A Galois connection calculus for abstract interpretation

Patrick Cousot
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot
Radhia Cousot
rcousot@ens.fr di.ens.fr/~rcousot

Thanks

We warmly thank

- the ACM SIGPLAN Awards Committee for awarding us the 2013 Programming Languages Achievement Award, and
- the whole programming language community for its warmhearted support for nearly 4 decades.

Part I

Industrial applications

- The theory aims at being applicable to real-life software, hardware, and computer systems (must scale up: precise analysis is very easy in the small and extremely difficult in the large)

Astrée

- Commercially available:www.absint.com/astree/

- Effectively used in production to qualify truly large and complex software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static analyzer for large safety-critical software. PLDI 2003: 196-207

Comments on screenshot (courtesy Francesco Logozzo)

- A screenshot from Clousot/cccheck on the classic binary search.
- The screenshot shows from left to right and top to bottom
I. C\# code + CodeContracts with a buggy BinarySearch

2. cccheck integration in VS (right pane with all the options integrated in the VS project system)
3. cccheck messages in the VS error list

- The features of cccheck that it shows are:
I. basic abstract interpretation:
a. the loop invariant to prove the array access correct and that the arithmetic operation may overflow is inferred fully automatically
b. different from deductive methods as e.g. ESC/Java or Boogie where the loop invariant must be provided by the end-user

2. inference of necessary preconditions:
a. Clousot finds that array may be null (message 3)
b. Clousot suggests and propagates a necessary precondition invariant (message I)
3. array analysis (+ disjunctive reasoning):
a. to prove the postcondition should infer property of the content of the array
b. please note that the postcondition is true even if there is no precondition requiring the array to be sorted.
4. verified code repairs:
a. from the inferred loop invariant does not follow that index computation does not overflow
b. suggest a code fix for it (message 2)
\qquad 7 © P. \& R.Cousot

Code Contract Static Checker (cccheck)

- Available within MS Visual Studio

Manuel Fähndrich, Francesco Logozzo: Static Contract Checking with Abstract Interpretation. FoVeOOS 2010: 10-30 -POPL 2014, SIGPLANA Achievement Award 2013,A Galois Connection Calaculus for Abstract Interpreation 6

Part II

A short introduction to abstract interpretation

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. PopL 1979: 269-282
POPL 2014, SIGPLAN Achievement Award 2013, A Galois Connection Calculus for Abstract Interpreation

Properties and their Abstractions

Concrete properties

- A concrete property is represented by the set of elements which have that property:
- universe (set of elements) \mathscr{D} (e.g. a semantic domain)
- properties of these elements: $P \in 8(D)$
- x has property P is $x \in P$
- $\langle\wp(\mathscr{D}), \subseteq, \cup, \cap, \ldots\rangle$ is a complete lattice for inclusion \subseteq (i.e. logical implication)

Abstract properties

- Abstract properties: $\bar{P} \in \mathscr{A}$
- Abstract domain \mathscr{A} : encodes a subset of the concrete properties (e.g. a program logic, type terms, linear algebra, etc)
- Poset: $\langle\mathscr{A}, \sqsubseteq, \sqcup, \sqcap, \ldots\rangle$
- Partial order: \sqsubseteq is abstract implication

Concretization

- Concretization $\gamma \in \mathscr{A} \longrightarrow \wp(\mathscr{D})$
- $\gamma(\bar{P})$ is the semantics (concrete meaning) of \bar{P}
- γ is increasing (so \sqsubseteq abstracts \subseteq)

Best abstraction

- A concrete property $P \in \delta(\mathscr{D})$ has a best abstraction $\bar{P} \in \mathscr{A}$ iff
- it is sound (over-approximation):

$$
P \subseteq \gamma(\bar{P})
$$

- and more precise than any sound abstraction:

$$
P \subseteq \gamma(\overline{\bar{P}}) \Longleftrightarrow \bar{P} \sqsubseteq \overline{\bar{P}} \models \gamma(\bar{P}) \subseteq \gamma(\overline{\bar{P}})
$$

- The best abstraction is unique (by antisymmetry)
- Under-approximation is order-dual
\qquad

Simple example

- Needness/strictness analysis (80 's)
non-termination

- Similar abstraction for scalable harware symbolic trajectory evaluation STE (90)

Galois connection

- Any $P \in \wp(\mathscr{D})$ has a (unique) best abstraction $\alpha(P)$ in \mathscr{A} if and only if

$$
\begin{aligned}
\forall P \in \mathscr{O}(D): \forall Q \in \mathscr{A}: \alpha(P) \subseteq Q & \Longleftrightarrow P \subseteq \gamma(Q) \\
& \Rightarrow: \text { over-approximation } \\
& \Leftarrow \text { : best abstraction }
\end{aligned}
$$

written

$$
\langle\varnothing(\mathscr{D}), \subseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}\langle\mathscr{A}, \sqsubseteq\rangle
$$

Equivalent mathematical structures

Moore family

Downset family

Congruence
Soundness relation

$\{0,1\}$
Topology

OPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpretation

Abstraction of the Semantics of Programming Languages

\qquad

Best abstract semantics

- If $\langle\wp(\mathscr{D}), \subseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\langle\mathscr{A}, \sqsubseteq\rangle$ then the best abstract semantics is the abstraction of the collecting semantics $\overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket \triangleq \alpha(\{\mathrm{S} \llbracket \mathrm{P} \rrbracket\})$
- Proof:
- It is sound: $\overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket \triangleq \alpha(\{\mathrm{S} \llbracket \mathrm{P} \|\}) \sqsubseteq \overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket \Longrightarrow\{\mathrm{S} \llbracket \mathrm{P} \|\} \subseteq$ $\gamma(\overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket) \Longrightarrow \mathrm{S} \llbracket \mathrm{P} \rrbracket \in \gamma(\overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket)$
- It is the most precise: $S \llbracket \mathrm{P} \| \in \gamma(\overline{\bar{S}}\|\mathrm{P}\|) \Longrightarrow\{\mathrm{S}\|\mathrm{P}\|\} \subseteq$ $\gamma(\overline{\bar{S}} \llbracket \mathbb{P} \rrbracket) \Longrightarrow \overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket \triangleq \alpha(\{\mathrm{S} \llbracket \mathrm{P} \rrbracket\}) \sqsubseteq \overline{\overline{\mathrm{S}}} \llbracket \mathrm{P} \rrbracket$

Sound semantics abstraction

- program $\quad P \in \mathbb{L} \quad$ programming language
- standard semantics $S\|P\| \in \mathscr{D} \quad$ semantic domain
- collecting semantics $\{S\|P\|\} \in \wp(\mathscr{D})$ semantic property
- abstract semantics $\overline{\mathrm{S}} \llbracket \mathrm{P} \rrbracket \in \mathscr{A} \quad$ abstract domain
- concretization $\quad \gamma \in \mathscr{A} \longrightarrow \wp(\mathscr{D})$
- soundness
$\{S\|P\|\} \subseteq \gamma(\bar{S} \llbracket P \|)$
i.e. $\quad S \llbracket P \rrbracket \in \gamma(\bar{S} \llbracket P \|), \quad P$ has abstract property $\bar{S} \| P \rrbracket$

OPL 2014 , SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpreation
18

Calculational design of the abstract semantics

- The (standard hence collecting) semantics are defined by composition of mathematical structures (such as set unions, products, functions, fixpoints, etc)
- If you know the best abstraction of properties, you also know best abstractions of these mathematical structures
- So, by composition, you also know the best abstraction of the collecting semantics m. calculational design of the abstract semantics
- Orthogonally, there are many styles of
- semantics (traces, relations, transformers,...)
- induction (transitional, structural, segmentation)
- presentations (fixpoints, equations, constraints, rules [CAV 1995])

Example: functional connector

- If $\mathrm{g}=\langle\mathscr{C}, \subseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}\langle\mathscr{A}, \sqsubseteq\rangle$ then

$$
\mathrm{g} \models \mathrm{~g}=\langle\mathscr{C} \hookrightarrow \mathscr{C}, \subseteq\rangle \xlongequal[\lambda \mathrm{F} \cdot \alpha \circ \mathrm{~F} \circ \gamma]{\stackrel{\lambda \overline{\mathrm{F}} \cdot \gamma \circ \overline{\mathrm{~F}} \circ \alpha}{\leftrightarrows}}\langle\mathscr{A} \leftrightharpoons \mathscr{A}, \sqsubseteq\rangle
$$

(\Longleftrightarrow is a called a Galois connector)

- Order duality: join (U) or meet (n)
- Inversion duality: forward (\rightarrow) or backward $\left(\leftarrow=(\rightarrow)^{-1}\right)$
- Fixpoint duality: least (\downarrow) or greatest (\uparrow)

Fixpoint abstraction

- Best abstraction (completeness case)
if $\alpha \circ \mathrm{F}=\overline{\mathrm{F}} \circ \alpha$ then $\overline{\mathrm{F}}=\alpha \circ \mathrm{F} \circ \gamma$ and $\alpha($ lfp F$)=\operatorname{lfp} \overline{\mathrm{F}}$
e.g. semantics, proof methods, static analysis of finite state systems
- Best approximation (incompleteness case)
if $\overline{\mathrm{F}}=\alpha \circ \mathrm{F} \circ \gamma$ but $\alpha \circ \mathrm{F} \sqsubseteq \overline{\mathrm{F}} \circ \alpha$ then $\alpha(\mathrm{lfp} \mathrm{F}) \sqsubseteq \operatorname{lfp} \overline{\mathrm{F}}$
e.g. static analysis of infinite state systems
- idem for equations, constraints, rule-based deductive systems, etc

Convergence acceleration

Infinite iteration
Accelerated iteration with widening
(e.g. with a widening based on the derivative as in Newton-Raphson method)

POPL 2014 , SIGPLAN AChievement Award 2013,A Galois Connection Calculus for Abstract Interpreation
26

Examples of widening/narrowing

- Abstract induction for intervals:
- a widening $[1,2]$
$(x \bar{v} y)=\underline{\text { cas }} x \in V_{a}, y \in V_{a}$ dans

```
-\square,? = y ;
```



```
    [\mp@subsup{n}{1}{},\mp@subsup{m}{1}{\prime}1,,[\mp@subsup{n}{2}{},\mp@subsup{m}{2}{}]}[\mathrm{ sin n
fincas ;
```


- a narrowing [2]

$$
\begin{aligned}
& {\left[a_{1}, b_{1}\right] \bar{\Delta}\left[a_{2}, b_{2}\right]=} \\
& \quad\left[\underline{\text { if } a_{1}}=-\infty \text { then } a_{2} \text { else } \operatorname{MIN}\left(a_{1}, a_{2}\right),\right. \\
& \left.\quad \text { if } b_{1}=+\infty \text { then } b_{2} \text { else } \operatorname{MAX}\left(b_{1}, b_{2}\right)\right]
\end{aligned}
$$

11. Fatrick Cousot, Radilia Cousol. 12] Patrick Couso, Radhia Couso: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252 POPL 2014, SIGPLAN AChievement Award 2013,A Galois Connection Calculus for Abstract Interpreation 28

On widening/narrowing/and their duals

- Because the abstract domain is non-Noetherian, any widening/narrowing/duals can be strictly improved infinitely many times (i.e. no best widening)
E.g. widening with thresholds ${ }^{[1]}$

$$
\begin{aligned}
& \forall x \in \bar{L}_{2}, \perp \nabla_{2}(j) x=x \nabla_{2}(j) \perp=x \\
& {\left[l_{1}, u_{1}\right] \nabla_{2}(j)\left[b_{2}, u_{2}\right]} \\
& =\left[i f 0 \leq l_{2}<l_{1} \text { then } 0 \text { elsif } l_{2}<l_{1} \text { then }-b-1 \text { else } l_{1} f,\right. \\
& \left.\quad \text { if } u_{1}<u_{2} \leq 0 \text { then } 0 \text { elsif } u_{1}<u_{2} \text { then } b \text { else } u_{1} f\right]
\end{aligned}
$$

- Any terminating widening is not increasing (in its I ${ }^{\text {st }}$ parameter)
- Any abstraction done with Galois connections can be done with widenings (i.e. a widening calculus)

[^0]
Part III

A Galois connection calculus for abstract interpretation

How to specify $\langle\wp(\mathscr{D}), \subseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}\langle\mathscr{A}, \sqsubseteq\rangle$?

Summary

- The specification of abstract semantics/proof methods/ transformers/verifiers/static analyzers reduces to the choice of:
- The standard semantics domain \mathscr{D}
- The concrete fixpoint transformers $\mathrm{F} \in \wp(\mathscr{D})-\zeta(\mathscr{D})$
- The abstraction $\langle\wp(\mathscr{D}), \subseteq\rangle \stackrel{\gamma}{\alpha}\langle\mathscr{A}, \sqsubseteq\rangle$
- The abstract induction ($\bar{\nabla}, \bar{\pi}, \underline{\nabla}, \underline{\Delta})$
- Maybe dualities and fixpoint combinations
- Calculational design of the verifier/analyzer by sound abstraction of the collecting semantics preferred to empirical design with a posteriory soundness checks, if any

Specifying posets

$$
\langle\varnothing(D), \subseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}\langle\mathscr{A}, \sqsubseteq\rangle
$$

Specifying the concrete/abstract domains

- Program variables: $x, \ldots \in \mathbb{X}$
- Program labels:

```
\ell,\ldots\in\mathbb{L}
```

- Elements:
- Sets:

$$
\begin{aligned}
& s \in \mathbb{S} \\
& s::=\mathbb{B}|\mathbb{Z}| \mathbb{X}|\mathbb{L}|\{e\}\left|[e, e]_{o}\right| \\
& \\
& \quad \mathbb{I}(s, o)\left|s^{\infty}\right| s \cup s|s \mapsto s| \\
& \\
& \\
& \quad s \times s|\wp(s)| \ldots
\end{aligned}
$$

- Partial orders:

$$
\begin{aligned}
& o \in \mathbb{O} \\
& o::=\underset{o^{-1}}{\Rightarrow}\left|\begin{array}{l}
|\Leftrightarrow| \leq|\subseteq| \\
o_{1} \times o_{2}|\dot{o}| \ddot{o} \mid \ldots
\end{array}\right|=\mid
\end{aligned}
$$

Example: semantic properties of a simple imperative language

- values: $\langle\mathcal{V}, \leq\rangle($ e.g. $\langle\mathbb{Z}, \leqslant\rangle$ or $\langle[$ minint, maxint $], \leqslant\rangle$
- environments: $\mathcal{M} \triangleq \mathbb{X} \mapsto \mathcal{V}$
- states: $\Sigma \triangleq \mathbb{L} \times \mathcal{M}$
- finite or infinite sequences of states: Σ^{∞}
- semantic domain $\mathscr{D}: \mathcal{S} \triangleq \wp\left(\Sigma^{\infty}\right)$
- semantic properties: $\wp(\mathcal{S})=\wp\left(\wp\left((\mathbb{L} \times(\mathbb{X} \mapsto \mathcal{V}))^{\infty}\right)\right)$
- concrete domain: $\left\langle\wp\left(\wp\left((\mathbb{L} \times(\mathbb{X} \mapsto \mathcal{V}))^{\infty}\right)\right), \subseteq\right\rangle$

Specifying the concrete/abstract domains (cont'd)

- Posets:

```
p\in\mathbb{P}
p::=\langles,o\rangle
```

- Trivial set-theoretic semantics (with errors)

Specifying abstractions

 (i.e. Galois connections)$$
\left\langle\varnothing \left((), \subseteq \subseteq \frac{\gamma}{\alpha}\langle\alpha, \bar{\alpha}\rangle\right.\right.
$$

Specifying the abstraction

- A collection of basic Galois connections
- Galois connectors: to built new Galois connections out of existing ones (e.g. \Longleftrightarrow)

POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpreation

Examples of basic GCs

- Join abstraction $\cup[C]$:

$$
\begin{aligned}
& \mathcal{S} \llbracket \cup[C] \rrbracket \triangleq\langle\wp(\wp(C)), \subseteq\rangle \stackrel{\gamma^{\beta^{-}}}{\alpha^{\wp}}\langle\wp(C), \subseteq\rangle \\
& \alpha^{\wp}(P) \triangleq \bigcup P, \quad \gamma^{\wp}(Q) \triangleq \wp(Q)
\end{aligned}
$$

Specifying the abstraction (cont'd)

- Basic Galois connections $g \in \mathbb{G}$:

identity	top	interval	right image	join
abstraction	abstraction	abstraction	abstraction	abstraction

$$
\begin{aligned}
& g::=\mathbb{1}[p]|\mathrm{T}[p, e]| \mathbb{I}[p, e, e]|\curvearrowright[s, s]| \cup[s] \mid \\
& \neg[s]|\infty[s]| \rightsquigarrow[s, s]|\mapsto[s, s]| \times[s, s] \mid \\
& \text { complement sequences relation to function cartesian } \\
& \text { to elements transformer abstraction abstraction }
\end{aligned}
$$

Examples of basic GCs (cont'd)

- Sequence abstraction $\infty[C]$:

$\mathcal{S} \llbracket \infty[C] \rrbracket \triangleq\left\langle\wp\left(C^{\infty}\right), \subseteq\right\rangle \stackrel{\gamma^{\infty}}{\alpha^{\infty}}\langle\wp(C), \subseteq\rangle$
$\alpha^{\infty}(P) \triangleq\left\{\sigma_{i} \mid \sigma \in P \wedge i \in \operatorname{dom}(\sigma)\right\}$
$\gamma^{\infty}(Q) \triangleq\left\{\sigma \in C^{\infty} \mid \forall i \in \operatorname{dom}(\sigma): \sigma_{i} \in Q\right\}$
POPL 2014, SIGPLAN AChievement Award 2013,A Galois Connection Calculus for Abstract Interpreation

Examples of basic GCs (cont'd)

- Right-image abstraction (isomorphism) $\curvearrowright[\llcorner, \mathscr{M}]$:

$\mathcal{S} \llbracket \curvearrowright[\mathbb{L}, \mathcal{M}] \rrbracket \triangleq\langle\wp(\mathbb{L} \times \mathcal{M}), \subseteq\rangle \underset{\alpha^{2}}{\stackrel{\gamma^{\curvearrowright}}{\longrightarrow}}\langle\mathbb{L} \mapsto \wp(\mathcal{M}), \dot{\subseteq}\rangle$
$\alpha^{\sim}(P) \triangleq \boldsymbol{\lambda} \ell \cdot\{m \mid\langle\ell, m\rangle \in P\}$
$\gamma^{\curvearrowright}(Q) \triangleq\{\langle\ell, m\rangle \mid m \in Q(\ell)\}$

Examples of basic GCs (cont'd)

- Interval abstraction $\square\left[\langle s, o\rangle, e_{1}, e_{2}\right]$

$\mathcal{S} \llbracket \llbracket\left[\langle s, o\rangle, e_{1}, e_{2}\right] \rrbracket \triangleq$
$\langle\wp(\mathcal{S} \llbracket s \rrbracket), \subseteq\rangle \underset{\alpha^{\Pi}}{\tau^{\rrbracket}}\left\langle\Im\left(\mathcal{S} \llbracket s \rrbracket \cup\left\{\mathcal{S} \llbracket e_{1} \rrbracket, \mathcal{S} \llbracket e_{2} \rrbracket\right\}, \mathcal{S} \llbracket o \rrbracket\right), \subseteq\right\rangle$
$\Im(S, \leqslant) \triangleq\left\{\left[v_{1}, v_{2}\right] \mid v_{1}, v_{2} \in S\right\} \quad$ set of intervals
$\left[v_{1}, v_{2}\right] \triangleq\left\{v \in S \mid v_{1} \leqslant v \wedge v \leqslant v_{2}\right\} \quad$ interval
$\alpha^{\mathbb{I}}(X) \triangleq\left[\min _{\mathcal{S} \llbracket o \rrbracket} X, \max _{\mathcal{S} \llbracket o \rrbracket} X\right]$
\qquad

Examples of basic GCs (cont'd)

- Cartesian abstraction $\times\left[\mathrm{s}_{1}, \mathrm{~s}_{2}\right]$:

$\begin{array}{\|ccc\|} \hline\langle\mathrm{a}, 1\rangle & \langle\mathrm{b}, \mathrm{x}\rangle & \langle\mathrm{a}, \ldots\rangle \\ \langle\mathrm{b}, \mathrm{y}\rangle & \langle\mathrm{a}, 2\rangle \\ & \langle\mathrm{b}, \ldots\rangle & \langle\mathrm{c}, \beta\rangle \\ \langle\mathrm{c}, \alpha\rangle & \langle\mathrm{c}, \ldots\rangle & \langle\ldots, \ldots\rangle \\ \hline \end{array}$	
$\begin{aligned} & \mathcal{S} \llbracket \times\left[s_{1}, s_{2}\right] \rrbracket \triangleq \\ & \left\langle\wp\left(\mathcal{S} \llbracket s_{1} \rrbracket \mapsto \mathcal{S} \llbracket s_{2} \rrbracket\right), \subseteq\right\rangle \end{aligned}$	$\left.\xrightarrow[\gamma_{x}^{\times}]{\stackrel{-1}{\longrightarrow} \llbracket s_{1} \rrbracket \mapsto} \mapsto\left(\mathcal{S} \llbracket s_{2} \rrbracket\right), \dot{\subseteq}\right\rangle$
$\begin{aligned} & \alpha^{\times}(X) \triangleq \boldsymbol{\lambda} i \in \mathcal{S} \llbracket s_{1} \rrbracket \cdot\{. \\ & \left.\mathcal{S} \llbracket s_{2} \rrbracket: f[i \leftarrow x] \in X\right\} \end{aligned}$	$\in \mathcal{S} \llbracket s_{2} \rrbracket \mid \exists f \in \mathcal{S} \llbracket s_{1} \rrbracket \mapsto$

Specifying the abstraction (cont'd)

- Galois connectors:

$$
g \in \mathbb{G}
$$

$$
g::=\ldots|\mathrm{R}[g]| s \rightarrow g|g \circ g| g \text { 水 } g|g \Longleftrightarrow g| \ldots
$$

pointwise composition pairwise functional
reduction extension connector connector connector

Examples of Galois connectors

- Reduction $\mathrm{R}[g]$ of Galois connection g :

$$
\begin{aligned}
& \mathcal{S} \llbracket \mathrm{R}[g] \rrbracket \triangleq\lfloor\mathcal{S} \llbracket g \rrbracket=\langle\mathcal{C}, \sqsubseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}\langle\mathcal{A}, \leqslant\rangle \stackrel{\mathrm{D}}{ }\langle\mathcal{C}, \sqsubseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}} \\
& \langle\{\alpha(P) \mid P \in \mathcal{C}\}, \leqslant\rangle \circ(\mathcal{S} \llbracket g \rrbracket=\omega \text { ? } \omega \circ \Omega \rrbracket)
\end{aligned}
$$

dynamic error
static error
POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpretation

Examples of Galois connectors (cont'd)

- Componentwise/pointwise connector $s \rightarrow g$:

$$
\mathcal{S} \llbracket s_{\gamma} \rightarrow g \rrbracket \triangleq\left\lfloor\mathcal{S} \llbracket s \rrbracket=X \notin\left\{\omega, \Omega_{\lambda_{\overline{\overline{0}}} \wedge_{\gamma_{0} \bar{\circ}} \llbracket g \rrbracket=\langle\mathcal{C}, \sqsubseteq}^{\wedge}\right.\right.
$$

ミ〉: error (

Examples of Galois connectors (cont'd)

- Composition connector $g_{1} ; g_{2}$:

$\mathcal{S} \llbracket g_{1} ; g_{2} \rrbracket \triangleq \llbracket \mathcal{S} \llbracket g_{1} \rrbracket=p_{1} \xlongequal[\alpha_{1}]{\gamma_{1}} p_{2} \wedge \mathcal{S} \llbracket g_{2} \rrbracket=p_{3} \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} p_{4}$? ($p_{2}=p_{3}$ ว $p_{1} \xlongequal[\alpha_{2} \circ \alpha_{1}]{\gamma_{1} \circ \gamma_{2}} p_{4} \circ \omega$) \circ error)
where error is static (Ω) when $\mathcal{S} \llbracket g_{1} \rrbracket$ or $\mathcal{S} \llbracket g_{2} \rrbracket$ returns a static error, else dynamic (ω)

Examples of abstractions

Reachability abstraction

- Reachability abstraction:

$$
\begin{gathered}
G^{*} \stackrel{\Delta}{\triangleq} \cup\left[\sum^{\infty}\right] \stackrel{\circ}{9} \infty[\Sigma] \stackrel{\circ}{9} \curvearrowright[\mathbb{I}, \mathcal{M}] \\
\begin{array}{c}
\text { properties } \\
\text { to trace properties } \\
\text { global invariant }
\end{array} \\
\text { go local invariant }
\end{gathered}
$$

- Applying abstract interpretation theory, you get by calculational design:
- A proof method (Floyd/Hoare)
- A fixpoint reachability-checking algorithm (Σ finite)

[^1]
Typing the Galois connection calculus

```
OPLL subject areas
Compilers correctness proofs Data types and
Structures Formal Definitions and Theory Functional constructs
Lambda calculus and related
systems Language Constructs and Features nemam
Operational semantics Optimization Program
analysis Semantics software/Program verification
Specifying and Verifying and
Reasoning about Programs
Type structure
```

\qquad

Interval abstraction

- Interval abstraction :

- Exactly the example of POPL'77, page 247
atrick Cousot, Rachia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of ixpoints. POPL 1977: 238-252

50 ○P. \& R.Cousot.
Types as abstract interpretations, POPL'97

- The Galois connection calculus is a syntax which semantics has domain

$$
\begin{aligned}
\mathfrak{G} \mathfrak{c} \triangleq\{\langle\mathcal{C}, \sqsubseteq\rangle \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}} & \langle\mathcal{A}, \preccurlyeq\rangle \mid \mathcal{C}, \mathcal{A} \text { are sets } \wedge \sqsubseteq \in \\
& \wp(\mathcal{C} \times \mathcal{C}) \wedge \preccurlyeq \in \wp(\mathcal{A} \times \mathcal{A})\} \cup\{\Omega, \omega\}
\end{aligned}
$$

- Design a type system to check statically that Galois connection expressions "cannot go wrong" (i.e. have the property $\mathfrak{E c c} \backslash\{\Omega\}$)
- Typing is an abstract interpretation

$$
\begin{aligned}
& \langle\wp(\mathfrak{G} \mathfrak{c}), \subseteq\rangle \underset{\alpha^{\mathfrak{T}}}{\stackrel{\gamma^{\mathfrak{T}}}{\leftrightarrows}}\langle\mathfrak{T} / \cong, \triangleq\rangle \\
& \mathrm{T} \triangleq \mathrm{~T}^{\prime} \triangleq \gamma^{\mathfrak{T}}(\mathrm{T}) \subseteq \gamma^{\mathfrak{T}}\left(\mathrm{T}^{\prime}\right)
\end{aligned}
$$

where

Types

－Element types： $\mathrm{E} \in \mathfrak{E}$ $\mathrm{E}::=\operatorname{var}|\mathrm{lab}|$ bool \mid int \mid err
－Set types：

$$
\begin{aligned}
& \mathrm{S} \in \mathfrak{G} \\
& \mathrm{~S}::=\mathrm{PE}|\mathrm{PS}| \text { seq } \mathrm{S}|\mathrm{~S} * \mathrm{~S}| \mathrm{S} * \mathrm{~S} \mid \text { err }
\end{aligned}
$$

－Partial order types：

$$
\begin{aligned}
& \mathrm{O} \in \mathfrak{O} \\
& \mathrm{O}::=\underset{\mathrm{O}}{\Rightarrow}|\Leftrightarrow| \leq|\subseteq|=\left|\mathrm{O}^{-1}\right| \mathrm{O} \star \mathrm{O} \mid \\
& \\
& \mathrm{O}|\ldots| \text { err }
\end{aligned}
$$

－Poset types：$\quad \mathrm{P} \in \mathfrak{P}$

$$
\mathrm{P}::=\mathrm{S} \circledast \mathrm{O} \mid \mathrm{err}
$$

－Galois connection types：

$$
\begin{aligned}
& \mathrm{T} \in \mathfrak{T} \\
& \mathrm{~T}::=\mathrm{P} \leftrightharpoons \mathrm{P} \mid \text { err }
\end{aligned}
$$

Type equivalence

－Definition：$\quad \mathrm{T}_{1} \triangleq \mathrm{~T}_{2} \triangleq \gamma^{\mathbb{I}}\left(\mathrm{T}_{1}\right) \subseteq \gamma^{\mathbb{I}}\left(\mathrm{T}_{2}\right)$
－Rules：$\quad T_{1} \cong T_{2} \triangleq T_{1} 太 T_{2} \wedge T_{2} 太 T_{1}$

```
-E&E'=>PE&PE
- S&S'=>PS&PS'
- S& S' }=>\mathrm{ seq S &seq S
- }\mp@subsup{S}{1}{}\boxtimes\mp@subsup{S}{1}{\prime}\wedge\mp@subsup{S}{2}{\prime}\sharp\mp@subsup{S}{2}{\prime}=>\mp@subsup{S}{1}{\prime*}\mp@subsup{S}{2}{\prime}太\mp@subsup{S}{1}{\prime}*\mp@subsup{S}{2}{\prime
- }\mp@subsup{S}{1}{}&\mp@subsup{S}{1}{\prime}\wedge\mp@subsup{S}{2}{\prime}\triangleleft\mp@subsup{S}{2}{\prime}=>\mp@subsup{S}{1}{\prime}*\mp@subsup{S}{2}{}&\mp@subsup{S}{1}{\prime}*\mp@subsup{S}{2}{\prime
-\Leftrightarrow&=>,=&s,=&\varsigma,=&@
- O&\mp@subsup{O}{}{\prime}=\mp@subsup{O}{}{-1}&\mp@subsup{O}{}{\prime}
- O
-0& \0' }=>0|\mp@subsup{0}{}{\prime
- S&\mp@subsup{S}{}{\prime}^O& O
- P
- S& S'^T& T' }=>\mathrm{ S**T& TS'**T
```

POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpreation

Semantics of types

－$\gamma^{\mathbb{E}}(\mathrm{bool}) \triangleq \mathbb{B}$
－$\gamma^{\mathscr{G}}(\boldsymbol{\operatorname { s e q }} \mathrm{S}) \triangleq\left\{X^{\infty} \mid X \in \gamma^{\mathfrak{G}}(\mathrm{S})\right\}$
－$\gamma^{\mathcal{D}}(\dot{\mathrm{O}}) \triangleq\left\{\dot{\leqslant} \mid \leqslant \in \gamma^{\mathcal{D}}(\mathrm{O})\right\}$ the semantics of a type is the set of elements with that type
（never ω / Ω ）
－$\gamma^{\mathfrak{F}}(\mathrm{S} \circledast \mathrm{O}) \triangleq \gamma^{\mathfrak{G}}(\mathrm{S}) \times \gamma^{\mathfrak{D}}(\mathrm{O})$
－$\gamma^{\mathfrak{F}}\left(\mathrm{P} \leftrightharpoons \mathrm{P}^{\prime}\right) \triangleq\left\{P \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}} P^{\prime} \mid P \in \gamma^{\mathfrak{F}}(\mathrm{P}) \wedge P^{\prime} \in \gamma^{\mathfrak{F}}\left(\mathrm{P}^{\prime}\right)\right\}$

> POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpreation

Soundness of types

－The calculational design of the type inference algorithm $\mathscr{T} \llbracket g \rrbracket$ is by approximation of the collecting semantics
－As usual in abstract interpretation ？，we know the type system will be sound before designing the inference rules
－Typable Galois connection expressions（ \neq err）cannot go wrong（be Ω ）

$$
\left.\llbracket \mathscr{T} \llbracket \rrbracket \neq \operatorname{err} \mathfrak{\mathcal { S }} \mathbb{S} \llbracket g \rrbracket \in \gamma^{\mathscr{T}}(\mathscr{T} \llbracket g \rrbracket) \cup\{\omega\}\right)
$$

－Typing rules are an equivalent rule－based presentation

[^2]POPL 2014，SIGPLAN Achievement Award 2013，A Galois Connection Calculus for Abstract Interpreation 56

Type inference algorithm

- $\delta \llbracket s_{1} \cup s_{2} \rrbracket \triangleq\left(\mathrm{err} \neq \delta \llbracket s_{1} \rrbracket \cong \delta \llbracket s_{2} \rrbracket \neq \mathrm{err}\right.$? $\delta \llbracket s_{1} \rrbracket$ 。 err $)$ same type (like alternatives in conditionals), correct expressions may be rejected
- ...
- $\mathscr{T} \llbracket g_{1} ; g_{2} \rrbracket \triangleq \llbracket \Im \llbracket g_{1} \rrbracket=\mathrm{P}_{1} \leftrightharpoons \mathrm{P}_{2} \wedge \mathscr{T} \llbracket g_{2} \rrbracket=\mathrm{P}_{3} \leftrightharpoons \mathrm{P}_{4} \wedge \mathrm{P}_{2} \cong$ P_{3} ? $\mathrm{P}_{1} \leftrightharpoons \mathrm{P}_{4}:$ err $)$
same type (does not exclude dynamic errors, same type \nRightarrow same set)
- ...

POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpreation
57

Type of interval analysis

- $\mathscr{T}\left[\cup\left[(\mathbb{L} \times(\mathbb{X} \mapsto \mathbb{Z}))^{\infty}\right] ; \infty[\mathbb{L} \times(\mathbb{X} \mapsto \mathbb{Z})] ; \curvearrowright[\mathbb{L}, \mathbb{X} \mapsto\right.$

$=\mathbf{P}(\mathbf{P}(\operatorname{seq}(\mathbf{P}$ lab $*(\mathbf{P}$ var $* \rightarrow \mathbf{P}$ int $))) \circledast \subseteq \leftrightharpoons(\mathbf{P}$ lab $* \rightarrow$ Pvar $* \rightarrow P$ int $\circledast \ddot{\subseteq}$)
(intervals / interval inclusion are abstracted by sets / set inclusion in the type system)

Typing rules

- true \vdash bool $\quad(x \vdash \mathrm{~T}$ is $\mathscr{T} \llbracket x \rrbracket=\mathrm{T})$
...
- $\mathbb{B} \vdash \mathrm{P}$ bool
$\frac{s \vdash \mathrm{~S}}{\mathrm{U}[s] \vdash \mathbf{P}(\mathbf{P S}) \circledast \subseteq \leftrightharpoons \mathrm{PS} \circledast \subseteq}$
$\frac{s \vdash \mathrm{~S}}{\infty[s] \vdash \mathbf{P}(\text { seq } \mathrm{S}) \circledast \subseteq \leftrightarrows \mathrm{P} \mathrm{S} \circledast \subseteq}$
$\frac{g_{1} \vdash \mathrm{P}_{1} \leftrightharpoons \mathrm{P}_{2}, \quad g_{2} \vdash \mathrm{P}_{3} \leftrightarrows \mathrm{P}_{4}, \quad \mathrm{P}_{2} \cong \mathrm{P}_{3}}{g_{1} \varsubsetneqq g_{2} \vdash \mathrm{P}_{1} \leftrightharpoons \mathrm{P}_{4}}$
$\bigcirc \frac{s_{\mathbb{L}} \vdash \mathrm{S}_{\mathbb{L}}, \quad s_{\mathcal{M}} \vdash \mathrm{S}_{\mathcal{M}}}{\curvearrowright\left[s_{\mathbb{L}}, s_{\mathcal{M}}\right] \vdash \mathrm{P}\left(\mathrm{S}_{\mathbb{L}} * \mathrm{~S}_{\mathcal{M}}\right) \circledast \subseteq \leftrightarrows \mathrm{S}_{\mathbb{L}} * \leftrightarrow \mathrm{P} \mathrm{S}_{\mathcal{M}} \circledast \subseteq}$
...

Typing the type system of the Galois connection calculus

Types of types

- Sorts of types: $\mathcal{T} \triangleq\{\mathfrak{E}, \mathfrak{S}, \mathfrak{O}, \mathfrak{P}, \mathfrak{T}\}$

- Domain of all types: $\mathfrak{T}=\bigcup \mathcal{T} \backslash\{$ err $\}$
- Properties of types: $\mathfrak{P}=8(\mathfrak{T})$
- Types of types: $\overline{\mathfrak{I}}::=\bar{\varnothing}|\overline{\mathfrak{E}}| \overline{\mathfrak{S}}|\overline{\mathfrak{O}}| \overline{\mathfrak{P}}|\overline{\mathfrak{T}}| \overline{\mathrm{err}}$
- Abstraction of properties of types to types of types
$\alpha^{\overline{\mathfrak{T}}} \in \mathfrak{P} \longrightarrow \overline{\mathfrak{T}}$

- Typable types cannot go wrong $\overline{\text { err }}$ (e.g. an element cannot be typed as a set)

Abstract interpretation

- Any human or automated reasoning (on programs) involves abstractions
- Abstract interpretation aims at formalizing abstractions in the abstract
- Hopefully useful to grasp the literature (vast, eclectic, and exploding collection of recipes mostly lacking unifying principles)
- Provides a methodology to design sound abstract semantics/transformers/proof methods/verifiers/ analyzers/etc

Conclusion

Perspectives

- A Galois connection calculus for specifying abstractions
- can be implemented in programming languages or better in mathematical higher-level languages (to include formal soundness proofs)
- can be extended to specify abstract domains (with transformers, widenings, etc.)
- The calculus should be useful for
- the certification of abstract semantics/transformers/ proof methods/verifiers/static analysers
- advance towards unrestricted automatic static analyser generation

Perceval le Gallois' Wondrous Grail Quest (9)

- To design a programming language:
- specify its syntax and semantics
- specify abstractions to automatically get:
- abstract semantics and proof methods
- interpreters and compilers (for known machines with well-specified semantics)
- types systems
- verifiers
- static analyzers
(*) Perceval, le Conte du Graal, novel by Chrétien de Troyes, I $2^{\text {th }}$ century \& Perceval le Gallois, movie by Eric Rohmer (1978)

References

- Patrick Cousot, Radhia Cousot:A Galois connection calculus for abstract interpretation. POPL 2014:3-4
- Patrick Cousot, Radhia Cousot:An abstract interpretation framework for termination. POPL 2012: 245-258
- Patrick Cousot, Radhia Cousot, Francesco Logozzo:A parametric segmentation functor for fully automatic and scalable array content analysis. POPL 2011: 105-118
- Patrick Cousot, Radhia Cousot:An abstract interpretation-based framework for software watermarking. POPL 2004: 173-185
- Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:A static analyzer for large safety-critical software. PLDI 2003: 196-207
- Patrick Cousot, Radhia Cousot: Systematic design of program transformation frameworks by abstract interpretation. POPL 2002: 178-190
- Patrick Cousot, Radhia Cousot:Temporal Abstract Interpretation. POPL 2000: 12-25
- Patrick Cousot:Types as Abstract Interpretations. POPL 1997: 316-33I
- Patrick Cousot, Radhia Cousot: Inductive Definitions, Semantics and Abstract Interpretation. POPL 1992: 83-94
- Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
- Patrick Cousot, Nicolas Halbwachs:Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96
- Patrick Cousot, Radhia Cousot:Abstract Interpretation:A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

The End, Thank You

[^0]: [1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones \& S. Muchnich (eds), Prentice Hall, 1981. POPL 2014, SIGPLAN Achievement Award 2013,A Galois Comnection Calculus for Abstract Interpretation 29

[^1]: Fixpoints. POPL 1977: 238-252
 Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
 POPL 2014, SIGPLAN Achievement Award 2013,A Galois Connection Calculus for Abstract Interpretation
 49
 © P. \& R.Cousot

[^2]: （＊）Patrick Cousot：Types as Abstract Interpretations．POPL 1997：316－331

