A Binary Decision Tree Abstract Domain Functor
 Junjie Chen and Patrick Cousot
 New York University

Precision Problem

- A common believe (in data flow analysis) is that the problem is from the imprecise joins \square ?
- No, e.g. in the Galois connection case, the abstraction of U is exact (α preserves joins)
- The problem is from the imprecise abstraction:
- convex abstractions do not take the control flow into account precisely enough

A Motivating Example

```
x = 0; y = 0;
while(y >= 0) {
    if (x <= 50) y++;
    else y--;
    x++;
}
```



```
            Intervals: }x\geq0\wedgey\geq-
Convex Polyhedra: }y\geq-1\wedgex-y\geq0\wedgex+52y\geq
```


Idea:

- The reduced cardinal power $\mathrm{A}_{2}{ }^{\mathrm{Al}}=\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2}$ [CC79]

THEOREM 10.2.0.1

The reduced cardinat power with base
and exponent $\left(A_{1}, t_{1}, \gamma_{1}\right)$ is (A, t, γ) where
and exponent $\left(A_{1}, t_{1}, \gamma_{1}\right)$ is $\left(A_{1}, t, \gamma\right)$ where
$A=\sigma\left(i s o\left(A_{1} \rightarrow A_{2}\right)\right), \sigma \in\left(i s o\left(A_{1} \rightarrow A_{2}\right) \rightarrow i s o\left(A_{1} \rightarrow A_{2}\right)\right)$ is $\lambda g . \Pi\left\{f \in i s o\left(A_{1} \rightarrow A_{2}\right): \gamma(f)=\gamma(g)\right\}, \gamma \in\left(i s O\left[A_{1} \rightarrow A_{2}\right) \rightarrow A\right.$ is $\lambda g .\left[\lambda x . \wedge\left\{\gamma_{1}(v)(x) \Rightarrow \gamma_{2}(g(v))(x): v \in A_{1}\right\}\right]$,
$t=\lambda S .(\alpha \circ \tau(S) \circ \gamma)$ and $\alpha \in\left(A \rightarrow 2 s o\left(A_{1} \rightarrow A_{2}\right)\right)$ is
$\lambda P \cdot\left[\sigma\left(\lambda v .\left[\alpha_{2}\left(P \wedge \gamma_{1}(v)\right)\right]\right)\right]$.
$A D<\alpha, \gamma>A$ and $\forall S \in L$, $t(S) \subseteq \lambda_{g} .\left[\lambda v . \sqcup_{2}\left\{t_{2}(S)(g(z)\}\right.\right.$:
$\left.\left.z \in A_{1} \wedge t_{1}(S)(z) \subseteq v\right\}\right]$ (with $\left.\sqcup_{2} \phi=1_{2}\right)$.

- with exponent A_{1} which is an abstraction of the control flow graph

Operational trace Semantics

States

- States record the current values of variables in the environment/memory as well as a label/control point specifying what remains to be executed.

$\mathrm{L} \in \mathbb{L}::=\mathrm{C} \mid$ stop	labels	
$v \in \mathcal{V}$		values
$\rho \in \mathcal{E} \triangleq \mathbb{X} \rightarrow \mathcal{V}$	environments	
$\sigma \in \Sigma \triangleq \mathbb{L} \times \mathcal{E}$	states	

Syntax

- Consider the following abstract syntax of command:

$$
\begin{aligned}
C \in \mathbb{C}::= & \text { skip }|x=E| C_{1} ; C_{2} \mid \\
& \text { if (B) }\left\{\mathrm{C}_{1}\right\} \text { else }\left\{\mathrm{C}_{2}\right\} \mid \\
& \text { while (B) }\{\mathrm{C}\}
\end{aligned}
$$

- Actions describe elementary indivisible program computation steps:

$$
\mathrm{A} \in \mathbb{A}::=\operatorname{skip}|\mathrm{x}=\mathrm{E}| \mathrm{B} \mid \neg \mathrm{B}
$$

Traces

- Trace

$$
\pi=\sigma_{0} \xrightarrow{A_{0}} \sigma_{1} \xrightarrow{A_{1}} \ldots \xrightarrow{A_{n-2}} \sigma_{n-1}
$$

- sequence $\underline{\pi}=\sigma_{0} \sigma_{1} \ldots \sigma_{n-1} \in \Sigma^{n}$ of states
sequence $\bar{\pi}=\mathrm{A}_{0} \mathrm{~A}_{1} \ldots \mathrm{~A}_{n-2} \in \mathbb{A}^{n-1}$ of actions

Trace Semantics

The trace semantics describes all possible observations of executions of the command C.

$$
\begin{aligned}
\mathcal{S}^{t} \llbracket \mathrm{x}=\mathrm{E} \rrbracket \triangleq & \{\langle\mathrm{x}=\mathrm{E}, \rho\rangle \xrightarrow{\mathrm{x}=\mathrm{E}}\langle\text { stop }, \rho[\mathrm{x}:=v\rceil\rangle \mid \rho \in \mathcal{E} \wedge v \in \mathcal{E} \llbracket \mathrm{E} \rrbracket \rho\} \\
\mathcal{S}^{t} \llbracket \mathrm{C}_{1} ; \mathrm{C}_{2} \rrbracket \triangleq & \left\{\left(\pi ; C_{2}\right) \xrightarrow{\mathrm{A}}\left\langle\mathrm{C}_{2}, \rho\right\rangle \xrightarrow{\mathrm{A}^{\prime}} \pi^{\prime} \mid \rho \in \mathcal{E} \wedge\right. \\
& \left.\pi \xrightarrow{\mathrm{A}}\langle\text { stop }, \rho\rangle \in \mathcal{S}^{t} \llbracket \mathrm{C}_{1} \rrbracket \wedge\left\langle\mathrm{C}_{2}, \rho\right\rangle \xrightarrow{\mathrm{A}^{\prime}} \pi^{\prime} \in \mathcal{S}^{t} \llbracket \mathrm{C}_{2} \rrbracket\right\}
\end{aligned}
$$

$\mathcal{F}^{t i} \llbracket$ while (B) $\{\mathrm{C}\} \rrbracket X \triangleq\{\langle$ while $(\mathrm{B})\{\mathrm{C}\}, \rho\rangle \mid \rho \in \mathcal{E}\} \cup$
$\left\{\pi \xrightarrow{\mathrm{A}}\langle\right.$ while $(\mathrm{B})\{\mathrm{C}\}, \rho\rangle \xrightarrow{\mathrm{B}}\left(\langle\mathrm{C}, \rho\rangle \xrightarrow{\mathrm{A}^{\prime}} \pi^{\prime} \xrightarrow{\mathrm{A}^{\prime \prime}}\left\langle\right.\right.$ stop, $\left.\left.\rho^{\prime}\right\rangle\right)$; while (B) $\{\mathrm{C}\} \mid$ $\pi, \pi^{\prime} \in \Pi^{*} \wedge \pi \xrightarrow{\mathrm{~A}}\langle$ while (B) $\{\mathrm{C}\}, \rho\rangle \in X \wedge$ true $\in \mathcal{E} \llbracket \mathrm{B} \rrbracket \rho \wedge$ $\left(\langle\mathrm{C}, \rho\rangle \xrightarrow{\mathrm{A}^{\prime}} \pi^{\prime} \xrightarrow{\mathrm{A}^{\prime \prime}}\left\langle\right.\right.$ stop,$\left.\left.\left.\rho^{\prime}\right\rangle\right) \in \mathcal{S}^{+} \llbracket \mathrm{C} \rrbracket\right\}$
$\mathcal{S}^{t i} \llbracket$ while (B) $\{\mathrm{C}\} \rrbracket \triangleq{ }_{\mathrm{lp}} \subseteq \mathcal{F}^{t i} \llbracket$ while (B) $\{\mathrm{C}\} \rrbracket$
$\mathcal{S}^{t} \llbracket$ while $(\mathrm{B})\{\mathrm{C}\} \rrbracket \triangleq\{\pi \xrightarrow{\mathrm{A}}\langle$ while $(\mathrm{B})\{\mathrm{C}\}, \rho\rangle \xrightarrow{\neg \mathrm{B}}\langle$ stop,$\rho\rangle \mid$ $\pi \in \Pi^{*} \wedge \pi \xrightarrow{\mathrm{~A}}\langle$ while (B) $\{\mathrm{C}\}, \rho\rangle \in \mathcal{S}^{t i} \llbracket$ while $(\mathrm{B})\{\mathrm{C}\} \rrbracket \wedge$ false $\left.\in \mathcal{E} \llbracket \mathrm{B} \rrbracket \rho\right\}$

Action Path Abstraction

Let $\alpha^{a}(\pi) \triangleq \bar{\pi}$ collects the sequence of actions $\mathrm{A}_{0} \mathrm{~A}_{1} \ldots \mathrm{~A}_{n-2}$, then Definition 1 (Action path abstraction). Given a set of traces \mathcal{S},

$$
\begin{aligned}
\alpha^{a} & \in \wp(\Pi) \rightarrow \wp\left(\mathbb{A}^{*}\right) \\
\alpha^{a}(\mathcal{S}) & \triangleq\left\{\alpha^{a}(\pi) \mid \pi \in \mathcal{S}\right\}
\end{aligned}
$$

collects the sequences of actions executed along the traces of \mathcal{S}.

The Control Flow Graph Abstraction

Control Flow Graph

- A control flow graph (V, E) of a program is, as usual, a directed graph:
- nodes are actions in the program
- edges represent the possible flow of control.
- The CFG can be build by the structural (fixpoint) induction on the syntax of the command C :

$$
\begin{array}{cl}
\mathbb{G} \llbracket \text { skip } \rrbracket \triangleq & \circ \text { skip } \rightarrow 0 \\
\mathbb{G} \llbracket \mathrm{x}:=\mathrm{E} \rrbracket \triangleq & \mathrm{O} \rrbracket \mathrm{x}:=\mathrm{E} \rightarrow \mathrm{O}
\end{array}
$$

$\begin{aligned} \mathbb{G} \llbracket \mathrm{C}_{1} ; \mathrm{C}_{2} \rrbracket \triangleq \text { let } \mathbb{G} \llbracket \mathrm{C}_{1} \rrbracket & =0 \rightarrow \mathrm{C}_{1} \rightarrow \mathrm{O} \text { and } \\ \mathbb{G} \llbracket \mathrm{C}_{2} \rrbracket & =\mathrm{O} \rightarrow \mathrm{C}_{2} \rightarrow \mathrm{o} \text { in }\end{aligned}$
$\bigcirc-\mathrm{C}_{1}-\mathrm{C}_{2} \rightarrow 0$
$\left\{\mathrm{C}_{1}\right\}$

$$
\begin{gathered}
\mathbb{G} \llbracket \mathrm{C}_{1} \rrbracket=0-\mathrm{C}_{1} \rightarrow 0 \text { and } \\
\mathbb{G} \llbracket \mathrm{C}_{2} \rrbracket=0-\sqrt{\mathrm{C}_{2}} \rightarrow \mathrm{o} \text { in } \\
\mathrm{H} \cdot \mathrm{C}_{1}
\end{gathered}
$$

$\mathbb{G} \llbracket$ while $(B)\{C\} \rrbracket \triangleq$ let

$$
\circ \rightarrow \mathrm{B}
$$

Action Path Semantics of CFG

$$
\begin{aligned}
& \mathcal{G}^{a} \llbracket \circ \rightarrow \text { skip } \rightarrow \square \triangleq\{\text { skip }\} \quad \mathcal{G}^{a} \llbracket \circ \rightarrow \mathrm{x}:=\mathrm{E} \rightarrow \mathrm{O} \rrbracket \triangleq\{\mathrm{x}=\mathrm{E}\} \\
& \mathcal{G}^{a} \llbracket \circ-\mathrm{B}_{\mathrm{ff}}^{\mathrm{H}} \underset{\mathrm{C}_{2}}{\mathrm{C}} \\
& \mathcal{G}^{a} \llbracket \circ-\mathrm{C}_{1}-\mathrm{C}_{2}-\circ \rrbracket \triangleq \mathcal{G}^{a} \llbracket \circ-\mathrm{C}_{1} \rightarrow \circ \rrbracket \cdot \mathcal{G}^{a} \llbracket \circ-\mathrm{C}_{2}-\circ \rrbracket
\end{aligned}
$$

The Branch Condition Graph (abstracting the

The CFG is an abstraction of the trace semantics

- Soundness:

$$
\alpha^{a}\left(\mathcal{S}^{t} \llbracket \mathrm{C} \rrbracket\right) \subseteq \mathcal{G}^{a} \llbracket \mathbb{G} \llbracket \mathrm{C} \rrbracket \rrbracket
$$

- The basis for most static analyses

Condition Path Abstraction

- Let

$$
\begin{aligned}
\alpha^{c}(\text { skip }) & \triangleq \varepsilon & \alpha^{c}(\mathrm{~B}) & \triangleq \mathrm{B} \\
\alpha^{c}(\mathrm{x}=\mathrm{E}) & \triangleq \varepsilon & \alpha^{c}(\neg \mathrm{~B}) & \triangleq \neg \mathrm{B} \\
\alpha^{c}\left(\underline{\pi}_{1} \cdot \underline{\pi}_{2}\right) & \triangleq \alpha^{c}\left(\underline{\pi}_{1}\right) \cdot \alpha^{c}\left(\underline{\pi}_{2}\right) & &
\end{aligned}
$$

- The condition path abstraction collects the sequences of conditions in the action paths \mathcal{A} :

$$
\begin{aligned}
\alpha^{c} & \in \wp\left(\mathbb{A}^{*}\right) \mapsto \wp\left(\left(\mathbb{A}^{C}\right)^{*}\right) \\
\alpha^{c}(\mathcal{A}) & \triangleq\left\{\alpha^{c}(\bar{\pi}) \mid \bar{\pi} \in \mathcal{A}\right\}
\end{aligned}
$$

Loop Condition Elimination

- Let
\mathbb{A}^{B} : the set of branch conditions
\mathbb{A}^{L} : the set of loop conditions
- and

$$
\begin{gathered}
\alpha^{d}\left(\mathrm{~A}^{b}\right) \triangleq \mathrm{A}^{b}, \quad \alpha^{d}\left(\mathrm{~A}^{l}\right) \triangleq \varepsilon \\
\alpha^{d}\left(\underline{\pi_{c_{1}}} \cdot \underline{\pi_{c_{2}}}\right) \triangleq \alpha^{d}\left(\underline { \pi _ { c _ { 1 } }) } \cdot \alpha ^ { d } \left(\underline{\pi_{c_{2}}}\right.\right.
\end{gathered}
$$

- where $\mathrm{A}^{b} \in \mathbb{A}^{B}$ and $\mathrm{A}^{l} \in \mathbb{A}^{L}$.
- The loop condition elimination collects the sequences of branch conditions from the condition paths :

$$
\begin{aligned}
\alpha^{d} & \in \wp\left(\left(\mathbb{A}^{C}\right)^{*}\right) \mapsto \wp\left(\left(\mathbb{A}^{B}\right)^{*}\right) \\
\alpha^{d}(\mathcal{C}) & \triangleq\left\{\alpha^{d}\left(\bar{\pi}_{c}\right) \mid \bar{\pi}_{c} \in \mathcal{C}\right\}
\end{aligned}
$$

Branch Condition Path Abstraction

- Let

$$
\alpha^{\ell}\left(\bar{\pi}_{d}\right)=\text { fold }\left(\bar{\pi}_{d}\right)
$$

eliminate duplications of each branch condition while keeping its last occurrence in $\bar{\pi}_{d}$,

- The branch condition path abstraction collects branch condition paths (sequences of branch conditions without duplications):

$$
\begin{aligned}
\alpha^{\ell} & \in \wp\left(\left(\mathbb{A}^{B}\right)^{*}\right) \mapsto \wp\left(\left(\mathbb{A}^{B}\right)^{*} \backslash \mathbb{D}\right) \\
\alpha^{\ell}(\mathcal{D}) & \triangleq\left\{\alpha^{\ell}\left(\bar{\pi}_{d}\right) \mid \bar{\pi}_{d} \in \mathcal{D}\right\}
\end{aligned}
$$

Duplication Elimination

```
erase( }(\mp@subsup{d}{1}{}\mp@subsup{d}{2}{}\mp@subsup{d}{3}{}\ldots..\mp@subsup{d}{n}{},d)\triangleq if d\mp@subsup{d}{1}{}==d then erase (d d d d ....dn,d
                                    else d}\mp@subsup{d}{1}{}\cdot\operatorname{erase}(\mp@subsup{d}{2}{}\mp@subsup{d}{3}{}\ldots..\mp@subsup{d}{n}{},d
    fold}(\mp@subsup{d}{1}{}\mp@subsup{d}{2}{}\ldots\mp@subsup{d}{n}{})\triangleq if \mp@subsup{d}{1}{}\mp@subsup{d}{2}{}\ldots\mp@subsup{d}{n}{}==\varepsilon\mathrm{ then }
        else fold(erase (d}\mp@subsup{d}{1}{}\mp@subsup{d}{2}{}...\mp@subsup{d}{n-1}{},\mp@subsup{d}{n}{}))\cdot\mp@subsup{d}{n}{
```


Concretizations

- Action path abstraction

$$
\gamma^{a}(\mathcal{A}) \triangleq\left\{\pi \mid \alpha^{a}(\pi) \in \mathcal{A}\right\}
$$

- Condition path abstraction

$$
\gamma^{c}(\mathcal{C}) \triangleq\left\{\bar{\pi} \mid \alpha^{c}(\bar{\pi}) \in \mathcal{C}\right\}
$$

- Loop condition elimination

$$
\gamma^{d}(\mathcal{D}) \triangleq\left\{\bar{\pi}_{c} \mid \alpha^{d}\left(\bar{\pi}_{c}\right) \in \mathcal{D}\right\}
$$

- Branch condition path abstraction

$$
\gamma^{\ell}(\mathcal{B}) \triangleq\left\{\bar{\pi}_{d} \mid \alpha^{\ell}\left(\bar{\pi}_{d}\right) \in \mathcal{B}\right\}
$$

Branch Condition Graph

- A branch condition graph (BCG) of a program is a directed acyclic graph, in which each node corresponds to a branch condition occurring in the program and has two outgoing edges representing its true and false branches.

$$
\mathbb{G}^{b} \llbracket \mathrm{skip} \rrbracket \triangleq 0 \longrightarrow 0 \quad \mathbb{G}^{b} \llbracket \mathrm{x}:=\mathrm{E} \rrbracket \triangleq 0 \longrightarrow 0
$$

$\mathbb{G}^{b} \llbracket \mathrm{C}_{1} ; \mathrm{C}_{2} \rrbracket \triangleq$ let $\mathbb{G}^{b} \llbracket \mathrm{C}_{1} \rrbracket=0-\mathrm{C}_{1}^{b} \rightarrow 0$ and $\mathbb{G}^{b} \llbracket \mathrm{C}_{2} \rrbracket=0 \rightarrow \mathrm{C}_{2}^{b} \rightarrow 0$ in

$$
0-\mathrm{C}_{1}^{b}-\mathrm{C}_{2}^{b}-0
$$

$\mathbb{G}^{b} \llbracket i f(B)\left\{\mathrm{C}_{1}\right\}$ else $\left\{\mathrm{C}_{2}\right\} \rrbracket \triangleq$ let $\mathbb{G}^{b} \llbracket \mathrm{C}_{1} \rrbracket=0-\mathrm{C}_{1}^{b}-\mathrm{O}$ and $\left.\mathbb{G}^{b} \llbracket \mathrm{C}_{2} \rrbracket=0 \rightarrow \mathrm{C}_{2}^{b}\right]-\mathrm{O}$

$$
\text { in } \mathrm{O} \underbrace{\mathrm{H}}_{\mathrm{H}=\mathrm{C}_{2}^{b}}
$$

$\mathbb{G}^{b} \llbracket$ while $(B)\{C\} \rrbracket \triangleq$ let $\mathbb{G}^{b} \llbracket \mathbb{C} \rrbracket=0 \rightarrow \mathrm{C}^{b} \bullet \circ$ in $0 \rightarrow \mathrm{C}^{b} \rightarrow 0$
Abstraction of Control Flow Graph!

Trace Semantics Partitioning

[^0]
\[

$$
\begin{aligned}
& \text { For each } \underline{\pi_{b}} \in \mathcal{B} \text { and all pairs }\left(\underline{\pi_{b_{1}}}, \underline{\pi_{b_{2}}}\right) \in \mathcal{B} \times \mathcal{B} \text {, we have } \\
& \text { - } \gamma^{a} \circ \gamma^{c} \circ \gamma^{d} \circ \gamma^{l}\left(\underline{\pi_{b}}\right) \cap \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket \subseteq \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket \\
& \text { - } \bigcup_{i \leq N}\left(\gamma^{a} \circ \gamma^{b}\left(\underline{\pi_{b_{i}}}\right) \cap \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket\right)=\mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket \\
& \text { - }\left(\gamma^{a} \circ \gamma^{b}\left(\underline{\pi_{b_{1}}}\right) \cap \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket\right) \cap\left(\gamma^{a} \circ \gamma^{b}\left(\underline{\pi_{b_{2}}}\right) \cap \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket\right)=\emptyset \\
& \zeta \\
& \hline \mathcal{B} \text { defines a partitioning on the trace semantics } \mathcal{S}^{t} \llbracket \mathrm{P} \rrbracket
\end{aligned}
$$
\]

Example

while(i <= m) \{
if $(x<y) x++$
else $y++$;
if $(\mathrm{p}>0)$
if $(\mathrm{q}>0) \mathrm{r}=\mathrm{p}+\mathrm{q} ;$
else $\mathrm{r}=\mathrm{p}-\mathrm{q}$;
else
if $(\mathrm{q}>0) \mathrm{r}=\mathrm{q}-\mathrm{p} ;$
else $r=-(p+q)$;
i++;
\}

$$
\begin{array}{ll}
(\mathrm{x}<\mathrm{y}) \cdot(\mathrm{p}>0) \cdot(\mathrm{q}>0), & \neg(\mathrm{x}<\mathrm{y}) \cdot(\mathrm{p}>0) \cdot(\mathrm{q}>0), \\
(\mathrm{x}<\mathrm{y}) \cdot(\mathrm{p}>0) \cdot \neg(\mathrm{q}>0), & \neg(\mathrm{x}<\mathrm{y}) \cdot(\mathrm{p}>0) \cdot \neg(\mathrm{q}>0), \\
(\mathrm{x}<\mathrm{y}) \cdot \neg(\mathrm{p}>0) \cdot(\mathrm{q}>0), & \neg(\mathrm{x}<\mathrm{y}) \cdot \neg(\mathrm{p}>0) \cdot(\mathrm{q}>0), \\
(\mathrm{x}<\mathrm{y}) \cdot \neg(\mathrm{p}>0) \cdot \neg(\mathrm{q}>0), & \neg(\mathrm{x}<\mathrm{y}) \cdot \neg(\mathrm{p}>0) \cdot \neg(\mathrm{q}>0) .
\end{array}
$$

Binary Decision Tree

Definition 2. A binary decision tree $t \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right)$ over the set \mathcal{B} of branch condition paths (with concretization $\gamma^{a} \circ \gamma^{c} \circ \gamma^{d} \circ \gamma^{\ell}$) and the leaf abstract domain $\mathbb{D}_{\ell}\left(\right.$ with concretization $\left.\gamma_{\ell}\right)$ is either (p) with p is an element of \mathbb{D}_{ℓ} and \mathcal{B} is empty or $\llbracket \mathrm{B}: t_{t}, t_{f} \rrbracket$ where B is the first element of all branch condition paths $\underline{\pi_{b}} \in \mathcal{B}$ and $\left(t_{t}, t_{f}\right)$ are the left and right subtree of t represent its true and false branch such that $t_{t}, t_{f} \in \mathbb{T}\left(\mathcal{B}_{\backslash \beta}, \mathbb{D}_{\ell}\right)\left(\beta \triangleq \mathrm{B}\right.$ or $\neg \mathrm{B}$ and $\mathcal{B}_{\backslash_{\beta}}$ denotes the removal of β and all branch conditions appearing before in each branch condition path in \mathcal{B})

$$
\llbracket \mathrm{B}_{1}: \llbracket \mathrm{B}_{2}:\left(p_{1}\right),\left(p_{2}\right) \rrbracket, \llbracket \mathrm{B}_{3}:\left(p_{3}\right),\left(p_{4}\right) \rrbracket \rrbracket
$$

Binary Decision Tree Abstract Domain Functor

Definition 4. A binary decision tree abstract domain functor is a tuple

$$
\left\langle\mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right) _{\equiv_{t}}, \sqsubseteq_{t}, \perp_{t}, \top_{t}, \sqcup_{t}, \Pi_{t}, \nabla_{t}, \Delta_{t}\right\rangle
$$

on two parameters, a set \mathcal{B} of branch condition paths and a leaf abstract domain \mathbb{D}_{ℓ} where

$$
\begin{aligned}
P, Q, \ldots & \left.\in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right)\right\rangle_{\equiv_{t}} \\
\sqsubseteq_{t} & \in \mathbb{T} \times \mathbb{T} \rightarrow\{\text { false, true }\} \\
\perp_{t}, \top_{t} & \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right) \\
\sqcup_{t}, \sqcap_{t} & \in \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T} \\
\nabla_{t}, \Delta_{t} & \in \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}
\end{aligned}
$$

abstract properties
abstract partial order infimum, supremum $\left(\forall P \in \mathbb{T}: \perp_{t} \sqsubseteq_{t} P \sqsubseteq_{t} \top_{t}\right)$
abstract join, meet
abstract widening, narrowing

Concretization

Definition 3. Let ρ be the concrete environment assigning concrete values $\rho(x)$ to variables x and $\llbracket e \rrbracket \rho$ for the concrete value of the expression e in the concrete environment ρ, the concretization of a binary decesion tree γ_{t} is either

$$
\gamma_{t}((\rho p)) \triangleq \gamma_{\ell}(p)
$$

when the binary decision tree can be reduced to a leaf or

$$
\begin{aligned}
\gamma_{t}\left(\llbracket \mathrm{~B}: t_{t}, t_{f} \rrbracket\right) \triangleq\{\rho \quad \mid & \llbracket \mathrm{B} \rrbracket \rho=\text { true } \Longrightarrow \rho \in \gamma_{t}\left(t_{t}\right) \wedge \\
& \left.\llbracket \mathrm{B} \rrbracket \rho=\text { false } \Longrightarrow \rho \in \gamma_{t}\left(t_{f}\right)\right\}
\end{aligned}
$$

when the binary decision tree is rooted at a decision node.

Binary Decision Tree Abstract Domain Functor

- The set \mathcal{B} of branch condition paths is built by the syntactic analysis from the control flow of the program. Hence the structure of the binary decision tree is finite and does not change in the data flow analysis.
- The leaf abstract domain \mathbb{D}_{ℓ} for the leaves could be any numerical or symbolic algebraic abstract domains such as polyhedra, ...

Binary Decision Tree Abstract Domain Functor

- The set \mathcal{B} of branch condition paths is built by the syntactic analysis from the control flow of the program. Hence the structure of the binary decision tree is finite and does not change in the data flow analysis.
- The leaf abstract domain \mathbb{D}_{ℓ} for the leaves could be any numerical or symbolic algebraic abstract domains such as polyhedra, ...
\cdots very different from other proposals where the shape of the decision tree evolves during the analysis e.g. (among many others)

Patrick Cousot, Radhia Cousot, Laurent Mauborgne:
A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 6200, 2010: 72-95.

Meet and Join

Given two binary decision tree $t_{1}, t_{2} \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right) \backslash\left\{\perp_{t}, \top_{t}\right\}$,

- Meet: for each pair (ℓ_{1}, ℓ_{2}) of leaves in $\left(t_{1}, t_{2}\right)$ where ℓ_{1} and ℓ_{2} are defined by the same branch condition path $\pi_{b} \in \mathcal{B}$.
$-\ell=\ell_{1} \Pi_{\ell} \ell_{2}$ using the meet Π_{ℓ} in the leaf abstract domain \mathbb{D}_{ℓ}.
- Join: for each pair $\left(\ell_{1}, \ell_{2}\right)$ of leaves in $\left(t_{1}, t_{2}\right)$ where ℓ_{1} and ℓ_{2} are defined by the same branch condition path $\underline{\pi_{b}} \in \mathcal{B}$.
$-\ell=\left(\ell_{1} \sqcup_{\ell} \ell_{2}\right) \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{1}\right) \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{2}\right) \Pi_{\ell} \ldots \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{n}\right)$ where $\underline{\pi_{b}}=$ $\beta_{1} \cdot \beta_{2} \cdot \ldots \cdot \beta_{n}$ and $\mathbb{D}_{\ell}(\beta)$ is the representation of β in \mathbb{D}_{ℓ} (when α_{ℓ} exists in the leaf abstract domain \mathbb{D}_{ℓ}, we can use $\alpha_{\ell}(\beta)$ instead).
\uparrow pairwise join and distribute over leaves

Inclusion and Equality Test

Given two binary decision tree $t_{1}, t_{2} \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right) \backslash\left\{\perp_{t}, T_{t}\right\}$,

- Inclusion test: comparing each pair $\left(\ell_{1}, \ell_{2}\right)$ of leaves in $\left(t_{1}, t_{2}\right)$ where ℓ_{1} and ℓ_{2} are defined by the same branch condition path $\pi_{b} \in \mathcal{B}$.
$-t_{1} \sqsubseteq_{t} t_{2}$ if $\ell_{1} \sqsubseteq_{\ell} \ell_{2}$ for all pairs of $\left(\ell_{1}, \ell_{2}\right)$,
- $t_{1} \not Z_{t} t_{2}$ otherwise.
- Equality test: $t_{1}=_{t} t_{2} \triangleq t_{1} \sqsubseteq_{t} t_{2} \wedge t_{2} \sqsubseteq_{t} t_{1}$.
- If the leaf abstract domain \mathbb{D}_{ℓ} has $=\ell$, we may use it directly.

Distribution over leaves

\qquad

Distribution over leaves

\qquad

Widening and Narrowing

Given two binary decision tree $t_{1}, t_{2} \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right) \backslash\left\{\perp_{t}, \top_{t}\right\}$ and $t_{1} \sqsubseteq_{t} t_{2}$,

- Widening $t_{1} \nabla_{\ell} t_{2}$: for each pair $\left(\ell_{1}, \ell_{2}\right)$ of leaves in $\left(t_{1}, t_{2}\right)$ where ℓ_{1} and ℓ_{2} are defined by the same branch condition path $\underline{\pi_{b}} \in \mathcal{B}$.
$-\ell=\left(\ell_{1} \nabla_{\ell} \ell_{2}\right) \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{1}\right) \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{2}\right) \Pi_{\ell} \ldots \Pi_{\ell} \mathbb{D}_{\ell}\left(\beta_{n}\right)$ where ∇_{ℓ} is the widening in the leaf abstract domain $\mathbb{D}_{\ell}, \underline{\pi_{b}}=\beta_{1} \cdot \beta_{2} \cdot \ldots \cdot \beta_{n}$ and $\mathbb{D}_{\ell}(\beta)$ is the representation of β in \mathbb{D}_{ℓ}.

\uparrow pairwise widen and distribute over leaves

- Narrowing $t_{2} \Delta_{t} t_{1}$: for each pair $\left(\ell_{1}, \ell_{2}\right)$ of leaves in $\left(t_{1}, t_{2}\right)$ where ℓ_{1} and ℓ_{2} are defined by the same branch condition path $\underline{\pi_{b}} \in \mathcal{B}$.
$-\ell=\ell_{2} \Delta_{\ell} \ell_{1}$ using the narrowing Δ_{ℓ} in the leaf abstract domain \mathbb{D}_{ℓ}.

Distribution over leaves

Reduction of Binary Decision Tree by an Abstract Property

Given a binary decision tree $t \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right)$ and an abstract property p, we define $t \Pi_{t} p$ as:

```
\mp@subsup{\perp}{t}{}}\mp@subsup{\Pi}{t}{}
    \perp
T}\mp@subsup{}{t}{}\mp@subsup{\Pi}{t}{}
t пt false
    # (p)
    \otimes
t }\mp@subsup{\Pi}{t}{}\mathrm{ true
    \triangleq
( p}\)\mp@subsup{\Pi}{t}{}p\quad\triangleq(\mp@subsup{p}{}{\prime}\mp@subsup{\Pi}{\ell}{}\mp@subsup{\mathbb{D}}{\ell}{}(p)
\llbracketB:\mp@subsup{t}{l}{\prime},\mp@subsup{t}{r}{}\rrbracket\mp@subsup{\sqcap}{t}{}p\triangleq\llbracket\textrm{B}:\mp@subsup{t}{l}{}\mp@subsup{\square}{t}{}\mp@subsup{\mathbb{D}}{\ell}{}(\textrm{B})\mp@subsup{\sqcap}{t}{}\mp@subsup{\mathbb{D}}{\ell}{}(p),\mp@subsup{t}{r}{}\mp@subsup{\Pi}{t}{}\mp@subsup{\mathbb{D}}{\ell}{}(\neg\textrm{B})\mp@subsup{\sqcap}{t}{}\mp@subsup{\mathbb{D}}{\ell}{}(p)\rrbracket
```


Test Transfer Function

$$
f_{T} \llbracket \mathrm{~B} \rrbracket t \triangleq t \Pi_{t} \mathrm{~B}
$$

Assignment Transfer Function

Given a binary decision tree $t \in \mathbb{T}\left(\mathcal{B}, \mathbb{D}_{\ell}\right)$, the assignment $\mathrm{x}=\mathrm{E}$ can be performed at each leaf in t by using the assignment transfer function of \mathbb{D}_{ℓ}.

Binary Decision Tree Construction

- In the pre-analysis
- On the fly during the analysis
- Unification

Reconstruction on Leaves

1. Collecting all leave properties in t, let it be $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$;
2. For each leaf in t, let $\frac{\pi_{b}}{}=\beta_{1} \cdot \beta_{2} \cdot \ldots \cdot \beta_{n}$ be the branch
condition path leading to it. We then calculate $p_{i}^{\prime}=p_{i} \Pi_{\ell}$
3. For each leaf in t, let $\pi_{b}=\beta_{1} \cdot \beta_{2} \cdot \ldots \cdot \beta_{n}$ be the branch
condition path leading to it. We then calculate $p_{i}^{\prime}=p_{i} \Pi_{\ell}$ $\left(\mathbb{D}_{\ell}\left(\beta_{1} \wedge \beta_{2} \wedge \ldots \wedge \beta_{n}\right)\right)$.
\uparrow assign and redistribute over leaves
4. For each leaf in t, update it with $p_{1}^{\prime} \sqcup_{\ell} p_{2}^{\prime} \sqcup_{\ell} \ldots \sqcup_{\ell} p_{n}^{\prime}$.

Tree Merging

1. Pick up a branch condition B.
2. Eliminate $B(\mathrm{~B}$ or $\neg \mathrm{B})$ from each branch condition path in \mathcal{B}.
3. For each subtree of the form $\llbracket B: t_{t}, t_{f} \rrbracket$, if t_{t} and t_{f} have identical decision nodes, replace it by $t_{t} \sqcup_{t} t_{f}$.
4. Otherwise, there are decision nodes existing only in t_{t} or t_{f}. For each of those decision nodes, (recursively) eliminate it by merging its subtrees. When no such decision node exists, we get t_{t}^{\prime} and t_{f}^{\prime}, and they must have identical decision nodes, so $\llbracket B: t_{t}, t_{f} \rrbracket$ can be replaced by $t_{t}^{\prime} \sqcup_{t} t_{f}^{\prime}$.

Example

```
x = 0; y = 0;
'1}\mathrm{ while (y >= 0) {
    if (x<= 50) y++;
    else y--;
    x++;
}
```


- $\mathrm{y}>=-1 \wedge \mathrm{x}-\mathrm{y}>=0 \wedge \mathrm{x}+52 \mathrm{y}>=0$ by Apron
- We choose the polyhedra abstract domain as the leaf abstract domain
- We have $\mathcal{B}=\{\mathrm{x}<=50, \neg(\mathrm{x}<=50)\}$
- Initially, $t_{0}=\llbracket \mathrm{x} \leq 50:(\mathrm{x}=0 \wedge \mathrm{y}=0),\left(\perp_{\ell}\right) \rrbracket$

A small example

\qquad

Conclusion

Conclusion

- We need more precise abstractions than the Control Flow Graph (the usual starting point)
- Binary Decision Tree Abstraction:
- Disjunctive refinement
- Cost / precision ratio adjustable

Thanks \& Questions?

[^0]: Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick \& N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch.
 0 , pages $303-342$, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981 . 10, pages 303-342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.
 sas 2015, $9-11$ seplember 2015, saint Malo. Fance

