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A Motivating Example

x = 0 ; y = 0 ;

1while ( y >= 0) {

i f ( x <= 50) y++;

else y��;

x++;

}
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Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
by giving algorithms for inclusion test, meet and join, transfer functions
and extrapolation operators. We think the binary decision tree abstract
domain may provide a flexible way of adjusting the cost/precision ratio
in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [4] has been widely and successfully ap-

plied to the static analysis and verification of programs. Abstract domains, one of

the key concepts in abstract interpretation, aim at collecting information about

the set of all possible values of the program variables. The biggest advantage of

using abstract domains instead of logic predicates is that they are fully automatic

and can be easily scale up. Intervals [3], octagons [13] and polyhedra [5] are the

most commonly used numerical abstract domains. These abstract domains are

inferring a conjunction of linear constraints to maintain the information of all

possible values of program variables and/or the possible relationships between

them. The absence of disjunctions may cause rough approximations and produce

much less precise results, gradually leading to false alarms or even worse to the

complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [8]:
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We know that the strongest invariant at program point 1 is (0 <= x <= 50 ^ x = y) _

(51 <= x <= 103^x+y�102 = 0). When we use the APRON numerical abstract domain

library [JM09] to generate the invariant at program point 1, we get x >= 0 ^ y >= �1

with the box (interval) abstract domain and y >= �1^x�y >= 0^x+52y >= 0 with the

polka (convex polyhedra) abstract domain. Both analyses are very imprecise compared

to the strongest one. This is because the true and false branches of “if (x <= 50)” have

di↵erent behaviors and those abstract domains do not consider them separately.

Hence, we propose the binary decision tree abstract domain functor that takes those

branches into consideration.

Given the trace semantics StJPK of a program P, ↵

b � ↵

a(StJPK) abstracts StJPK into

a finite set B of branch condition paths where |B| = N . Then for each ⇡

b

2 B, we have

�

a � �

b(⇡
b

) \ StJPK ✓ StJPK and
S

iN

(�a � �

b(⇡
b

i

) \ StJPK) = StJPK. Moreover, for all

pairs (⇡
b

1

, ⇡

b

2

) 2 B ⇥ B, we have (�a � �

b(⇡
b

1

) \ StJPK) \ (�a � �

b(⇡
b

2

) \ StJPK) = ;. Each

branch condition path ⇡

b

defines a subset of the trace semantics StJPK of a program P.

If we can generate the invariants for each program point only using the information of

one subset of the trace semantics, then for each program point, we will get a finite set

of invariants. It follows that the disjunction of such set of invariants forms the invariant

of that program point. Hence, we encapsulate the set of branch condition paths into the

96

Inteval: x � 0 ^ y � �1
Convex Polyhedra: y � �1 ^ x� y � 0 ^ x + 52y � 0

Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then

Definition 1 (Action path abstraction). Given a set of traces S,

↵

a 2 }(⇧)! }(A⇤)
↵

a(S) , {↵a(⇡) | ⇡ 2 S}

collects the sequences of actions executed along the traces of S.

↵

c 2 }(A⇤) 7! }((AC)⇤)

↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
For all Ab 2 AB and Al 2 AL, we have

↵

d(Ab) , Ab
, ↵

d(Al) , "

↵

d(⇡c1
· ⇡c2

) , ↵

d(⇡c1
) · ↵d(⇡c2

)

↵

d 2 }((AC)⇤) 7! }((AB)⇤)

↵

d(C) , {↵d(⇡c) | ⇡c 2 C}

↵

` 2 }((AB)⇤) 7! }((AB)⇤ \ D)

↵

`(D) , {↵`(⇡d) | ⇡d 2 D}

Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y ) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y ) Hdefinition of �hI

1

Inteval: x � 0 ^ y � �1
Convex Polyhedra: y � �1 ^ x� y � 0 ^ x + 52y � 0

Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then
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↵

a 2 }(⇧)! }(A⇤)
↵
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collects the sequences of actions executed along the traces of S.

↵
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↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
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Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y ) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y ) Hdefinition of �hI

1

2

Intervals:
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Precision Problem
• A common believe (in data flow analysis) is that the 

problem is from the imprecise joins ⊔ ?

• No, e.g. in the Galois connection case, the abstraction 
of ⋃ is exact (α preserves joins)

• The problem is from the imprecise abstraction:

• convex abstractions do not take the control flow 
into account precisely enough
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Idea:

4

• The reduced cardinal power A2A1 = A1 → A2 [CC79]

• with exponent  A1 which is an abstraction of the 
control flow graph
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Operational trace 
Semantics
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Syntax

6
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States
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Traces

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �

0

�

1

...�n�1

2 ⌃n of states separated by a finite
sequence ⇡ = A

0

A
1

...An�2

2 An�1 of actions, which we can write

as �
0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [ ⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC

1

; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[ {hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2
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• Trace 
    π = 

•  
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...�n�1
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A
1

...An�2

2 An�1 of actions, which we can write
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0

A0�! �

1

A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [ ⇧+

also include the empty trace " corresponding to no observation.
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StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}

StJx = EK , {hskip, ⇢i x=E��! hstop, ⇢[x := v]i | ⇢ 2 E ^ v 2 EJEK⇢}
StJC
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; C
2

K , {(⇡ ; C
2

)
A�! hC

2

, ⇢i A

0
�! ⇡

0 | ⇢ 2 E^
⇡

A�! hstop, ⇢i 2 StJC
1

K ^ hC
2

, ⇢i A

0
�! ⇡

0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[ {hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) ; while (B) {C} |

⇡, ⇡

0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
�! ⇡

0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
⇡ 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,

↵

r 2 }(⇧) ! }(⌃)

↵

r(S) , {� | 9�
0

A0�! ...�n 2 S : 9i  n : � = �i}

2

A trace ⇡ of length |⇡| , n > 1 is a pair ⇡ = h⇡, ⇡i of a finite
sequence ⇡ = �
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A
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...An�2

2 An�1 of actions, which we can write
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0
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A1�! ...

An�2���! �n�1

and interpret as an observation of
an execution that starts from state �

0

such that in state �i, the
execution of action Ai leads to next state �i+1

, i = 0, 1, ..., n�2.

Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [ ⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}
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⇡
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} else {C
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⇢ 2 E ^ true 2 EJBK⇢ ^ hC
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, ⇢i A�! ⇡ 2 StJC
1
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} else {C
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⇢ 2 E ^ false 2 EJBK⇢ ^ hC
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A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A
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0 A
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�! hstop, ⇢0i) 2 StJCK}
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0

such that in state �i, the
execution of action Ai leads to next state �i+1
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Let ⇧+ denote the set of all finite traces while ⇧⇤ , {"} [ ⇧+

also include the empty trace " corresponding to no observation.

StJstopK , {hstop, ⇢i | ⇢ 2 E}

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}
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2
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0 | ⇢ 2 E^
⇡
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K ^ hC
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, ⇢i A

0
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0 2 StJC
2

K}
StJif (B) {C

1

} else {C
2

}K ,
{hif (B) {C

1

} else {C
2

}, ⇢i B�! hC
1

, ⇢i A�! ⇡ |
⇢ 2 E ^ true 2 EJBK⇢ ^ hC

1

, ⇢i A�! ⇡ 2 StJC
1

K}
[ {hif (B) {C

1

} else {C
2

}, ⇢i ¬B�! hC
2

, ⇢i A�! ⇡ |
⇢ 2 E ^ false 2 EJBK⇢ ^ hC

2

, ⇢i A�! ⇡ 2 StJC
2

K}
F tiJwhile (B) {C}KX , {hwhile (B) {C}, ⇢i | ⇢ 2 E} [
{⇡ A�! hwhile (B) {C}, ⇢i B�! (hC, ⇢i A

0
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0 A
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�! hstop, ⇢0i) ; while (B) {C} |
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0 2 ⇧⇤ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2 X ^ true 2 EJBK⇢ ^
(hC, ⇢i A

0
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0 A

00
�! hstop, ⇢0i) 2 StJCK}

StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K
StJwhile (B) {C}K , {⇡ A�! hwhile (B) {C}, ⇢i ¬B�! hstop, ⇢i |
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A�! hwhile (B) {C}, ⇢i 2 StiJwhile (B) {C}K ^ false 2 EJBK⇢}
Definition 3 (Reachable state abstraction). Given a set of
traces S,
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r(S) , {� | 9�
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A0�! ...�n 2 S : 9i  n : � = �i}
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Trace Semantics
The trace semantics describes all possible observations 
of executions of the command C. 

...
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The Control Flow 
Graph Abstraction

10
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Action Path Abstraction
Let ↵

a(⇡) , ⇡ collects the sequence of actions A0A1...An�2, then

Definition 1 (Action path abstraction). Given a set of traces S,

↵

a 2 }(⇧)! }(A⇤)
↵

a(S) , {↵a(⇡) | ⇡ 2 S}

collects the sequences of actions executed along the traces of S.

↵

c 2 }(A⇤) 7! }((AC)⇤)

↵

c(A) , {↵c(⇡) | ⇡ 2 A}

AB: the set of branch conditions
AL: the set of loop conditions
For all Ab 2 AB and Al 2 AL, we have

↵

d(Ab) , Ab
, ↵

d(Al) , "

↵

d(⇡c1
· ⇡c2

) , ↵

d(⇡c1
) · ↵d(⇡c2

)

↵

d 2 }((AC)⇤) 7! }((AB)⇤)

↵

d(C) , {↵d(⇡c) | ⇡c 2 C}

↵

` 2 }((AB)⇤) 7! }((AB)⇤ \ D)

↵

`(D) , {↵`(⇡d) | ⇡d 2 D}

Theorem 1 (Homomorphic Abstraction). Given a function h : C 7!
A, let ↵h(X) = {h(x) | x 2 X} and �h(Y ) = {x | h(x) 2 Y }, then ↵h

and �h form a Galois connection:

(}(C),✓) ���! ���
↵h

�h
(}(A),✓)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y ) Hdefinition of �hI

1
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Control Flow Graph
• A control flow graph (V, E) of a program is, as usual, a directed 

graph: 

• nodes are actions in the program 

• edges represent the possible flow of control.

• The CFG can be build by the structural (fixpoint) induction on 
the syntax of the command C:

12
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Action Path Semantics of CFG
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The CFG is an abstraction of the trace semantics 

14

• Soundness:  
 

• The basis for most static analyses
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The Branch Condition 
Graph (abstracting the 
control flow graph)
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Condition Path Abstraction

16
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Loop Condition Elimination
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Duplication Elimination
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Branch Condition Path Abstraction
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Concretizations

20
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Branch Condition Graph
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Example

22
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Trace Semantics Partitioning

23

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 
10, pages 303—342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.
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The Binary Decision 
Tree Abstraction

24
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Binary Decision Tree
Definition 2. A binary decision tree t 2 T(B,D`) over the set B of
branch condition paths (with concretization �

a � �c � �d � �`) and the
leaf abstract domain D` (with concretization �`) is either L p M with p

is an element of D` and B is empty or J B : tt, tf K where B is the first
element of all branch condition paths ⇡b 2 B and (tt, tf ) are the left
and right subtree of t represent its true and false branch such that
tt, tf 2 T(B\�,D`) (� , B or ¬B and B\� denotes the removal of �
and all branch conditions appearing before in each branch condition
path in B).

Definition 3. Let ⇢ be the concrete environment assigning concrete
values ⇢(x) to variables x and JeK⇢ for the concrete value of the expres-
sion e in the concrete environment ⇢, the concretization of a binary
decesion tree �t is either

�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf )}

when the binary decision tree is rooted at a decision node.

Definition 4. A binary decision tree abstract domain functor is a
tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.

3

4. Otherwise, there are decision nodes existing only in tt or tf . For
each of those decision nodes, (recursively) eliminate it by merging its
subtrees. When no such decision node exists, we get t

0
t and t

0
f , and

they must have identical decision nodes, so JB : tt, tfK can be replaced
by t

0
t tt t

0
f .

Given a concrete domain (D[
,v[) and two abstract domains (D]

1

,v]
1

) and
(D]

2

,v]
2

) with their concretizations �

1

: D]
1

! D[ and �

2

: D]
2

! D[, the
reduced product of D]

1

and D]
2
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(D]
,v]) , ((D]

1

⇥ D]
2

)\⌘,v]
1

⇥ v]
2

)
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(x]

1
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]
2

) v] (y]
1
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]
2
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]
1

v]
1

y

]
1

^ x

]
2

v]
2

y

]
2

�(x]
1

, x

]
2

) , �

1

(x]
1

) u[
�

2

(x]
2

)

(x]
1

, x

]
2

) ⌘ (y]
1

, y

]
2

) , �(x]
1

, x

]
2

) = �(y]
1

, y

]
2

)

• a finite set of constraints C = {
Pn

i=1

a

1ixi  b

1

, ...,

Pn
i=1

amixi  bm}
which we usually denote as a pair hA, ~Bi where A 2 Zm⇥n is a matrix
and ~

B 2 Zm is a vector;

• a finite set of generators, that is, a set of points P = {~P
1

, ...,

~

Pp} and a
set of rays R = {~R

1

, ...,

~

Rr} which we usually denote as a pair hP,Ri.

J B
1

: J B
2

: L p
1

M, L p
2

M K, J B
3

: L p
3

M, L p
4

M K K
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Concretization

Definition 2. A binary decision tree t 2 T(B,D`) over the set B of
branch condition paths (with concretization �

a � �c � �d � �`) and the
leaf abstract domain D` (with concretization �`) is either L p M with p

is an element of D` and B is empty or J B : tt, tf K where B is the first
element of all branch condition paths ⇡b 2 B and (tt, tf ) are the left
and right subtree of t represent its true and false branch such that
tt, tf 2 T(B\�,D`) (� , B or ¬B and B\� denotes the removal of �
and all branch conditions appearing before in each branch condition
path in B).

Definition 3. Let ⇢ be the concrete environment assigning concrete
values ⇢(x) to variables x and JeK⇢ for the concrete value of the expres-
sion e in the concrete environment ⇢, the concretization of a binary
decesion tree �t is either

�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf )}

when the binary decision tree is rooted at a decision node.

Definition 4. A binary decision tree abstract domain functor is a
tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.

3
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Binary Decision Tree 
Abstract Domain Functor
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tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti
on two parameters, a set B of branch condition paths and a leaf ab-
stract domain D` where
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tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic
analysis from the control flow of the program. Hence the struc-
ture of the binary decision tree is finite and does not change in
the data flow analysis.

• The leaf abstract domain D` for the leaves could be any numer-
ical or symbolic algebraic abstract domains such as polyhedra,
or the logical abstract domains which are defined before, or even
the reduced product of two or more of those abstract domains.
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B defines a partitioning on the trace semantics StJPK
Definition 9. A binary decision tree t 2 T(B,D`) over the set B of branch
condition paths (with concretization �

a � �c � �d � �`) and the leaf abstract
domain D` (with concretization �`) is either L p M with p is an element of D`

and B is empty or J B : tt, tf K where B is the first element of all branch
condition paths ⇡b 2 B and (tt, tf ) are the left and right subtree of t

represent its true and false branch such that tt, tf 2 T(B\�,D`) (� , B or
¬B and B\� denotes the removal of � and all branch conditions appearing
before in each branch condition path in B).

Definition 10. Let ⇢ be the concrete environment assigning concrete values
⇢(x) to variables x and JeK⇢ for the concrete value of the expression e in
the concrete environment ⇢, the concretization of a binary decesion tree �t

is either
�t(L p M) , �`(p)

when the binary decision tree can be reduced to a leaf or

�t(J B : tt, tf K) , {⇢ | JBK⇢ = true =) ⇢ 2 �t(tt) ^JBK⇢ = false =) ⇢ 2 �t(tf )}

when the binary decision tree is rooted at a decision node.

Definition 11. A binary decision tree abstract domain functor is a tuple

hT(B,D`)\⌘t ,vt,?t,>t,tt,ut,Ot,Mti

on two parameters, a set B of branch condition paths and a leaf abstract
domain D` where

P,Q, ... 2 T(B,D`)\⌘t abstract properties

vt 2 T⇥ T ! {false, true} abstract partial order

?t,>t 2 T(B,D`) infimum, supremum

(8P 2 T : ?t vt P vt >t)

tt,ut 2 T⇥ T ! T abstract join, meet

Ot,Mt 2 T⇥ T ! T abstract widening, narrowing

• The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra, or the logi-
cal abstract domains which are defined before, or even the reduced
product of two or more of those abstract domains.

15

Binary Decision Tree 
Abstract Domain Functor

28

…
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• The set B of branch condition paths is built by the syntactic analysis
from the control flow of the program. Hence the structure of the
binary decision tree is finite and does not change in the data flow
analysis.

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic algebraic abstract domains such as polyhedra, or the logi-
cal abstract domains which are defined before, or even the reduced
product of two or more of those abstract domains.

15

Binary Decision Tree 
Abstract Domain Functor

29

…

⇢ very different from other proposals where the shape of the decision tree evolves during 
the analysis e.g.  (among many others)

Patrick Cousot, Radhia Cousot, Laurent Mauborgne:
A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 
6200, 2010: 72-95.
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Inclusion and Equality Test
• The leaf abstract domain D` for the leaves could be any numerical or

symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

16
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Meet and Join

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

16

31

↑ pairwise join and distribute over leaves
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Distribution over leaves
0              50            100

>50

>25
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Distribution over leaves

0              50            

51        100

>50

>25
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Distribution over leaves

51        1000    25 26 50

>50

>25
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Widening and Narrowing

35

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t} and t

1

vt t2,

• Widening t

1

O` t2: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

O` `2)u` D`(�1

)u` D`(�2

)u` ...u` D`(�n) where O` is the
widening in the leaf abstract domain D`, ⇡b = �

1

· �
2

· ... · �n and
D`(�) is the representation of � in D`.

• Narrowing t

2

Mt t1: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = `

2

M` `1 using the narrowing M` in the leaf abstract domain
D`.

16

↑ pairwise widen and distribute over leaves

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t} and t

1

vt t2,

• Widening t

1

O` t2: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

O` `2)u` D`(�1

)u` D`(�2

)u` ...u` D`(�n) where O` is the
widening in the leaf abstract domain D`, ⇡b = �

1

· �
2

· ... · �n and
D`(�) is the representation of � in D`.

• Narrowing t

2

Mt t1: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– ` = `

2

M` `1 using the narrowing M` in the leaf abstract domain
D`.

16
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Reduction of Binary Decision Tree 
by an Abstract Property 

• The leaf abstract domain D` for the leaves could be any numerical or
symbolic abstract domains such as intervals, octagons, polyhedra, ar-
ray domains, etc., or even the reduced product of two or more abstract
domains.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Inclusion test: comparing each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where
`

1

and `

2

are defined by the same branch condition path ⇡b 2 B.

– t

1

vt t2 if `
1

v` `2 for all pairs of (`
1

, `

2

),

– t

1

6vt t2 otherwise.

• Equality test: t
1

=t t2 , t

1

vt t2 ^ t

2

vt t1.

– If the leaf abstract domain D` has =`, we may use it directly.

Given two binary decision tree t

1

, t

2

2 T(B,D`) \ {?t,>t},

• Meet: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = `

1

u` `2 using the meet u` in the leaf abstract domain D`.

• Join: for each pair (`
1

, `

2

) of leaves in (t
1

, t

2

) where `

1

and `

2

are
defined by the same branch condition path ⇡b 2 B.

– ` = (`
1

t` `2) u` D`(�1

) u` D`(�2

) u` ... u` D`(�n) where ⇡b =
�

1

·�
2

· ... ·�n and D`(�) is the representation of � in D` (when ↵`

exists in the leaf abstract domain D`, we can use ↵`(�) instead).

Given a binary decision tree t 2 T(B,D`) and an abstract property p, we
define t ut p as:

?t ut p , ?t

>t ut p , L p M
t ut false , ?t

t ut true , tL p0 M ut p , L p0 u` D`(p) MJ B : tl, tr K ut p , J B : tl ut D`(B) ut D`(p), tr ut D`(¬B) ut D`(p) K

16

36



SAS 2015, 9—11 September 2015, Saint Malo, France                                                                                                                                                                                                                       © J. Chen & P Cousot 

Test Transfer Function
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Assignment Transfer Function

38

Assignment
on leaves
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Reconstruction on Leaves

J B
1

: J B
2

: L p
1

M, L p
2

M K, J B
3

: L p
3

M, L p
4

M K K
↵(x [ y) = ↵(x) t ↵(y)

↵

1. Collecting all leave properties in t, let it be {p
1

, p

2

, ..., pn};

2. For each leaf in t, let ⇡b = �

1

· �
2

· ... · �n be the branch
condition path leading to it. We then calculate p

0
i = pi u`

(D`(�1

^ �

2

^ ... ^ �n)).

3. For each leaf in t, update it with p

0
1

t` p
0
2

t` ... t` p
0
n.

21
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↑ assign and redistribute over leaves
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Binary Decision Tree Construction
• In the pre-analysis 

• On the fly during the analysis 

• Unification

40
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Tree Merging
– B0 = {⇡b · B | ⇡b 2 B} [ {⇡b · ¬B | ⇡b 2 B}.

1. Pick up a branch condition B.

2. Eliminate B (B or ¬B) from each branch condition path in B.

3. For each subtree of the form JB : tt, tfK, if tt and tf have identical
decision nodes, replace it by tt tt tf .

4. Otherwise, there are decision nodes existing only in tt or tf . For
each of those decision nodes, (recursively) eliminate it by merging its
subtrees. When no such decision node exists, we get t

0
t and t

0
f , and

they must have identical decision nodes, so JB : tt, tfK can be replaced
by t

0
t tt t

0
f .

18
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A small example

42
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Example
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after one iteration

join of initialization and first iteration

widening initialization and first iteration

increment y and x, reconstruct on leaves

join with initialization

third iteration

widening

fourth iteration, convergence
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Conclusion
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Conclusion
• We need more precise abstractions than the Control 

Flow Graph (the usual starting point)

• Binary Decision Tree Abstraction:

• Disjunctive refinement

• Cost / precision ratio adjustable
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Thanks & Questions?
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