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Motivation: Large-scale incomplete data

• Large-scaling: large n (number of observations), large d
(dimension of the observations).
# Stochastic / online learning algorithms

• Incompleteness for many reasons Delete observations with
NA ! keep only 5% of the rows.:(
# Simpler algorithmic solutions?

Traumabase: 15 000 patients/ 250 var/ 15 hospitals
Center Age Sex Weight Height Heart rate Lactates

Beaujon 54 m 85 NA NA NA
Lille 33 m 80 1.8 180 4.8
Pitie 26 m NA NA NA 3.9

NA: Not Available.
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1 SGD with missing data
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Convergence of Algorithm 1
Rates for empirical risk? Beyond one pass?
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Setting

• (Xi :, yi )i�1 2 Rd
⇥ R i.i.d. observations

• Linear regression model

yi = XT

i : �
? + ✏i ,

parametrized by �?
2 Rd , with a noise term ✏i 2 R.

• Loss function: fi (�) = (hXi :,�i � yi )
2 /2.

• True risk minimization:

�? = argmin
�2Rd

�
R(�) := E(Xi :,yi ) [fi (�)]

 

• Stochastic gradient method.
• At the heart of Machine Learning.
• Very well suited for large d and n.
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Objective - missing data

• Problem: (Xi :)’s partially known

1. What should we estimate?

• True risk minimization:

�? = argmin
�2Rd

�
R(�) := E(Xi :,yi ) [fi (�)]

 

2. How to adapt algorithms to the missing data case?
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Optimization without missing values

Stochastic gradient descent

• Stochastic gradient descent (SGD): using unbiased
estimates of rF (�k�1).

�k = �k�1 � ↵gk(�k�1)

where ↵ is the step-size and E [gk(�k�1)|Fk�1] = rF (�k�1),
Fk�1 = �(X1:, y1, . . . ,Xk�1:, yk�1) the filtration.

• Averaged SGD: using the Polyak-Ruppert averaged iterates.

�k = �k�1 � ↵gk(�k�1)

�̄k =
1

k + 1

kX

i=0

�i

X It scales with large data.

2 questions

• Obtaining unbiased stochastic gradients with missing data?
• Deriving rates of convergence.
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Missing values setting

Formalism

• Di : 2 {0, 1}d binary mask, such that

Dij =

⇢
0 if the (i , j)-entry is missing
1 otherwise.

• Access to XNA
i : 2 (R [ {NA})d instead of Xi :

XNA
i : := Xi : � Di : + NA(1d � Di :),

� element-wise product, 1d = (1 . . . 1)T 2 Rd , NA⇥ 0 = 0, NA⇥ 1 = NA.

7/34

for observele nb i

L

j 1 d



Missing values setting

Mechanism assumption

• Heterogeneous Missing Completely At Random setting

(MCAR) ! Bernoulli mask

D = (�ij)1in,1jd
with �ij ⇠ B(pj),

with 1 � pj the probability that the j-th covariate is missing.

X different missing probability for each covariate

Heterogeneous case:
p1 = 0.5, p2 = 0.67, p3 = 0.83, p4 = 0.33, p5 = 0.92.

Homogeneous case: p = 0.65.
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Dealing with missing values

Existing work4

• Expectation Maximization algorithm1 (maximization of the observed
likelihood)
7 parametric assumptions: Gaussian assumption for the covariates,
no solution available for large dimension p.

• Matrix completion (predicting NA before applying usual algorithms)
7 it can lead to bias and underestimation of the variance of the
estimate2.

• Imputing naively by 0 and modifying the usual algorithms to
account for the imputation error: in particular, a modified SGD3.

.
1Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood

from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

2Roderick JA Little and Donald B Rubin. Statistical analysis with missing data.
Vol. 793. John Wiley & Sons, 2019.

3Anna Ma and Deanna Needell. “Stochastic Gradient Descent for Linear Systems
with Missing Data”. In: arXiv preprint arXiv:1702.07098 (2017).

4Imke Mayer et al. “R-miss-tastic: a unified platform for missing values methods
and workflows”. In: arXiv preprint arXiv:1908.04822 (2019).
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Dealing with missing values

Our strategy inspired by Ma et Needell
Online-streaming: for a new observation (XNA

i : , yi )

• Imputing the missing values by 0.

X̃i : = XNA
i : � Di : = Xi : � Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)
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Dealing with missing values

Our strategy inspired by Ma et Needell
Online-streaming: for a new observation (XNA

i : , yi )

• Imputing the missing values by 0.

X̃i : = XNA
i : � Di : = Xi : � Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)

• Fk�1 = �(X1:, y1,D1: . . . ,Xk�1:, yk�1,Dk�1:)

• rR(�k�1) = E(Xk:,yk )[Xk:(XT

k:�k�1 � yk)]

• No access to Xk:, only to X̃k:.

• Another source of randomness: E = E(Xk:,yk ),Dk:

indep
= E(Xk:,yk )EDk:

• EDk: |Fk�1  EDk:

X Mask at step k independent from the previous constructed iter-
ate.
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Dealing with missing values

Our strategy inspired by Ma et Needell
Online-streaming: for a new observation (XNA

i : , yi )

• Imputing the missing values by 0.

X̃i : = XNA
i : � Di : = Xi : � Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)

EDk:

h
X̃k:

i
= EDk:

2

64

0

B@
�k1Xk1

...
�kdXkd

1

CA

3

75 =

0

B@
p1Xk1

...
pdXkd

1

CA

Thus

EDk:

h
P�1X̃k:

i
:=

0

B@
p�1

1
. . .

p�1
d

1

CA

0

B@
p1Xk1

...
pdXkd

1

CA = Xk:
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Dealing with missing values

Our strategy inspired by Ma et Needell
Online-streaming: for a new observation (XNA

i : , yi )

• Imputing the missing values by 0.

X̃i : = XNA
i : � Di : = Xi : � Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)

One obtains

g̃k(�k�1) = P�1X̃k:

⇣
X̃T

k:P
�1�k�1 � yk

⌘
�(I�P)P�2diag

⇣
X̃k:X̃

T

k:

⌘
�k�1.
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Averaged SGD for missing values

Debiasing the gradient

Algorithm 1 Averaged SGD for Heterogeneous Missing Data

Input: data X̃ , y ,↵ (step size)
Initialize �0 = 0d .
Set P = diag

�
(pj)j2{1,...,d}

�
2 Rd⇥d .

for k = 1 to n do
g̃k (�k�1) = P

�1
X̃k:

⇣
X̃

T

k:P
�1�k�1 � yk

⌘
� (I � P)P�2diag

⇣
X̃k:X̃

T

k:

⌘
�k�1

�k = �k�1 � ↵g̃k(�k�1)

�̄k = 1
k+1

P
k

i=0 �i =
k

k+1 �̄k�1 +
1

k+1�k

end for

• p = 1 ) P�1 = Id standard least squares stochastic algorithm.
• Computation cost for the gradient still weak.
• Trivially extended to ridge regularization (no change for the

gradient): min�2Rd R(�) + �k�k2,� > 0
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SGD with NA: Take home message

X We aim to estimate �⇤ with missing data.

X We consider a heterogeneous MCAR framework

X We provide an unbiased gradient oracle of the true risk.

X Only for Least Squares Regression.

X Requires independent points at each iteration: only for the
first pass.

X Requires the knowledge of P .

? Convergence.
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Optimization without missing values

convergence rates and proof techniques

If F is convex and L-smooth.5

7 Convergence rate: O(k�1/2)

If F is convex and L-smooth, µ-strongly convex.
7 Convergence rate: O((µk)�1), with µ known.

If F is convex and quadratic, e.g., for least-squares regression6.

X Convergence rate: O(k�1)

? Why do we get a faster rate for quadratic functions?
? What does it require?

5Arkadi Nemirovski et al. “Robust stochastic approximation approach to stochastic
programming”. In: SIAM Journal on optimization 19.4 (2009), pp. 1574–1609.

6Francis Bach and Eric Moulines. “Non-strongly-convex smooth stochastic
approximation with convergence rate O (1/n)”. In: Advances in neural information
processing systems. 2013, pp. 773–781.

14/34



Faster rates for Least Squares regression

• Typical proof for convex:
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Faster rates for Least Squares regression

• Typical proof for quadratic:
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Summary
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Theoretical results

Technical lemmas

• Goal: establish a convergence rate.
• Assumptions on the data: (Xk:, yk) 2 Rd

⇥R i.i.d., E[kXk:k
2] and

E[y2
k
] finite, H := E(Xk:,yk )[Xk:XT

k: ] invertible.

Lemma: noise induced by the imputation by 0 is structured
(g̃k (�?))k with �? is Fk�measurable and 8k � 0,

• E[g̃k (�?) | Fk�1] = 0 a.s.
• E[kg̃k (�?)k2 | Fk�1] is a.s. finite.
• E[g̃k (�?)g̃k (�?)T ] 4 C(�?) = c(�?)H.

Lemma: (g̃k(�?))k are a.s. co-coercive
For any k,

• g̃k is Lk,D -Lipschitz

• there exists a random primitive function f̃k which is a.s. convex
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Theoretical results

Convergence results

Theorem: convergence rate of O(k�1), streaming setting
Assume that for any i , kXi :k  � almost surely for some � > 0. For any
constant step-size ↵ 

1
2L , ensures that, for any k � 0:

E
⇥
R
�
�̄k

�
� R(�?)

⇤


1
2k

0

BBB@

p
c(�?)d

1 �
p
↵L| {z }

variance term

+
k�0 � �?

k
p
↵| {z }

bias term

1

CCCA

2

,

• L := supk,D Lipschitz constants of g̃k

• pm = minj=1,...d pj minimal probability to be observed

• c(�?) =

classical termz }| {
Var(✏k )

p2
m

+

multiplicative noise (induced by naive imputation)
z }| {✓
(2 + 5pm)(1 � pm)

p3
m

◆
�2k�?k2

| {z }
increasing with the missing values rate

.
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Theoretical results

Comments

• Optimal rate for least-squares regression.

• In the complete case: same bound as Bach and Moulines.

• Bound on the iterates for the ridge regression (� ! R(�) + �k�k2

is 2�-strongly convex).

E
����k � �?

���
2
�


1
2�k

 p
c(�?)d

1 �
p
↵L

+
k�0 � �?k

p
↵

!2

.
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Theoretical results

What impact of missing values?
Fewer complete observations is better than more incomplete

ones: is it better to access 200 incomplete observations (with a
probability 50% of observing) or to have 100 complete
observations?

Open Questions: Lower bound!
Possible Approach Gaussian assumptions on the data distribution:
use the distribution of the full data knowing observed data.
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Theoretical results

What impact of missing values?
Fewer complete observations is better than more incomplete

ones: is it better to access 200 incomplete observations (with a
probability 50% of observing) or to have 100 complete
observations?
The variance bound for 200 incomplete observations (with a probability
50% of observing) is twice as large as for 100 complete observations.

Open Questions: Lower bound!
Possible Approach Gaussian assumptions on the data distribution:
use the distribution of the full data knowing observed data.
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Theoretical results

What impact of missing values?
We do better than discarding all observations which contain

missing values:

X =

0

BBBB@

X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7

1

CCCCA
X =

0

BBBB@

X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7

1

CCCCA
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Theoretical results

What impact of missing values?
We do better than discarding all observations which contain

missing values:
Example in the homogeneous case with p the proportion of being observed.

• keeping only the complete observations, any algorithm:

• number of complete observations kco ⇠ B(k , pd).
• statistical lower bound: Var(✏k )d

kco
.

• in expectation, lower bound on the risk larger than Var(✏k )d
kpd .

• keeping all the observations, averaged SGD: upper bound
O
⇣

Var(✏k )d
kp2 + C(X ,�?)

kp3

⌘
.

Our strategy has an upper-bound pd�3 smaller than the lower bound
of any algorithm relying only on the complete observations.
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Theoretical results

Finite-sample setting

Open Question: rates for ERM?

• Empirical risk: �n

? = argmin�2Rd

�
Rn(�) :=

1
n

P
n

i=1 fi (�)
 

How to choose the k-th obstervation?
7 k uniformly at random ) we use a data several times.
7 k not chosen uniformly at random ) sampling not

uniform and bias in the gradient.

Implications:
• No unbiased gradients for the empirical risk so far.
• Keep in mind: empirical risk is in any case not observed.

Possible Approach: similar to wo replacement sampling for ERM.7

7Ohad Shamir. “Without-Replacement Sampling for Stochastic Gradient
Methods”. In: Proceedings of the 30th International Conference on Neural Information
Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016,
pp. 46–54. ISBN: 9781510838819.

24/34



Theoretical results

Finite-sample setting

Open Question: rates for ERM?

• Empirical risk: �n

? = argmin�2Rd

�
Rn(�) :=

1
n

P
n

i=1 fi (�)
 

How to choose the k-th obstervation?
7 k uniformly at random ) we use a data several times.
7 k not chosen uniformly at random ) sampling not

uniform and bias in the gradient.
Implications:

• No unbiased gradients for the empirical risk so far.
• Keep in mind: empirical risk is in any case not observed.

Possible Approach: similar to wo replacement sampling for ERM.7

7Shamir, “Without-Replacement Sampling for Stochastic Gradient Methods”.
24/34



Theoretical results

Comparison with related work

Comparison with Ma et Needell8:
• µ-strongly convex problem
• no averaged iterates

) convergence rate of O( log nµn ).

7 µ generally out of reach.
7 only homogeneous MCAR data.
7 main theorem mathematically invalid (empirical risk).

8Ma and Needell, “Stochastic Gradient Descent for Linear Systems with Missing
Data”.
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Theoretical results

Finite-sample setting

Finite-sample setting: n is fixed
• Algorithm and main result: requirement of (pj)j=1,...,d .
! estimator �̄k

• In practice: estimated missing probabilities (p̂j)j=1,...,d

! estimator ¯̂�k . (finite-sample setting: first half of the data to
evaluate (p̂j), second half to build ¯̂�k).

Result with estimated missing probabilities (simplified version)
Under additional assumptions of bounded iterates and strong
convexity of the risk, Algorithm 1 ensures that, for any k � 0:

E
h
R( ¯̂�k)� R(�̄k)

i
= O(1/kp6

m),

with pm = minj2{1,...,d} pj .
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Proof Sketch
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Open questions

OQ: Tighter convergence rate with estimated probabilities:

• Without strong convexity
• Better dependence w.r.t. p.

Approach: Proof related to stability approaches.

OQ: working in a distributed or federated framework

• Each participant has its own missing value probability
• Each participant has its own objective function.

Approach: Federated Learning algorithms. Estimation of

probabilities based on a global prior + local estimation.
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Convergence rates: Take home message

New results:

X Fast convergence rate because the noise is structured. Optimal
w.r.t. k .

X Dependence with p: much better than erasing incomplete
data, but not as good as pk complete observations

X Convergence with strong-convexity and estimated probabilities
(preserved k�1, degraded dependence in p)

Partial answers & open questions:

X Matching lower bound?
X ERM, Beyond one pass? impossible to minimize ER to

arbitrary precision, but a guarantee for the first pass seems
possible.

X Better dependence in p for estimated probabilities case?
X Distributed & multi-agent frameworks are crucial.

? In practice?
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Experiments

Synthetic data: convergence rate

Figure: Empirical excess risk (Rn(�k)� Rn(�?)).

• Multiple passes (left): saturation.

• One pass (right): saturation for SGD_cst, O(n�1/2) for SGD,
O(n�1) for AvSGD.
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Experiments

Real dataset: Superconductivity, prediction task

Figure: Prediction error kŷ � yk2/kyk2 boxplots.

• EM out of range (due to large number of covariates).
• AvSGD performs well, very close to the one obtained from the

complete dataset (AvSGD complete) with or without
regularization.
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Conclusion

X A new algorithm with a fast rate to perform SGD with missing
data.

X Python implementation of regularized regression with missing
values for large scale data.

X More details in the paper9!
Many perspectives:

• Dealing with more general loss function.
• More complex missing-data patterns such as MAR and MNAR.
• Lower bounds
• Distributed case
• Bounds on the empirical risk, tighter bound for estimated p.

9A. S. et al. “Debiasing Stochastic Gradient Descent to handle missing values”. In:
Advances in Neural Information Processing System (2020).
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