (default: —1 “ 0.9, —2 “ 0.999)

For k “ 1, 2, . . . until convergence do

Compute first moment estimate and its correction

m
pkq “ —1mpk´1q ` p1 ´ —1qgk , m̃

pkq “ m
pkq

1 ´ —k

1
Compute the quantity

u
pkq “ maxp—2u

pk´1q, |gk |q.
Update the parameters accordingly

w
pk`1q “ w

pkq ´ ÷

upkq d m̃
pkq.

Output: Return last w
pkq

[kingma2014adam kingma2014adam]

81

Animation of Stochastic Gradient algorithms

https://imgur.com/a/Hqolp Credits to Alec Radford for the animations.

82

https://imgur.com/a/Hqolp

The Notebook

Goal: Code
1 gradient descent (GD)
2 accelerated gradient descent (AGD)
3 coordinate gradient descent (CD)
4 stochastic gradient descent (SGD)
5 stochastic variance reduced gradient descent (SAG)
6 Adagrad

for the linear regression and logistic regression models, with the ridge penalization.

83

Summary

What we have seen so far !
Why optimization is important, what makes it di�cult
Simple first order methods, from GD to SGD
Advanced first order methods, variance reduction and coordinate adaptive step-sizes

What we have missed and won’t cover
Acceleration techniques (momentum, Nesterov)
Second order methods
Federated Learning algorithms.

What’s next
Statistical approach.

84

Deep learning methods

Outline

1 Motivation: what is Optimization and why study it?
What makes optimization di�cult?
Detailed Examples

2 Gradient descent procedures
Visualization and intuition
Gradient Descent
Convergence rates for GD and interpretation
Stochastic Gradient Descent

3 Advanced Stochastic Optimization Algorithms
Variance reduced methods
Gradient descent for neural networks

4 Insights from Statistical Learning Theory
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

85

Supervised machine learning

Data: n observations pXi , Yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Prediction as a linear function x◊, �pxqy of features �pxq P Rd

(regularized) empirical risk minimization: find ◊̂ solution of

min
◊PRd

1
n

nÿ

i“1
¸
`
Yi , x◊, �pXi qy˘ ` µ�p◊q

convex data fitting term + regularizer

86

Usual losses

Regression: y P R, prediction „◊pxq “ x◊, �pxqy
§ quadratic loss ¸py , x◊, �pxqyq “ 1

2 py ´ x◊, �pxqyq2

Classification : y P t´1, 1u, prediction „◊pxq “ signpx◊, �pxqyq
§ 0 ´ 1 loss: ¸py , x◊, �pxqyq “ 1ty ¨x◊,�pxqy†0u.
§ convex losses

87

Usual losses

Regression: y P R, prediction „◊pxq “ x◊, �pxqy
§ quadratic loss ¸py , x◊, �pxqyq “ 1

2 py ´ x◊, �pxqyq2

Classification : y P t´1, 1u, prediction „◊pxq “ signpx◊, �pxqyq
§ 0 ´ 1 loss: ¸py , x◊, �pxqyq “ 1ty ¨x◊,�pxqy†0u.
§ convex losses

87

Convex loss

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5
0−1
hinge
square
logistic

Support vector machine (hinge loss)
¸pY , x◊, �pxqyq “ maxt1 ´ Y x◊, �pxqy, 0u

Logistic regression:
¸pY , x◊, �pxqyq “ logp1 ` expp´Y x◊, �pxqyqq

Least-squares regression
¸pY , x◊, �pxqyq “ 1

2 pY ´ x◊, �pxqyq2

88

Usual regularizers

Main goal: avoid overfitting
(squared) Euclidean norm: }◊}2

2 “ ∞
d

j“1 |◊j |2
Sparsity-inducing norms

§ LASSO : ¸1-norm }◊}1 “ ∞
d

j“1 |◊j |
§ Perform model selection as well as regularization
§ Non-smooth optimization and structured sparsity
§ See, e.g., Bach, Jenatton, Mairal and Obozinski (2012a,b)

89

Supervised machine learning

Data: n observations pXi , Yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Prediction as a linear function x◊, �pxqy of features �pxq P Rd

(regularized) empirical risk minimization: find ◊̂ solution of

min
◊PRd

1
n

nÿ

i“1
¸
`
Yi , x◊, �pXi qy˘

such that �p◊q § D

convex data fitting term + constraint

Empirical risk: f̂ p◊q “ n
´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Expected risk: f p◊q “ Er¸pY , x◊, �pXqyqs .

90

Supervised machine learning

Data: n observations pXi , Yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Prediction as a linear function x◊, �pxqy of features �pxq P Rd

(regularized) empirical risk minimization: find ◊̂ solution of

min
◊PRd

1
n

nÿ

i“1
¸
`
Yi , x◊, �pXi qy˘

such that �p◊q § D

convex data fitting term + constraint
Empirical risk: f̂ p◊q “ n

´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq

Expected risk: f p◊q “ Er¸pY , x◊, �pXqyqs .

90

Supervised machine learning

Data: n observations pXi , Yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Prediction as a linear function x◊, �pxqy of features �pxq P Rd

(regularized) empirical risk minimization: find ◊̂ solution of

min
◊PRd

1
n

nÿ

i“1
¸
`
Yi , x◊, �pXi qy˘

such that �p◊q § D

convex data fitting term + constraint
Empirical risk: f̂ p◊q “ n

´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Expected risk: f p◊q “ Er¸pY , x◊, �pXqyqs .

90

General assumptions

Data: n observations pXi , Yi q P X ˆ Y, i “ 1, . . . , n, i.i.d.
Bounded features �pxq P Rd : }�pxq}2 § R

Empirical risk f̂ p◊q “ n
´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Expected risk f p◊q “ Er¸pY , x◊, �pXqyqs
Loss for a single observation: fi p◊q “ ¸pYi , x◊, �pXi qyq. For all i , f p◊q “ Erfi p◊qs
Properties of fi , f , f̂

§ Convex on Rd

§ Additional regularity assumptions: Lipschitz-continuity, smoothness and strong
convexity

91

Lipschitz continuity

Bounded gradients of g (ô Lipschitz-continuity): the function g if convex,
di�erentiable and has gradients uniformly bounded by B on the ball of center 0 and
radius D: for all ◊ P Rd ,

}◊}2 § D ñ }Ògp◊q}2 § B

ô
|gp◊q ´ gp◊1q| § B}◊ ´ ◊1}2

Machine learning
§ gp◊q “ n´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
§ G-Lipschitz loss and R-bounded data: B “ GR

92

Smoothness and strong convexity

A function g : Rd Ñ R is L-smooth if and only if it is di�erentiable and its gradient
is L-Lipschitz: for all ◊, ◊1 P Rd ;

}Ògp◊1q ´ Ògp◊1q}2 § L}◊ ´ ◊1}2

If g is twice di�erentiable, for all ◊ P Rd , Òb2
gp◊q § L ¨ Id

smooth non−smooth

93

Smoothness and strong convexity

A function g : Rd Ñ R is L-smooth if and only if it is di�erentiable and its gradient
is L-Lipschitz: for all ◊, ◊1 P Rd ;

}Ògp◊1q ´ Ògp◊1q}2 § L}◊ ´ ◊1}2

If g is twice di�erentiable, for all ◊ P Rd , Òb2
gp◊q § L ¨ Id

Machine learning

gp◊q “ n
´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Hessian « covariance matrix

n
´1

nÿ

i“1
�pXi q�JpXi q:̧pYi , x◊, �pXi qyq

Lloss-smooth loss and R-bounded data: L “ LlossR
2

93

Smoothness and strong convexity

A function g : Rd Ñ R is µ-strongly convex if and only if, for all ◊, ◊1 P Rd ,
gp◊q • gp◊1q ` xÒgp◊1q, ◊ ´ ◊1y ` µ

2 }◊ ´ ◊1}2
2

If g is twice di�erentiable: for all ◊ P Rd , Ò2
gp◊q • µ ¨ Id

convex
strongly
convex

94

Smoothness and strong convexity

A function g : Rd Ñ R is µ-strongly convex if and only if, for all ◊, ◊1 P Rd ,
gp◊q • gp◊1q ` xÒgp◊1q, ◊ ´ ◊1y ` µ

2 }◊ ´ ◊1}2
2

If g is twice di�erentiable: for all ◊ P Rd , Ò2
gp◊q • µ ¨ Id

Machine learning

gp◊q “ n
´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Hessian « covariance matrix

n
´1

nÿ

i“1
�pXi q�pXi qJ :̧pYi , x◊, �pXi qyq

Data with invertible covariance matrix

94

Smoothness and strong convexity

A function g : Rd Ñ R is µ-strongly convex if and only if, for all ◊, ◊1 P Rd ,
gp◊q • gp◊1q ` xÒgp◊1q, ◊ ´ ◊1y ` µ

2 }◊ ´ ◊1}2
2

If g is twice di�erentiable: for all ◊ P Rd , Ò2
gp◊q • µ ¨ Id

Machine learning

gp◊q “ n
´1 ∞n

i“1 ¸pYi , x◊, �pXi qyq
Hessian « covariance matrix

n
´1

nÿ

i“1
�pXi q�pXi qJ :̧pYi , x◊, �pXi qyq

Data with invertible covariance matrix

Adding regularization by µ
2 }◊}2 [! creates a bias (controlled by µ)]

94

Smoothness/convexity assumptions: summary

Bounded gradients of g (Lipschitz-continuity): the function g if convex,
di�erentiable and has gradients uniformly bounded by B on the ball of center 0 and
radius D:

for all ◊ P Rd , }◊}2 § D ñ }Ògp◊q}2 § B

Smoothness of g : the function g is convex, di�erentiable with
L-Lipschitz-continuous gradient Òg :

for all ◊, ◊1 P Rd , }Ògp◊q ´ Ògp◊1q}2 § L}◊ ´ ◊1}2

Strong convexity of g : The function f is strongly convex with respect to the norm
} ¨ }2, with convexity constant µ ° 0: for all ◊, ◊1‘ P Rd ,

gp◊q • gp◊1q ` xÒgp◊1q, ◊ ´ ◊1y ` µ
2 }◊ ´ ◊1}2

2

95

Empirical risk minimization: rationale

The expected risk f p◊q “ Er¸pY , x◊, X , qys is not tractable.
Only the empirical risk f̂ p◊q “ n

´1 ∞n

i“1r¸pYi , x◊, Xi , qys is.
Minimizing f̂ instead of f ?
A simple observation:

f p◊̂q ´ min
◊P�

f p◊q § sup
◊P�

tf̂ p◊q ´ f p◊qu ` sup
◊P�

tf p◊q ´ f̂ p◊qu

Can we have a bound on sup◊P� |f̂ p◊q ´ f p◊q|?

96

Motivation from least-squares

For least-squares, we have ¸py , x◊, �pxqyq “ 1
2 py ´ x◊, �pxqyq2, and

f p◊q ´ f̂ p◊q “ 1
2

◊J
ˆ

1
n

nÿ

i“1
�pXi q�pXi qJ ´ E�pXq�pXqJ

˙
◊

´ ◊J
ˆ

1
n

nÿ

i“1
Yi �pXi q ´ EY �pXq

˙
` 1

2

ˆ
1
n

nÿ

i“1
Y

2
i

´ EY
2
˙

,

sup
}◊}2§D

|f p◊q ´ f̂ p◊q| § D2

2

››››
1
n

nÿ

i“1
�pXi q�pXi qJ ´ E�pXq�pXqJ

››››
op

` D

››››
1
n

nÿ

i“1
Yi �pXi q ´ EY �pXq

››››
2

` 1
2

ˇ̌
ˇ̌ 1
n

nÿ

i“1
Y

2
i

´ EY
2
ˇ̌
ˇ̌,

sup
}◊}2§D

|f p◊q ´ f̂ p◊q| § Op1{?
nq with high probability

97

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
�p◊q “ }◊}2 (Euclidean norm)
“Linear” predictors: „◊pxq “ x◊, �pxqy, with }�pxq}2 § R

G-Lipschitz loss: f p◊q “ ¸pY , x◊, �pXqyq is GR-Lipschitz on � “ t}◊}2 § Du
No convexity assumption

98

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
�p◊q “ }◊}2 (Euclidean norm)
“Linear” predictors: „◊pxq “ x◊, �pxqy, with }�pxq}2 § R

G-Lipschitz loss: f p◊q “ ¸pY , x◊, �pXqyq is GR-Lipschitz on � “ t}◊}2 § Du
No convexity assumption

High-probability bounds: With probability greater than 1 ´ ”,

sup
◊P�

|f̂ p◊q ´ f p◊q| § sup |¸pY , 0q| ` GRD?
n

„
2 `

c
2 log 2

”

⇢

98

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
�p◊q “ }◊}2 (Euclidean norm)
“Linear” predictors: „◊pxq “ x◊, �pxqy, with }�pxq}2 § R

G-Lipschitz loss: f p◊q “ ¸pY , x◊, �pXqyq is GR-Lipschitz on � “ t}◊}2 § Du
No convexity assumption

Risk bounds
E

“
sup
◊P�

|f̂ p◊q ´ f p◊q|‰ § 4 sup |¸pY , 0q| ` 4GRD?
n

98

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
�p◊q “ }◊}2 (Euclidean norm)
“Linear” predictors: „◊pxq “ x◊, �pxqy, with }�pxq}2 § R

G-Lipschitz loss: f p◊q “ ¸pY , x◊, �pXqyq is GR-Lipschitz on � “ t}◊}2 § Du
No convexity assumption

Method
Tools: Symmetrization, Rademacher complexity (see Boucheron et al., 2012),
McDiarmid inequality.
Lipschitz functions ñ slow rate

98

Symmetrization with Rademacher variables

Let D1 “ tX
1
1, Y

1
1 , . . . , X

1
n, Y

1
nu an independent copy of the data

D “ tX1, Y1, . . . , Xn, Ynu, with corresponding loss functions f
1

i p◊q,
E

„
sup
◊P�

!
f p◊q ´ f̂ p◊q

) ⇢
“ E

„
sup
◊P�

#
f p◊q ´ 1

n

nÿ

i“1
fi p◊q

+ ⇢

“ E
„

sup
◊P�

1
n

nÿ

i“1
E

„
f

1
i

p◊q ´ fi p◊q
ˇ̌
ˇ̌D

⇢⇢

§ E
„
E

„
sup
◊P�

1
n

nÿ

i“1

f

1
i

p◊q ´ fi p◊q(ˇ̌
ˇ̌D

⇢⇢

99

Symmetrization with Rademacher variables

Let D1 “ tX
1
1, Y

1
1 , . . . , X

1
n, Y

1
nu an independent copy of the data

D “ tX1, Y1, . . . , Xn, Ynu, with corresponding loss functions f
1

i p◊q,
E

„
sup
◊P�

!
f p◊q ´ f̂ p◊q

) ⇢
“ E

„
sup
◊P�

#
f p◊q ´ 1

n

nÿ

i“1
fi p◊q

+ ⇢

“ E
„

sup
◊P�

1
n

nÿ

i“1

f

1
i

p◊q ´ fi p◊q(⇢

“ E
„

sup
◊P�

1
n

nÿ

i“1
Ái

f

1
i

p◊q ´ fi p◊q(⇢
with Ái uniform in t´1, 1u

§ 2E
„

sup
◊P�

1
n

nÿ

i“1
Ái fi p◊q

⇢
= Rademacher complexity

99

Rademacher complexity

Define the Rademacher complexity of the class of functions
px , yq fiÑ ¸py , x◊, �pxqyq as

Rn “ E
„

sup
◊P�

1
n

nÿ

i“1
Ái fi p◊q

⇢
, fi p◊q “ ¸pYi , x◊, �pXi qyq

Main property:

E
„

sup
◊P�

"
f p◊q ´ f̂ p◊q

*⇢
“ E

„
sup
◊P�

"
f̂ p◊q ´ f p◊q

*⇢
§ 2Rn

100

From Rademacher complexity to uniform bound

Z “ sup
◊P�

tf p◊q ´ f̂ p◊qu

“ sup
◊P�

#
f p◊q ´ n

´1
nÿ

i“1
¸pYi , x◊, �pXi qyq

+

By changing one pair pXi , Yi q, Z may only change by
2
n

sup |¸pY , x◊, �pxqyq| § 2
n

`
sup |¸pY , 0q| ` GRD

˘ § 2
n

`
¸0 ` GRD

˘ “ c

with sup |¸pY , 0q| “ ¸0

MacDiarmid inequality: with probability greater than 1 ´ ”,

Z § EZ `
c

n

2 c ¨
c

log 1
”

§ 2Rn `
?

2?
n

`
¸0 ` GRD

˘
c

log 1
”

101

Bounding the Rademacher average

Empirical Rademacher averages

R̂n “ E
„

sup
◊P�

1
n

nÿ

i“1
Ái fi p◊q

ˇ̌
ˇ̌X
⇢

§ E
„

1
n

nÿ

i“1
Ái fi p0q

ˇ̌
ˇ̌X
⇢

` E
„

sup
◊P�

1
n

nÿ

i“1
Ái

“
fi p◊q ´ fi p0q‰ˇ̌

ˇ̌X
⇢

§ 0 ` E
„

sup
◊P�

1
n

nÿ

i“1
Ái

“
fi p◊q ´ fi p0q‰ˇ̌

ˇ̌X
⇢

“ 0 ` E
„

sup
◊P�

1
n

nÿ

i“1
Ái Ïi px◊, �pXi qyq

ˇ̌
ˇ̌X
⇢

Using Ledoux-Talagrand concentration results for Rademacher averages (since Ïi is
G-Lipschitz), we get:

R̂n § 2G ¨ E
„

sup
}◊}2§D

1
n

nÿ

i“1
Ái x◊, �pXi qy

ˇ̌
ˇ̌X
⇢

102

Bounding the Rademacher average - II

Rn § 2GE
„

sup
}◊}2§D

1
n

nÿ

i“1
Ái x◊, �pXi qy

⇢

“ 2GDE
››››

1
n

nÿ

i“1
Ái �pXi q

››››
2

§ 2GD

gffeE
››››

1
n

nÿ

i“1
Ái �pXi q

››››
2

2

§ 2GRD?
n

With probability 1 ´ ”:

sup
◊P�

ˇ̌
f p◊q ´ f̂ p◊q

ˇ̌
§ 1?

n

`
¸0 ` GRDqp4 `

b
2 logp1{”q˘

103

Empirical Risk vs Fluctuation

We have, with probability 1 ´ ”, for all ◊ P �:
f p◊̂q ´ min

◊P�
f p◊q § sup

◊P�
tf̂ p◊q ´ f p◊qu ` sup

◊P�
tf p◊q ´ f̂ p◊qu

§ 2?
n

p¸0 ` GRDqp4 `
c

2 log 1
”

q

Only need to optimize with precision « 1{?
n

104

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
�p◊q “ }◊}2 (Euclidean norm)
“Linear” predictors: „◊pxq “ x◊, �pxqy, with }�pxq}2 § R a.s.
G-Lipschitz loss: f and f̂ are GR-Lipschitz on � “ t}◊}2 § Du
No assumptions regarding convexity

With probability greater than 1 ´ ”

sup
◊P�

|f̂ p◊q ´ f p◊q| § ¸0 ` GRD?
n

„
2 `

c
2 log 2

”

⇢

Expected estimation error: E
“

sup
◊P�

|f̂ p◊q ´ f p◊q|‰ § 4¸0 ` 4GRD?
n

Under other conditions on the model, can we improve the rate 1{?
n?

105

Motivation from mean estimation

Estimator

◊̂ “ 1
n

nÿ

i“1
Zi “ arg min

◊PR
f̂ p◊q

where

f̂ p◊q “ 1
2n

nÿ

i“1
pZi ´ ◊q2

f p◊q “ E
„

pZ ´ ◊q2
⇢

Slow rate
f p◊q “ 1

2 p◊ ´ ErZ sq2 ` 1
2 varpZq “ f̂ p◊q ` Opn´1{2q

106

Motivation from mean estimation

Estimator

◊̂ “ 1
n

nÿ

i“1
Zi “ arg min

◊PR
f̂ p◊q

where

f̂ p◊q “ 1
2n

nÿ

i“1
pZi ´ ◊q2

f p◊q “ E
„

pZ ´ ◊q2
⇢

Fast rate
f p◊̂q ´ f pErZ sq “ 1

2 p◊̂ ´ ErZ sq2

E
“
f p◊̂q ´ f pErZ sq‰ “ 1

2E
ˆ

1
n

nÿ

i“1
Zi ´ ErZ s

˙2

“ 1
2n

varpZq

Bound only at ◊̂ + strong convexity

106

Fast rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)
Same as before (bounded features, Lipschitz loss) + strong convexity

For any a ° 0, with probability greater than 1 ´ ”, for all ◊ P Rd ,

f p◊̂q ´ min
÷PRd

f p÷q § 8p1 ` a
´1qG2

R
2p32 ` logp”´1qq

µn

Results from (Sridharan et al., 2008), (Boucheron et al., 2012).
Strongly convex functions ñ fast rate

107

Minimization of the expected and empirical risk

Conclusion: ◊̂ P arg min
◊P�

f̂ p◊q is a good proxy as a minimizer of f as n is large.

Question: How to find ◊̂?
Answer: gradient descent algorithms!
Recall f̂ is assumed to be convex.
Very e�cient methods from convex optimization are available: see part 2 and 3!

108

Conclusion

SLT insights
Statistical approach sheds light on optimization techniques
High precision is not (always) very relevant in ML

Directions:
Faster Rates (Least squares regression)
Markov chain interpretations
Beyond Convex, beyond gradients (EM algorithm)

References
Sebastien Bubeck’s book and blog on optimization.
Francis Bach’s book on Learning.

109

110

Analytical solution

go
Deep Learning

In almost all pbs

Y WÉ E sûr

û XX Xy ortini
toolongÇA
ED xd

d1 Thd

O d O d regularization

111

Ei y

un égalewkloss
t'as

wide O Wade
ont

ÎÊ w X
y

input loyer
hidden loyer

wk Waff X

112

113

