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Tradeoffs of Large scale learning - Learning

Statistics vs Machine Learning

Statistics Machine Learning
Estimation Learning
Classifier Hypothesis

Data point Example/Instance
Regression Supervised Learning

Classification Supervised Learning
Covariate Feature
Response Label 1

Essentially AI vs math guys doing same kind of stuff. However main differences :

Statisticians are more interested in the model and drawing
conclusions about it.

ML are more interested about prediction with a concern on
algorithms for high dim. data.

1. taken from www.quora.com/What-is-the-difference-between-statistics-and-machine-learning
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Tradeoffs of Large scale learning - Learning

Framework

We consider the classical risk minimization problem. Given :

a space of input output pairs (x , y) ∈ X × Y, with probability
distribution P(x , y).

a loss function ` : Y × Y → R, a class of function F .

the risk of a function f : X → Y is R(f ) := EP [` (f (x), y)].

Our aim is
min
f ∈F

R(f )

R is unknown.

given a sequence of i.i.d. data points distributed
(xi , yi )i=1..n ∼ P⊗n, we can define the empirical risk

Rn(f ) =
1

n

n∑
i=1

`(f (xi ), yi ).
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Tradeoffs of Large scale learning - Learning

The bias-variance tradeoffs

a.k.a. estimation approximation error.

There are many ways of seeing it :

constraint case

penalized case

other regularization

Thus compromise : εapp + εest .

εapp εest
F ↗ ↘ ↗

This is the classical setting.
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Tradeoffs of Large scale learning - Learning

Adding an optimization term

When we face large datasets, it may be uneasy and useless to optimize
with high accuracy the estimator. We then question the choice of an
algorithm from a fixed budget time point of view. 2

It questions the following points :

up to which precision is it necessary to optimize ?

which is the limiting factor ? (time, data points)

A problem is said to be large scale when time is limiting. For large scale
problem :

which algo ?

more data less work ? (if time is limiting)

2. Ref :[Shalev-Schwartz and Srebro, 2008, Shalev-Schwartz and K., 2011, Bottou and Bousquet, 2008]
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Tradeoffs of Large scale learning - Learning

Tradeoffs - Large scale learning

F ↗ n↗ ε↗

εapp ↘
εest ↗ ↘
εopt ↗
T ↗ ↗ ↘
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Tradeoffs of Large scale learning - Learning

Different algorithms

To minimize ERM, a bunch of algorithms may be considered :

Gradient descent

Second order gradient descent

Stochastic gradient descent

Fast stochastic algorithm (requiring high memory storage)

Let’s compare first order methods : SGD and GD.
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Tradeoffs of Large scale learning - Learning

Stochastic gradient algorithms :

Aim : minf R(f )

we only access to unbiased estimates of R(f ) and ∇R(f ).

1 Start at some f0.
2 Iterate :

Get unbiased gradient estimate gk , s.t. E [gk ] = ∇R(fk).
fk+1 ← fk − γkgk .

3 Output fm or f̄m := 1
m

m∑
k=1

fk (averaged SGD).

Gradient descent : same but with “true” gradient.
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Tradeoffs of Large scale learning - Learning

ERM

SGD in ERM
minf ∈F Rn(f )

Pick any (xi , yi ) from empirical sample

gk = ∇f `(fk , (xi , yi )).
fk+1 ← (fk − γkgk)

Output f̄m
Rn(f̄m)− Rn(f ∗n ) 6 O

(
1/
√
m
)

supf∈F |R − Rn|(f ) 6 O(1/
√
n)

Cost of one iteration O(d).

GD in ERM
minf ∈F Rn(f )

gk = ∇f
∑n

i=1 `(fk , (xi , yi ))
= ∇f R(fk)

fk+1 ← (fk − γkgk)

Output fm
Rn(fm)− Rn(f ∗n ) 6 O ((1− κ)m)

supf∈F |R − Rn|(f ) 6 O(1/
√
n)

Cost of one iteration O(nd).

R(f̄m)− R(f ∗) 6 O
(
1/
√
m
)

+ O(1/
√
n)

With step-size γk proportional to 1√
k

.
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Tradeoffs of Large scale learning - Learning

Conclusion

In the large scale setting, it is beneficial to use SGD !

Does more data help ?

With global estimation error fixed, it seems T ' 1
R(fm)−R(f∗)− 1√

n

is

decreasing with n.

Upper bounding Rn − R uniformly is dangerous. Indeed, we have to also
compare to one pass SGD, which minimizes the true risk R.
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Tradeoffs of Large scale learning - Learning

Expectation minimization

Stochastic gradient descent may be used to minimize R(f ) :

SGD in ERM
minf ∈F Rn(f )

Pick any (xi , yi ) from empirical sample

gk = ∇f `(fk , (xi , yi )).
fk+1 ← (fk − γkgk)

Output f̄m
Rn(f̄m)− Rn(f ∗n ) 6 O

(
1/
√
m
)

supf∈F |R − Rn|(f ) 6 O(1/
√
n)

Cost of one iteration O(d).

SGD one pass
minf ∈F R(f )

Pick an independent (x , y)

gk = ∇f `(fk , (x , y)).
fk+1 ← (fk − γkgk)

Output f̄k , k 6 n

R(f̄k)− R(f ∗) 6 O
(

1/
√
k
)

Cost of one iteration O(d).

SGD with one pass (early stopping as a regularization) achieves a nearly
optimal bias variance tradeoff with low complexity.
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Tradeoffs of Large scale learning - Learning

Rate of convergence

We are interested in prediction.

Strongly convex objective : 1
µn .

Non strongly : 1√
n

.

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 18 / 48



A case study -Finite dimension linear least mean squares

LMS [Bach and Moulines, 2013]

We now consider the simple case where X = Rd , and the loss ` is qua-
dratic. We are interested in linear predictors :

min
θ∈Rd

EP [(θT x − y)2].

If we assume that the data points are generated according to

yi = θT∗ xi + εi .

We consider stochastic gradient algorithm :

θ0 = 0

θn+1 = θn − γn(〈xn, θn〉xn − ynxn)

This system may be rewritten :

θn+1 − θ∗ = (I − γxnxTn )(θn − θ∗)− γnξn. (1)

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 19 / 48



A case study -Finite dimension linear least mean squares

Rate of convergence, back again !

We are interested in prediction.

Strongly convex objective : 1
µn .

Non strongly : 1√
n

.

We define H = E[xxT ].

We have µ = min Sp(H).

For least min squares, statistical rate with ordinary LMS estimator is

σ2d

n

there is still a gap to be bridged !
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A case study -Finite dimension linear least mean squares

Result

Theorem

E[R(θ̄n)− R(θ∗)] 6
4

n
(σ2d + R2‖θ0 − θ∗‖2)

optimal statistical rate

1/n without strong convexity.
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What if d >> n ?

Carry analyse in a Hilbert space

using reproducing kernel Hilbert
spaces

Non parametric regression in
RKHS

An interesting problem itself

Behaviour in FD

Adaptativity, tradeoffs.

Optimal statistical rates in
RKHS

Choice of γ



Non parametric learning

Reproducing kernel Hilbert space
[Dieuleveut and Bach, 2014]

We denote HK a Hilbert space of function. HK ⊂ RX .
Which is characterized by the kernel function K : X × X → R :

for any x , Kx : X → R defined by Kx(x ′) = K (x , x ′) is in HK .

reproducing property : for all g ∈ HK and x ∈ X , g(x) = 〈g ,Kx〉K .

Two usages :

α) A hypothesis space for regression.

β) Mapping data points in a linear space.
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Non parametric learning

α) A hypothesis space for regression.

Classical regression setting :

(Xi ,Yi ) ∼ ρ i.i.d.

(Xi ,Yi ) ∈ (X × R)

Goal : Minimizing prediction error

min
g∈L2

E[(g(X )− Y )2].

Looking for an estimator ĝn of gρ(X ) = E[Y |X ], gρ ∈ L2
ρX . with

L2
ρX =

{
f : X → R/

∫
f 2(t)dρX (t) <∞

}
.
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Non parametric learning

β) Mapping data points in a linear space.

Linear regression on data maped into some RKHS.

arg min
θ∈H
||Y − Xθ||2.
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Non parametric learning

2 approaches of regression problem :

Link : In general
HK ⊂ L2

ρX

And
compl||.||L2

ρX
(RKHS) = L2

ρX

in some cases. We then look for an estimator of the regression function
in the RKHS.

General regression problem
gρ ∈ L2

Linear regression problem in
RKHS

looking for an estimator for the first problem using natural
algorithms for the second one
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Non parametric learning
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Non parametric learning

SGD algorithm in the RKHS

g0 ∈ HK (we often consider g0 = 0),

gn =
n∑

i=1

aiKxi , (2)

(an)n such that an := −γn(gn−1(xn)−yn) = −γn
(∑n−1

i=1 aiK (xn, xi )− yi

)
.

gn = gn−1 − γn (gn−1(xn)− yn)Kxn

=
n∑

i=1

aiKxi with an defined as above.

(gn−1(xn)− yn)Kxn unbiased estimate of gradE[(〈Kx , gn−1〉 − y)2] .

SGD algorithm in the RKHS takes very simple form
Aymeric Dieuleveut Stochastic optimization Hilbert spaces 32 / 48



Non parametric learning

Assumptions

Two important points characterize the difficulty of the problem :

The regularity of the objective function

The spectrum of the covariance operator

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 33 / 48



Non parametric learning

Covariance operator

We have Σ = E [Kx ⊗ Kx ] . Where Kx ⊗ Kx : g 7→ 〈Kx , g〉Kx = g(x)Kx

Covariance operator is a self adjoint operator which contains infor-
mation on the distribution of Kx

Assumption :

tr(Σα) <∞, for α ∈ [0; 1].

on gρ : gρ ∈ Σr (L2
ρ(X )) with r ≥ 0.
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Non parametric learning

Interpretation

Eigenvalues decrease

Ellipsoid class of function. (we do not assume gρ ∈ HK )
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Non parametric learning

Result :

Theorem

Under a few hidden assumptions :

E [R (ḡn)− R(gρ)] 6 O

(
σ2 tr(Σα)γα

n1−α

)
+ O

(
||Σ−rgρ||2
(nγ)2(r∧1)

)

Bias Variance decomposition

O is a known constant (4 or 8)

Finite horizon result here but extends to online setting.

Saturation
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Non parametric learning

Corollary

Corollary

Assume A1-8 :
If 1−α

2 < r < 2−α
2 , with γ = n−

2r+α−1
2r+α we get the optimal rate :

E [R (ḡn)− R(gρ)] = O
(
n−

2r
2r+α

)
(3)
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Non parametric learning

Conclusion 1

We get statistical optimal rate of convergence for learning in RKHS
with SGD with one pass.

We get insights on how to choose the kernel and the step size.

We compare favorably to [Ying and Pontil, 2008,
Caponnetto and De Vito, 2007, Tarrès and Yao, 2011].
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Non parametric learning

Conclusion 2

Theorem can be rewritten :

E
[
R
(
θ̄n
)
− R(θ∗)

]
6 O

(
σ2 tr(Σα)γα

n1−α

)
+ O

(
θT∗ Σ2r−1θT

(nγ)2(r∧1)

)
(4)

where the ellipsoid condition appears more clearly.
Thus :

SGD is adaptative to the regularity of the problem

bridges the gap between the different regimes and explains
behaviour when d >> n.
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The complexity challenge, approximation of the kernel

Reducing complexity : sampling methods

However the complexity of such a method remains quadratic with respect
of the number of examples : iteration number n costs n kernel calculations.

Rate Complexity

Finite Dimension d
n O(dn)

Infinite dimension dn
n O(n2)

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 41 / 48



The complexity challenge, approximation of the kernel

Reducing complexity : sampling methods

However the complexity of such a method remains quadratic with respect
of the number of examples : iteration number n costs n kernel calculations.

Rate Complexity

Finite Dimension d
n O(dn)

Infinite dimension dn
n O(n2)

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 41 / 48



The complexity challenge, approximation of the kernel

Reducing complexity : sampling methods

However the complexity of such a method remains quadratic with respect
of the number of examples : iteration number n costs n kernel calculations.

Rate Complexity

Finite Dimension d
n O(dn)

Infinite dimension dn
n O(n2)

Aymeric Dieuleveut Stochastic optimization Hilbert spaces 41 / 48



The complexity challenge, approximation of the kernel

2 related methods

Approximate the kernel matrix

Approximate the kernel

Results from [Bach, 2012].
Such results have been extended by [Alaoui and Mahoney, 2014, Rudi et al., 2015]
There also exist results in the second situation [Rahimi and Recht, 2008,
Dai et al., 2014]
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The complexity challenge, approximation of the kernel

Sharp analysis

We only consider a fixed design setting. Then we have to approximate the
kernel matrix : instead of computing the whole matrix, we randomly pick
a number dn of columns.

Then we still get the same estimation errors.
Leading to :

Rate Complexity

Finite Dimension d
n O(dn)

Infinite dimension dn
n O(nd2

n )
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The complexity challenge, approximation of the kernel

Random feature selection

Many kernels may be represented, due to Bochner’s theorem as

K (x , y) =

∫
W
φ(w , x)φ(w , y)dµ(w).

(think of translation invariant kernels and Fourier transform).

We thus consider the low rank approximation :

K̃ (x , y) =
1

d

n∑
i=1

φ(x ,wi )φ(y ,wi ).

where wi ∼ µ.
We use this approximation of the kernel in SGD.
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The complexity challenge, approximation of the kernel

Directions

What I am working on for the moment :

Random feature selection

Tuning the sampling to improve accuracy of the approximation

Acceleration + stochasticity (with Nicolas Flammarion).
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The complexity challenge, approximation of the kernel

Some references I
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ArXiv e-prints.

Bach, F. and Moulines, E. (2013).

Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n).
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Bottou, L. and Bousquet, O. (2008).

The tradeoffs of large scale learning.
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Foundations of Computational Mathematics, 7(3) :331–368.
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The complexity challenge, approximation of the kernel
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The complexity challenge, approximation of the kernel

Thank you for your attention !
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