
On Various
Abstract Understandings

of
Abstract Interpretation

 TASE 2015
The 9th International Symposium on Theoretical Aspects of Software Engineering

September 12—14, 2015 — Nanjing, China

cims . nyu . edu /~pcousot

Patrick Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot 1 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Motivation

2

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Formal methods

3

Reasonings on programs are

•Reasonings on properties of their semantics (i.e.
execution behaviors)

•Always involve some form of abstraction

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract interpretation
A theory establishing a correspondance between

•Concrete semantic properties
 ↑ what you want to prove on the semantics

•Abstract properties
 ↑ how to prove it in the abstract

Objective: formalize

• formal methods

• algorithms for reasoning on programs

4

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Fundamental motivations

5 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Scientific research
in Mathematics/Physics:

trend towards unification and synthesis through
universal principles

in Computer science:

trend towards dispersion and parcelization through a
collection of local techniques for specific applications
An exponential process, will stop!

6

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: reasoning on computational structures

7

Steganography

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: reasoning on computational structures

8

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: reasoning on computational structures

9

Abstract interpretation

Axiomatic
semantics

Denotational
semantics

Operational
semantics

Dataflow
analysis

Invariance
proof

Model
checking

Symbolic
execution

Program
transformation

Partial
evaluation

Type theory

Type
inferenceDependence

analysis

Systems biology
analysis

Obfuscation

Malware
detection

Steganography
SMT solvers

Confidentiality
analysis

Trace
semantics

Integrity
analysis

Termination
proof

Probabilistic
verification

Statistical
model-checking

Quantum entanglement
detection

Database
query

Security protocole
verification

Theories
combination

Abstract
model

checking

Program
synthesis Effect

systems

Shape
analysis

Separation
logic

Code
contracts

Code
refactoring

WCET

Abstraction
refinement

CEGAR

Parsing

Grammar
analysis

Bisimulation

Interpolants

Tautology testers
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Practical motivations

10

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

All computer scientists have experienced bugs

11

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J✁✁✁— 3 — []¨—✄✄✄I ľ P. Cousot

Checking the presence of bugs by debugging is great

Proving their absence by static analysis is even better!

Undecidability and complexity is the challenge for
automation

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
 (overflow) (float rounding) (unit error) (buffer overrun)

unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */

/* Check if padding is too long, payload and padding
* must not exceed 2^14 - 3 = 16381 bytes in total.
*/

OPENSSL_assert(payload + padding <= 16381);

/* Create HeartBeat message, we just use a sequence number
 * as payload to distuingish different messages and add
 * some random stuff.
 * - Message Type, 1 byte
 * - Payload Length, 2 bytes (unsigned int)
 * - Payload, the sequence number (2 bytes uint)
 * - Payload, random bytes (16 bytes uint)
 * - Padding
 */

buf = OPENSSL_malloc(1 + 2 + payload + padding);
p = buf;
/* Message Type */
*p++ = TLS1_HB_REQUEST;
/* Payload length (18 bytes here) */
s2n(payload, p);
/* Sequence number */
s2n(s->tlsext_hb_seq, p);
/* 16 random bytes */
RAND_pseudo_bytes(p, 16);
p += 16;
/* Random padding */
RAND_pseudo_bytes(p, padding);

ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot 12

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Informal examples of
abstraction

13 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstractions of Dora Maar by Picasso

14

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Pixelation

15

/www.petapixel.com/2011/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/
Image credit: Photograph by Jay Maisel

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

An old idea...

16

(the concrete is unknown)

20 000 years old picture in a spanish cave:

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstractions of a man / crowd

17

Height

Fingerprint

Eye color

DNA

...

...

,

Individual heights

min, max

Phone metadata
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Numerical abstractions in Astrée

18

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

An informal introduction to
abstract interpretation

19

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation. In Logics and Languages for Reliability and Security, J. Esparza, O. Grumberg, &
M. Broy (Eds), NATO Science Series III: Computer and Systems Sciences, © IOS Press, 2010, Pages 1—29.

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

1) Define the programming language

20

Formalize the concrete execution of programs (e.g. transition system)

x

y

Trajectory
in state space

Space/time trajectory

(x,y)

t

x
t=0

t=1

t=2

t=…

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F (written x = lfp6F)
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp6F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
2 ⌃ I ✓ ⌃

post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

P
F 2 P! P
x 2 P is a fixpoint of F
() F(x) = x
hP, 6i
x 2 P is the least fixpoint of F (written x = lfp6F)
() F(x) = x ^ 8y 2 P : (F(y) = y)) (x 6 y)

lfp6F =
V{x | F(x) 6 x}

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

F0 , ?
F�+1 , F(F�), � + 1 successor ordinal

F� , F�<� F�, � limit ordinal
Ultimately stationary at rank ✏
Converges to F✏ = lfpvF

✏ = ! F

h⌃, I, ⌧i
2 ⌃ I ✓ ⌃

post[⌧?]I = lfp✓ �X .I [post[⌧]X

post[⌧]X , {s0 | 9s 2 X : ⌧(s, s0)}

B ✓ ⌃ bad states
post[⌧?]I ✓ ¬B no bad state is reachable
9I 2 }(⌃) : I ✓ I ^ post[⌧]I ✓ I ^ I ✓ ¬B Turing/Floyd

hP, 6i ����! ����↵1

�1 hA1, v1i

258

y

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

II) Define the program properties of interest

21

Formalize what you are interested to know about program behaviors

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

III) Define which specification must be checked

22

Formalize what you are interested to prove about program behaviors

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

IV) Choose the appropriate abstraction

23

Abstract away all information on program behaviors irrelevant to the proof

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

V) Mechanically verify in the abstract

24

The proof is fully automatic

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

Soundness of the abstract verification

25

Never forget any possible case so the abstract proof is correct in the concrete

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Unsound validation: testing

26

Try a few cases

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Unsound validation: bounded model-checking

27

Simulate the beginning of all executions

Bounded model-checking

Forbidden zone

Possible
trajectories

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

Unsound validation: static analysis

28

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

Incompleteness

29

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this overapproximation!

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

True error

30

The abstract alarm may correspond to a concrete error

]TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

False alarm

31

The abstract alarm may correspond to no concrete error (false negative)

TASE 2015, September 14th, 2015, Nanjing, China © P Cousot

What to do about false alarms?

32

• Consider special cases: finite (small) models (model-
checking), decidable cases (SMT solvers), human
interaction (theorem provers, proof verifiers), …

• Automatic refinement: inefficient and may not
terminate (Gödel, see next slide)

• Domain-specific abstraction:

• Adapt the abstraction to the programming paradigms
typically used in given domain-specific applications

• e.g. synchronous control/command: no recursion,
simple memory allocation, maximum execution
time, etc.

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.

• Example:filter invariant abstraction:

In general refinement does not terminate

33

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =

ȷ
¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J✁✁ ✁ – 369 –? []¨ –✄ ✄✄I ľ P. Cousot

2nd order filter:

Counter-example
guided refinement

will indefinitely
add missing points
according to the
execution trace:

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =

ȷ
¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J✁✁ ✁ – 369 –? []¨ –✄ ✄✄I ľ P. Cousot

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

– Computes Xn =

ȷ
¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J✁✁ ✁ – 369 –? []¨ –✄ ✄✄I ľ P. Cousot

Unstable polyhedral
abstraction:

Stable ellipsoidal
abstraction:

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract Interpretation

Soundness

Induction

34

Abstract interpretation is all about:

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

A very short more formal
introduction

to abstract interpretation

35

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Properties and their
Abstractions

36

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

A concrete property is represented by the set of
elements which have that property:

• universe (set of elements) " (e.g. a semantic domain)

• properties of these elements: # ∈ ℘(")

• “& has property P” is & ∈ P

⟨℘("), ⊆, ∪, ∩, ...⟩ is a complete lattice for inclusion ⊆
(i.e. logical implication)

Concrete properties

37 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example of Property

• Odd natural numbers 
O = { 1, 3, 5, 7, … }

• x is odd  

x ∈ O

• x is 2  

x ∈ {2}

• the strongest property of 2 
{2}

• 2 and 4 are even 
{2,4} ⊆ {0,2,4,6,8,…}

38

• " = �

•O ∈ ℘(")

• “x has property O”

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract properties

Abstract properties: Q ∈ ,

Abstract domain , : encodes a subset of the concrete
properties (e.g. a program logic, type terms, linear
algebra, etc)

Poset: ⟨,, ⊑ , ⊔ , ⊓ , ...⟩

Partial order: ⊑ is abstract implication

39 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example of Abstract Properties

40

O E

⊥ (= ∅)

⊤ (= �)

⊑

⊑

⊑

⊑

, = {⊥,O,E,⊤}

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Concretization γ ∈ , ⟶ ℘(")

γ(Q) is the semantics (concrete meaning) of Q

γ is increasing (so ⊑ abstracts ⊆)

The concrete properties in γ(,) are exactly

representable in the abstract ,, all others in ℘(")

\γ(,) can only be approximated in ,

Concretization

41 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example of Concretization

42

O E

⊥

⊤

⊑

⊑

⊑

⊑

∅

{1,3,5,…}{0,2,4,…}

{0,1,2,3,4,5,…} = �

4

4

44

⊆

⊆

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

A concrete property # ∈ ℘(") has a best abstraction

Q ∈ , iff

•it is sound (over-approximation):
 # ⊆ γ(Q)

•and more precise than any sound abstraction:
 # ⊆ γ(Q′) ⟾ Q ⊑ Q′ ⟾ γ(Q) ⊆ γ(Q′)

The best abstraction is unique (by antisymmetry)

Under-approximation is order-dual

Best abstraction

43 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Any # ∈ ℘(") has a (unique) best abstraction α(#) in ,
if and only if  
 
 ∀# ∈ ℘("): ∀9 ∈ ,: α(#) ⊑ 9 ⟺ # ⊆ γ(9)  

written
 ⟨℘("), ⊆⟩ ⟨,, ⊑⟩

Galois connection

44

⇒: over-approximation
⇐ : best abstraction

 α
γ

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Examples
Needness/strictness analysis (80’s)

Similar abstraction (γ(⊤) ≜ {true, false}) for scalable
hardware symbolic trajectory evaluation STE (90)

45

{0,1}

∅

{0} {1}

⊤

⊥α

γ

unreachable

terminationnon-termination

unknown

Alan Mycroft: The Theory and Practice of Transforming Call-by-need into Call-by-value.
Symposium on Programming 1980: 269-281
Carl-Johan H. Seger, Randal E. Bryant: Formal Verification by Symbolic Evaluation of Partially-
Ordered Trajectories. Formal Methods in System Design 6(2): 147-189 (1995)

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Equivalent mathematical structures

46

© PATRICK COUSOT AND RADHIA COUSOT

where v @
}, {0, 1}}

. A schematic representation of this abstraction would be(true). The best abstract over-approximation of ; and
while the best abstract over-approximation of {1} and

while >
where v

could have been encoded isomorphically as h{{0},
. A schematic representation of this abstraction would be

Let ,
Boolean value domain as ; (false),

is ↵(

. This is a Galois connection

The concretization is �(0)

{0}

@
0, 1}}

This abstraction can be encoded in many equivalent ways that we study in this chapter 14 and
that can be illustrated graphically for this very simple example as follows.

where v @
}, {0, 1}}

. A schematic representation of this abstraction would be(true). The best abstract over-approximation of ; and
while the best abstract over-approximation of {1} and

while >
where v

could have been encoded isomorphically as h{{0},
. A schematic representation of this abstraction would be

Let ,
Boolean value domain as ; (false),

is ↵(

. This is a Galois connection

{0}

@
0, 1}}
where v @

}, {0, 1}}
. A schematic representation of this abstraction would be(true). The best abstract over-approximation of ; and

while the best abstract over-approximation of {1} and
while >

where v
could have been encoded isomorphically as h{{0},

. A schematic representation of this abstraction would be
Let ,

Boolean value domain as ; (false),

The concretization is �(0)

{0}

@
0, 1}}

;
} {0} {

0} {1} {

} {0, 1} {

Join morphism Meet morphism Upper closure

;
} {0} {

0} {1} {
} {0, 1} {

;
} {0} {

0} {1} {
} {0, 1} {

} {
;

} {0} {
0} {1} {

} {0, 1} {

Moore family Topology Downset family

;

} {0} {
0} {1} {

} {0, 1} {

} {0} { 0} {1} {

} {0, 1} { 0 1R(x,y)
0
1

x

y

!

A ={1}

Congruence Soundness relation Relation postimage

This abstraction was used by Alan Mycroft in strictness analysis of functions (?) in order to
replace calls by need by calls by value whenever possible in pure lazy functional languages. The
static analysis of a function consists in determining the divergence properties of the result as
a function of the divergence properties of the arguments. In the concrete, ; is interpreted
as unreachable, {0} is interpreted as “does not terminate”, {1} as “does terminate”, and
{0, 1} as unknown, that is “nothing is known about termination”. In the abstract, “�” means
“divergence” and “1” is unknown. 2

���

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

In absence of best abstraction?

47

Best abstraction of a disk by a rectangular parallelogram
(intervals)

No best abstraction of a disk by a polyhedron (Euclid)

use only abstraction or concretization or widening (*)

Best Abstraction (Cont’d)

– If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

– However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
definitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J✁✁ ✁ – 172 –? []¨ –✄ ✄✄I ľ P. Cousot

Best Abstraction (Cont’d)

– If we want to over-approximate a
disk in two dimensions by a poly-
hedron there is no best (smallest)
one, as shown by Euclid.

– However if we want to over-
approximate a disk by a rectangu-
lar parallelepiped which sides are
parallel to the axes, then there is
definitely a best (smallest) one.

EMSOFT 2007, ESWEEK, Salzburg, Austria, Sep. 30, 2007 J✁✁ ✁ – 172 –? []¨ –✄ ✄✄I ľ P. Cousot

(*) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

program P ∈ ? programming language

standard semantics S⟦P⟧ ∈ " semantic domain

collecting semantics {S⟦P⟧} ∈ ℘(") semantic property

abstract semantics S⟦P⟧ ∈ , abstract domain

concretization γ ∈ , ⟶ ℘(")

soundness {S⟦P⟧} ⊆ γ(S⟦P⟧)
i.e. S⟦P⟧ ∈ γ(S⟦P⟧) , P has abstract property S⟦P⟧

Sound semantics abstraction

48

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Best abstract semantics

If ⟨℘("), ⊆⟩ ⟨,, ⊑⟩ then the best abstract
semantics is the abstraction of the collecting semantics
 S⟦P⟧ ≜ α({S⟦P⟧})

Proof:

•It is sound: S⟦P⟧ ≜ α({S⟦P⟧}) ⊑ S⟦P⟧ ⟹ {S⟦P⟧} ⊆
γ(S⟦P⟧) ⟹ S⟦P⟧∈ γ(S⟦P⟧)

•It is the most precise: S⟦P⟧∈ γ(S⟦P⟧) ⟹ {S⟦P⟧} ⊆ γ(S⟦P⟧)

⟹ S⟦P⟧ ≜ α({S⟦P⟧}) ⊑ S⟦P⟧ ◼

49

α
γ

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Calculational design of the abstract semantics

The (standard hence collecting) semantics are defined by
composition of mathematical structures (such as set unions,
products, functions, fixpoints, etc)

If you know best abstractions of properties, you also know
best abstractions of these mathematical structures

So, by composition, you also know the best abstraction of
the collecting semantics ⟿ calculational design of the
abstract semantics

Orthogonally, there are many styles of
• semantics (traces, relations, transformers,…)
• induction (transitional, structural, segmentation [POPL 2012])
• presentations (fixpoints, equations, constraints, rules [CAV 1995])

50

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: functional connector

If g = ⟨E, ⊆⟩ ⟶ ⟨,, ⊑⟩ then

 g ⟾ g = ⟨E ⟶ E, ⊆⟩ ⟶ ⟨, ⟶ ,, ⊑⟩

(⟾ is a called a Galois connector)

51

⟵
α
γ

↗ ↗⟵
HF.α ∘ F ∘ γ
HF.γ ∘ F ∘ α

F

F E

γ α

,,

E

g gγ α

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Simple example

52

F(x2) = {x+2 | x ∈ x2}

⊤

EO

⊥ J ° F ° 4(O)
= J({x+2 | x ∈ 4(O)}
= J({x+2 | x ∈ {1,3,5,…}})
= J({3,5,7,…})
= O

O E⊥

⊥

⊥

⊥

⊥

⊥ ⊥ ⊥ ⊥

O
E
⊤

⊤

⊤

⊤

⊤⊤⊤

EO
O

F(x2)
_

J ° F ° 4(⊥)
= J({x+2 | x ∈ ∅}
= J(∅)
= ⊥

E

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Fixpoints of increasing functions (Tarski)

53

x

f(x)

+∞-∞
Another fixpoint at +∞ ↑

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Best abstraction (completeness case)
if α ∘ F = F ∘ α then F = α ∘ F ∘ γ and α(lfp F) = lfp F
e.g. semantics, proof methods, static analysis of finite state
systems

Best approximation (incompleteness case)
if F = α ∘ F ∘ γ but α ∘ F ⊑ F ∘ α then α(lfp F) ⊑ lfp F
e.g. static analysis of infinite state systems

idem for equations, constraints, rule-based deductive
systems, etc

Fixpoint abstraction

54

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Simple Example

55

0: x := 1;
1: while x < 10 do
2: x := x + 2;
3: od;
4:

x0 = {…-2,-1,0,1,2,…}
x1 = {1}
x2 = (x1 ∪ x3) ∩ {…,-8-9}
x3 = {x+2 | x ∈ x2}
x4 = (x1 ∪ x3) ∩ {10,11,…}

x0 = ⊤
x1 = O
x2 = (x1 ⊔ x3) ⊓ ⊤
x3 = x2 ⊕ E
x4 = (x1 ⊔ x3) ⊓ ⊤

⊤

EO

⊥

(x0,…,x4)=F(x0,…,x4) (x0,…,x4)=F(x0,…,x4)
–

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Iterative resolution

56

x0 = ⊤
x1 = O
x2 = (x1 ⊔ x3) ⊓ ⊤
x3 = x2 ⊕ E
x4 = (x1 ⊔ x3) ⊓ ⊤

x0 = ⊥
x1 = ⊥
x2 = ⊥
x3 = ⊥
x4 = ⊥

⊤
⊥
⊥
⊥
⊥

⊤
O
⊥
⊥
⊥

⊤
O
O
⊥
⊥

⊤
O
O
O
⊥

⊤
O
O
O
O

⊤
O
O
O
O

iteration 0 1 2 3 4 5 6

↑ fixpoint

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Exact fixpoint abstraction

57

Exact/ApproximateExact Fixpoint Abstraction

F

F
♯

Concrete domain

Abstract domain

α

F F F F F
F

F
♯ F

♯ F
♯

F
♯

α α α α Approximation
relation ⊑

⊥

⊥♯

α α

α ◦ F = F ♯ ◦ α ⇒ α(lfp F) = lfp F ♯

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 47 — [] " — ✄✄✄#© P. Cousot TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Approximate fixpoint abstraction

58

Exact/Approximate Fixpoint Abstraction

F

F
♯

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
♯ F

♯ F
♯

F
♯

F
F

α α α α Approximation
relation ⊑

⊥

⊥♯

lfp F ⊑ γ(lfp F ♯)

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 45 — [] " — ✄✄✄#© P. Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Duality

Order duality: join (∪) or meet (∩)

Inversion duality: forward (→) or backward (← = (→)-1)

Fixpoint duality: least (↓) or greatest (↑)

59

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Why abstracting properties
of semantics, not semantics

or models?

60

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

1. Abstract interpretation = a non-standard semantics
(computations on values in the standard semantics
are replaced by computations on abstract values) ⟹
extremely limited

2. Abstract interpretation = an abstraction of the
standard semantics ⟹ limited

3. Abstract interpretation = an abstraction of
properties of the standard semantics ⟹ more  
 
i.e. (1) is an abstraction of (2), (2) is an abstraction of (3)

Understandings of Abstract Interpretation

61 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: trace semantics properties

62

Domain of [in]finite traces on states: Π

“Standard” trace semantics domain: K = ℘(Π)

“Standard” trace semantics S⟦P⟧ ∈ K = ℘(Π)

Domain of semantics properties is ℘(K) = ℘(℘(Π))

Collecting semantics C⟦P⟧ ≜ {S⟦P⟧} ∈ ℘(K) = ℘(℘(Π))

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

How to abstract the standard semantics?
The join abstraction:
 ⟨℘(℘(Π)), ⊆⟩ ⟨℘(Π), ⊆⟩

 α∪(X) ≜ ⋃X

 γ∪(Y) ≜ ℘(Y)

Join abstraction of the collecting semantics:
 α∪(C⟦P⟧) ≜ ⋃{S⟦P⟧} ≜ S⟦P⟧
(i.e. the semantics is the join abstraction of its strongest
property)

63

α∪

γ∪

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Loss of information

64

“Always terminate with the same value, either 0 or 1’’

 P = P ∈ ℘(℘(Π))

Join abstraction:

α∪(P) = α∪(P) ∈ ℘(Π)

“Always terminate, either with 0 or 1’’

0

0

1

1

0

0

1

1

always the same
result

results can
be different

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Limitations of the union abstraction

Complete iff any property of the semantics S⟦P⟧ is also
valid for any subset γ(S⟦P⟧) = ℘(S⟦P⟧):

• Examples: safety, liveness

• Counter-example: security (e.g. authentication using a
random cryptographic nonce)

65 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Exact abstractions

66

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Exact abstractions

67

The concrete properties of the standard semantics S⟦P⟧
that you want to prove can always be proved in the
abstract (which is simpler):
 ∀ Q ∈ ,: S⟦P⟧∈ γ(Q) ⟺ S⟦P⟧ ⊑ Q

where
 S⟦P⟧ ≜ α ∘ S⟦P⟧∘ γ

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example III of exact
abstractions: semantics

68

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Trace semantics

69

Trace Semantics (Once Again)

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c
d

e f

g h

i j

k

ℓ

⎨

⎛

⎝

⎨

⎛

⎝

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 59 — [] " — ✄✄✄#© P. Cousot
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstraction to denotational/natural semantics

70

Example 1 of Semantics Abstraction

a d

e f

g h

i j

k

ℓ

⎨

⎛

⎝

⎨

⎛

⎝⊥
⊥

a d

e f

g h

i j

⎨

⎛

⎨

⎛

⎝
⎝

α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

ℓ

⎨

⎛

⎝

⎨

⎛

⎝

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

Trace semantics Denotational
semantics

Natural
semantics

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 60 — [] " — ✄✄✄#© P. Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstraction to small-steps operational semantics

71

Example 2 of Semantics Abstraction

Transitions

⎨

⎛

⎝

⎨

⎛

⎝

⎨

⎛

⎝

⎨

⎛

⎝

⎝

⎛

⎨

⎝

⎛

⎨

Initial states Final states

a b c d

e f

g h

i j

k

ℓ

a

e

g

i

k

ℓ

d

f

h

j

b

(Small-Step) Operational Semantics

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 61 — [] " — ✄✄✄#© P. Cousot
TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstraction to reachability/invariance

72

Example 3 of Semantics Abstraction

Reachable states

⎨

⎛

⎝

⎨

⎛

⎝

⎨

⎛

⎝

⎨

⎛

⎝

⎝

⎛

⎨

⎝

⎛

⎨

Initial states Final states

a

e

g

i

k

ℓ

d

f

h

j

a b c d

e f

g h

i j

k

ℓ

Partial Correctness / Invariance Semantics

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 62 — [] " — ✄✄✄#© P. Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstraction to Hoare logic

73

Example 4: Hoare logic for partial correctness
Initial states

Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c de f

g h
i j

k

ℓ

⎨

⎛

⎝

⎨

⎛

⎝

P Q

{P}C{Q}⇔ {• | • ∈ P ∧ • • • . . . • ∈ !C"} ⊆ Q

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001!✁✁✁ — 64 — [] " — ✄✄✄#© P. Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot 74

Poset of semanticsLattice of Semantics
Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction✲

restriction
infinite

demoniac
determinist
naturalangelic

τ✁!

τ ∂

τ EM

τD

τ!τ S τ♦τ ♯τ ♭

τ⊤
τwp

τ tHτ pH

τwlp

τ +⃗

τ+ τω

τ ω⃗

τ gH

τ gwp

τ✁?

τ ♮

τ∞

τ ∞⃗
τ

✟✟✟✯ ✈

✘✘✘✘✘✘✘✘✘✘✘✘✘✿ ✈

✈

✈

✡
✡

✡
✡✡✣

✈

✈ ✈ ✈

✈

✻

✻ ✻✏✏✏✶

✈

✈

✈✟✟✟✟✟✟✯

✟✟✟✟✟✟✯

✟✟✟✟✟✟✯

❍❍❍❍❍❍❨

❍❍❍❍❍❍❨

❍❍❍❍❍❍❨

❍❍❍❍❍❍❨

❍❍❍❍❍❍❨ ✈

✈

✈

✈

✈

✈✈

✈

✈

✈

✈

✏✏✏✏✏✏✏✏✏✏

✏✏✏✏✏✏✏✏✏✏✶

✏✏✏✏✏✏✶
✈

✈

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes , June 29, 2001#✁✁✁ — 63 — [] $ — ✄✄✄%© P. Cousot

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Approximate abstractions

75 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Approximate abstractions

76

⟸
⟹

≜

The concrete properties of the standard semantics S⟦P⟧
that you want to prove may not always be provable in
the abstract:
 ∀ Q ∈ ,: S⟦P⟧∈ γ(Q) S⟦P⟧ ⊑ Q

where
 S⟦P⟧ ⊒ α ∘ S⟦P⟧∘ γ

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Why abstraction may be approximate?

77

Example
{ x = y ∧ 0 ⩽ x ⩽ 10 }
x := x - y;
 { x = 0 ∧ 0 ⩽ y ⩽ 10 }
Interval abstraction:
{ x ∈ [0, 10] ∧ y ∈ [0, 10] }
x := x - y;
{ x ∈ [-10, 10] ∧ y ∈ [0, 10] }
(but for constants, the interval abstraction can’t express
equality)

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Finite versus infinite
abstractions

78

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

[In]finite abstractions

79

Given a program P and a program property Q which

holds (i.e. lfp F⟦P⟧∈ Q) there exists a most abstract

abstraction in a finite domain ,⟦P⟧ to prove it (*)

Example:
x=0; while x<1 do x++ ⟶ {⊥, [0,0], [0,1],[-∞,∞]}

x=0; while x<2 do x++ ⟶ {⊥, [0,0], [0,1], [0,2],[-∞,∞]}

…

x=0; while x<n do x++ ⟶ {⊥, [0,0], [0,1], [0,2], [0,3], …, [0,n],[-∞,∞]}

…
(*) Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

[In]finite abstractions

80

No such domain exists for infinitely many programs

1. ⋃ ,⟦P⟧ is infinite

Example: {⊥, [0,0], [0,1], [0,2], [0,3], …, [0,n], [0,n+1], ….,[-∞,∞]}

2. λP ∈ L • ,⟦P⟧ is not computable (for

undecidable properties)

⟹ finite abstractions will fail infinitely often while
 infinite abstractions will succeed!

P ∈ L

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Fixpoint approximation in
infinite abstractions

81 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract Induction
(in non-Noetherian

domains)

82

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Convergence acceleration

83

Infinite iteration

F

l fp F

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Convergence acceleration

84

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the derivative

as in Newton-Raphson method(*))

F

l fp F

F

l fp F x

x ∇ F(x)

(*) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33
(2010)

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Problem with infinite abstractions
For non-Noetherian iterations, we need

• finitary abstract induction, and

• finitary passage to the limit

X0=⊥, …, Xn+1 = ℑ(X0, …, Xn, F(X0), …, F(Xn)),…, limn⟶∞Xn

85

ℑ above the limit below the limit

below the
limit

widening ▽ dual narrowing △

above the
limit

narrowing △ dual widening ▽

Iteration
starting
from

iteration converging

~
~

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

[Semi-]dual abstract induction methods

86

(separate from termination conditions)

F(X) ⊑ X
X ⊑ F(X)

∇ ∇
FF

∇
∇ FF

X = F(X)

⊥ ⊤⊑

X ⊑⊒ F(X)⟋⟋

co-in-
duction

induct-
tion

}
}

~ ~

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Examples of widening/narrowing
Abstract induction for intervals:

•a widening [1,2]

•a narrowing [2]

87

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved
infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

Any terminating widening is not increasing (in its first
parameter)
Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

On widening/narrowing/and their duals

88
[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Infinitary static analysis
with abstract induction

89 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

 ⟨,, ⊑⟩ poset

 ▽ ∈ ,⨯,⟶,

 Sound widening (upper bound):
 ∀ x, y ∈ ,: x ⊑ x ▽ y ∧ y ⊑ x ▽ y
Terminating widening: for any ⟨xn∈ ,, n∈ℕ⟩, the

sequence y0 ≜ x0,…, yn+1 ≜ yn ▽ xn,… is ultimately

stationary (∃ε∈ℕ: ∀n⩾ε: yn=yε)

(Note: sound and terminating are independent properties)

Widening

90

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example: (simple) widening for polyhedra
Iterates

Widening

91

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
Thèse És Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Problem: compute I such that lfp⊑ F ⊑ I ⊑ Q
Compute I as the limit of the iterates:

• X0 ≜ ⊥,

• Xn+1 ≜ Xn when F(Xn) ⊑ Xn so I = Xn

• Xn+1 ≜ (Xn ▽ F(Xn)) △ Q otherwise

I can be improved by an iteration with narrowing △

Check that F(I) ⊑ Q
Example: Astrée

Iteration with widening for static analysis

92

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Dual narrowing
 ⟨,, ⊑⟩ poset

 △ ∈ ,⨯,⟶,

 Sound dual narrowing (interpolation):
 ∀ x, y ∈ ,: x ⊑ y ⟹ x ⊑ x △ y ⊑ y
Terminating dual narrowing: for any ⟨xn∈ ,, n∈ℕ⟩, the

sequence y0 ≜ x0,…, yn+1 ≜ yn △ xn,… is ultimately

stationary (∃ε∈ℕ: ∀n⩾ε: yn=yε)

93

~

~

~

(Note: sound and terminating are independent properties)
Cousot, P. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs
monotones sur un treillis, analyse sémantique de programmes (in French). Thèse d'État ès sciences
mathématiques, Université scientifique et médicale de Grenoble, France 1978.

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Problem: find I such that lfp⊑ F ⊑ I ⊑ Q
Compute I as the limit of the iterates:

•X0 ≜ ⊥,

•Xn+1 ≜ Xn when F(Xn) ⊑ Xn so I = Xn

•Xn+1 ≜ F(Xn) △ Q, otherwise

Check that F(I) ⊑ Q
Example: First-order logic + Graig interpolation (with
some choice of one of the solutions, control of
combinatorial explosion, and convergence enforcement)

Iteration with dual narrowing for static checking

94

~

Kenneth L. McMillan: Applications of Craig Interpolants in Model Checking. TACAS 2005: 1-12

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Industrialization

95

Daniel Kästner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Élodie-Jane Sims. Astrée: Nachweis der Abwesenheit von Laufzeitfehlern. In Workshop ``Entwicklung zuverlässiger Software-Systeme'', Regensburg, Germany, June 18th, 2009.

Olivier Bouissou, Éric Conquet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Khalil Ghorbal, Éric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490

David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451

Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randimbivololona, Marc Langenbach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Astrée

96

Commercially available: www.absint.com/astree/

Effectively used in production to qualify truly large and complex
software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static
analyzer for large safety-critical software. PLDI 2003: 196-207

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example of domain-specific abstraction: ellipses

97

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌅ [a, b] x ⇥ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.

10 of 38

American Institute of Aeronautics and Astronautics

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Code Contract Static Checker (cccheck)

98

https://github.com/Microsoft/CodeContracts (public domain)

Manuel Fähndrich, Francesco Logozzo: Static Contract Checking with Abstract Interpretation. FoVeOOS 2010: 10-30

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Comments on screenshot (courtesy Francesco Logozzo)

99

1. A screenshot from Clousot/cccheck on the classic binary search.
2. The screenshot shows from left to right and top to bottom

1. C# code + CodeContracts with a buggy BinarySearch
2. cccheck integration in VS (right pane with all the options integrated in the VS project

system)
3. cccheck messages in the VS error list

3. The features of cccheck that it shows are:
1. basic abstract interpretation:

1. the loop invariant to prove the array access correct and that the arithmetic operation
may overflow is inferred fully automatically

2. different from deductive methods as e.g. ESC/Java or Boogie where the loop invariant
must be provided by the end-user

2. inference of necessary preconditions:
1. Clousot finds that array may be null (message 3)
2. Clousot suggests and propagates a necessary precondition invariant (message 1)

3. array analysis (+ disjunctive reasoning):
1. to prove the postcondition should infer property of the content of the array
2. please note that the postcondition is true even if there is no precondition requiring the

array to be sorted.
4. verified code repairs:

1. from the inferred loop invariant does not follow that index computation does not
overflow

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Example III: CodeHawk
• http://www.kestreltechnology.com

100

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Conclusion

101 TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract interpretation

102

Intellectual tool (not to be confused with its specific
application to iterative static analysis with ▽ & △)

No cathedral would have been built without plumb-line
and square, certainly not enough for skyscrapers:
Powerful tools are needed for progress and
applicability of formal methods

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

Abstract interpretation

103

Varieties of researchers in formal methods:

(i) explicitly use abstract interpretation, and are happy
to extend its scope and broaden its applicability

(ii) implicitly use abstract interpretation, and hide it

(iii) pretend to use abstract interpretation, but misuse it

(iv) don’t know that they use abstract interpretation, but
would benefit from it

Never too late to upgrade

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

The End
Thank You

104

TASE 2015, September 12–14, 2015, Nanjing, China © P Cousot

The End
Thank You

105

