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Setting : random-design least-squares regression problem in a RKHS framework.

Risk : for g : X → R

ε(g) := Eρ
[
(g(X )− Y )2

]
.

We thus want to minimize prediction error.

Regression function : gρ(X ) = E[Y |X ] minimises ε on L2
ρX

.
We build a sequence (gk) of estimators in an RKHS H.

Why considering RKHS ?

hypothesis space for non parametric regression,

high dimensional problem (d >> n) analysis framework,

natural analysis when mapping data in feature space via a p.d. kernel.
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Regularity assumptions

Algorithm (Stochastic approximation)

Simple one pass stochastic gradient descent with constant step sizes and
averaging.

Difficulty of the problem

Let Σ = E[KxK t
x ] be the covariance operator. We assume that

tr(Σ1/α) <∞

We assume gρ ∈ Σr (L2
ρX

).

(α, r) encode the difficulty of the problem.
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Results

Theorem (Non parametric regression)

Under a suitable choice of the learning rate, we get the optimal rate of
convergence for non parametric regression.

Theorem (Adaptativity in Euclidean spaces)

If H is a d-dimensional Euclidean space :

E [ε (ḡn)− ε(gρ)] 6 min
16α,−1

2 6q6 1
2

(
16
σ2 tr(Σ1/α)(γn)1/α

n
+ 8
||T−qθH||2H

(nγ)2q+1

)
.

SGD is adaptative to the regularity of the objective function and to the decay
of the spectrum of the covariance matrix.
# explains behaviour for d >> n.
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