LP/SDP
 ALgorithms

CLAIRE MATHIEU
Brown University

Many optimization

 problems can be writtenas integers programs

- Traveling salesman tour, vehicle routing
- Steiner tree, connecting
- Clustering, cuts
- Coloring
- Short paths
- Max satisfiability

Integer programming: NP-hard

Linear programming: in P

Maximize $(6 x+5 y)$
such that:
$2 x-5 y \leq 6$
$6 x+4 y \leq 30$
$x+4 y \leq 16$
$x, y \geq 0$
x, y integers (IP)
x, y real (LP)

Function to maximize: $f(x, y)=6{ }^{*} x+5^{*} y$ Optimum LP solution $(x, y)=(2.4,3.4)$

LP Algo

- SIMPLEX

STEEPEST DESCENT WORST CASE EXP
FAST IF SMOOTH

- ELLIPSOID METHOD

POLYNOMIAL TIME

ORACLE-BASED:
Q: "X FEASIBLE?"
A: "YES" OR "NO SINCE $3 X_{1}+2 Y_{2}+Y_{3}<10 "$

- APPROX IN N POLYLOG PACKING/COVERING

LP PLAN

- LINEAR PROGRAMMING
- USING LP PRIMAL FOR ALGORITHM: MULTIWAY CUT
- LP DUALITY
- USING LP DUAL FOR ANALYSIS: VEHICLE ROUTING
- USING LP DUAL FOR ANALYSIS: CORRELATION CLUSTERING
- USING LP PRIMAL-DUAL FOR ONLINE ALGORITHM: SKI RENTAL

What's LP GOOD FOR?

Approximation algorithm

1. Solve LP relaxation instead of IP

With luck, it's integral
(ex: bipartite matching, totally unimodular matrices)
If not,
2. "Round" solution to a feasible integer solution

Analysis

3. Relaxation implies that LP profit \geq OPT integer profit 4. Show that profit is not much less than LP profit

THREE-WAY CUT

- INPUT: GRAPH, AND THREE "TERMINAL" VERTICES
- OUTPUT: MINIMUM SET OF EDGES DISCONNECTING TERMINALS FROM ONE ANOTHER
REMARK: IF 3 REPLACED BY 2, THEN?

3-way cut

IP FOR THREE WAY CUT

Three colors x, y, z
For each 3-coloring of the vertices, count the number of bichromatic edges and minimize that

Minimize $\quad \Sigma_{\text {edges e }} \mathrm{d}_{\mathrm{e}}$ subject to:
For vertex u : $x_{u}+y_{u}+z_{u}=1$ (3-coloring)
$x_{t 1}=1, y_{t 2}=1, z_{t 3}=1 \quad$ (one color per terminal)
For edge $e=u v$: $d_{u v} \geq(1 / 2)\left(\left|x_{u}-x_{v}\right|+\left|y_{u}-y_{v}\right|+\left|z_{u}-z_{v}\right|\right)$
$x_{u}, y_{u}, z_{u}, d_{u v} \geq 0$
$\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}, \mathrm{d}_{\mathrm{uv}}$ integers

LP RELAXATION

Minimize $\quad \Sigma_{\text {edgese e }} \mathrm{d}_{\mathrm{e}}$
For vertex u : $x_{u}+y_{u}+{ }_{u}=1 \quad$ (3-coloring)
$x_{\mathrm{t} 1}=1, y_{\mathrm{t} 2}=1, y_{\mathrm{t} 3}=1 \quad$ (one color per terminal)
For edge e=uv: $d_{u v} \geq(1 / 2)\left(\left|x_{u}-x_{v}\right|+\left|y_{u}-y_{v}\right|+\left|u^{-}{ }_{v}\right|\right)$
$x_{u}, y_{u}, z_{u}, d_{u v} \geq 0$

Associate to u point $\left(x_{u}, y_{u}, z_{u}\right)$ in triangle

$$
\{x+y+z=1, x, y, z \geq 0\}
$$

Terminals at corners
Embedding of G
LP goal: $\min l_{1}$ length of edges in embedding

THE ROUNDING PROBLEM

1. Solve LP relaxation gives optimal l_{1} embedding
2. "Round" solution to 3-way cut:
how?
... so that it can be analyzed...
3. Relaxation implies that
l_{1} length of embedding $\leq \mathrm{OPT}$
4. Let's round so that cost of 3 -way cut \leq (small)* l_{1} length of embedding

HOW TO ROUND

- GREEDY: ROUND MAX $\left(X_{U}, Y_{U}, Z_{U}\right)$ TO 1, AND THE OTHER TWO COORDINATES TO O
- INDEPENDENT: ROUND TO

100 W.PROB. X_{U},
O10 W.PROB. Y_{U},
001 W.PROB. Z_{u}

- GEOMETRIC: BETTER

GEOMETRIC ROUNDING

- Pick random line parallel to triangle side: separates one terminal
- Pick random line parallel to triangle side: use it to separate the remaining two terminals

ANALYSIS (1/2)

Prob(e crosses cut)
Prob(e crosses red or green line) \leq
2 prob(e crosses red) \leq
(4/3)d

ANALYSIS (2/2)

$\mathrm{E}(\operatorname{cost}($ output $))=$
 $E($ number of edges cut $)=$
 Σ_{e} prob(e cut) \leq
 $(4 / 3) \Sigma_{e} d_{e} \leq$
 (4/3)OPT

[Geometric reasoning gives better cut: (12/11)]
OPEN: finding "right" geometric cut for k-way cut

LP ALGORITHMS

- VERTEX COVER AND SET COVER
- Scheduling
- Routing
- 3-SAT

ALGS REQUIRE:
GOOD LP RELAXATION
GOOD ROUNDING

LP DUALITY

$$
\begin{aligned}
& \text { Minimize } 7 x+y+5 z \\
& \quad \text { subject to: } \\
& x-y+3 z \geq 10 \\
& 5 x+2 y-z \geq 6 \\
& x, y, z \geq 0
\end{aligned}
$$

Upper bound: exhibit feasible solution...

Upper bound
(x, y, z) $=(2,1,3)$ feasible ...so: OPT ≤ 30

Lower bound
Minimize $7 x+y+5 z$
subject to:

$$
\begin{aligned}
& x-y+3 z \geq 10 \\
& 5 x+2 y-z \geq 6 \\
& x, y, z \geq 0
\end{aligned}
$$

For example, can we have OPT ≤ 16 ?

Upper bound
$(x, y, z)=(2,1,3)$ feasible ...so: OPT ≤ 30

Lower bound

$(x-y+3 z)+(5 x+2 y-z) \geq 10+6$
$6 x+y+2 z \geq 16$
$7 x+y+5 x$ has larger coefficients
... so: OPT ≥ 16

Best lower bound
Maximize 10a+6b
$7 \geq a+5 b$
$1 \geq-a+2 b$
$5 \geq 3 a-b$
$a, b \geq 0$

LP duality theorem:
Both LPs have same value

What's LP duality good for?

$\mathrm{N}=\mathrm{n}^{2}$ customers
Vehicle of capacity $2 n$ Minimize l_{1} length of tours

Is this optimal?

IP FOR VEHICLE ROUTING

Variable x_{t} for each possible tour t visiting $\leq 2 \mathrm{n}$ customers
Length w_{t} of tour t
$\operatorname{Min} \Sigma_{\mathrm{t}} \mathrm{w}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}$
subject to
For customer c: $\quad \Sigma_{\mathrm{t} \text { visiting c }} \mathrm{x}_{\mathrm{t}} \geq 1$
$\mathrm{x}_{\mathrm{t}} \geq 0$
x_{t} integer

LP PRIMAL-DUAL

$\operatorname{Min} \Sigma_{t} w_{t} x_{t}$ subject to
For customer c:

$$
\Sigma_{\mathrm{t} \text { visiting } \mathrm{c}} \mathrm{x}_{\mathrm{t}} \geq 1
$$

$$
x_{t} \geq 0
$$

Know solution
of value (3/2)N
$\operatorname{Max} \Sigma_{c} y_{c}$
subject to
For tour t :
$\Sigma_{\mathrm{c} \text { visited by } \mathrm{t}} \mathrm{y}_{\mathrm{c}} \leq \mathrm{w}_{\mathrm{t}}$

Exhibit dual feasible solution
of value $(3 / 2) \mathrm{N}$
$\operatorname{Max} \Sigma_{c} y_{c}$
subject to
For tour t:
$y_{c} \geq 0$

FEASIBLE DUAL

Feasible?
Fix tour t
Let $\mathrm{L}=$ length of t in NorthEast
L customers have $y_{c}=2$ $2 n-L$ have $y_{c}=1$

OPEN: replace grid by N random uniform points

OTHER USES OF LP DUALITY

- LP PRIMAL USED FOR ALGORITHM
- LP DUAL USED FOR ANALYSIS

CORRELATION CLUSTERING

Clustering

- ORGANIZE DATA IN CLUSTERS
- UBIQUITOUS
- MANY DEFINITIONS
- MODEL IS APPLICATION-DEPENDENT

ALGORITHMIC PROBLEM

- Input: complete graph, each edge is labeled "similar" or "dissimilar"
- Output: partition into clusters. Objects inside clusters are similar to one another
- Objective: minimize input/output discrepancies

Two types of inconsistencies

GREEDY ALGORITHM

- PICK A VERTEX U ARBITRARILY
- CREATE A CLUSTER C CONTAINING ALL THE VERTICES SIMILAR TO U, ALONG WITH U
- REMOVE C, AND REPEAT

GREEDY CAN BE BAD

Random Greedy

PICK VERTEX U UNIFORMLY AT RANDOM

THEOREM:
RANDOM GREEDY IS A 3APPROXIMATION

ANALYSIS: BOUNDING OPT

OPTz

NUMBER OF DISJOINT BAD TRIANGLES

BOUNDING OPT:

BAD TRIANGLES PACKING

- Give each bad triangle t a weight a_{t}
- Such that each edge carries total weight at most 1
$\Sigma_{\text {t containinge }} \mathrm{a}_{\mathrm{t}} \leq 1$
- Then $\Sigma_{\mathrm{t}} \mathrm{a}_{\mathrm{t}} \leq O P T$
$.1+.1+.2+.2+.3 \leq 1$

ANALYSIS: BOUNDING

- Let $Z_{t}=$ whether Greedy destroys bad triangle t by picking one of its three vertices
- Then $\operatorname{Cost}($ Greedy $)=\Sigma_{t} Z_{t}$
k bad triangles containing e Sum Z_{t} for those triangles Greedy picks a random vertex

$\Sigma_{\mathrm{t}} Z_{\mathrm{t}}=1$

1

1

1

k

k

Weight carried by e: $E\left(\Sigma_{t} Z_{t}\right) \leq(1+\ldots+1+k+k) /(k+2) \leq 3$
So $a_{t}=E Z_{t} / 3$ is a packing of bad triangles $\mathrm{E}(\operatorname{Cost}($ Greedy $))=\Sigma_{\mathrm{t}} \mathrm{EZ} \mathrm{t}_{\mathrm{t}} \leq 3$ OPT Hidden: linear programming duality

Analysis: IP

$x_{u v}=1$ if u and v are in same cluster

\[

\]

u, v in same cluster
v, w in same cluster
u, w in different clusters
is inconsistent

Using both Primal and Dual

- Dual is implicit in rounding analysis
- Primal is implicit in Alg design

Why not do both together?
Primal-dual algorithms
Steiner tree and Steiner forest
Facility location and k-median

OnLine Ski Rental

- BUYING SKIS: B € ONCE.
- RENTING SKIS: $1 €$ PER DAY.

ONLINE:
NUMBER OF SKI DAYS NOT KNOWN IN ADVANCE.
ONE ALGORITHM:
RENT, RENT, RENT, BUY.
GOAL:
Minimize total cost.

ONLINE IP

$$
x=\left\{\begin{array}{l}
1-\text { Buy } \\
0-\text { Don't Buy }
\end{array} z_{i}=\left\{\begin{array}{l}
1-\text { Rent on day } \mathbf{i} \\
0-\text { Don't rent on day } i
\end{array}\right.\right.
$$

$$
\min B x+\sum_{i=1}^{k} z_{i}
$$

SUBJECT TO:
FOR EACH DAY I: $x+z_{i} \geq 1$

$$
x, z_{i} \in\{0,1\}
$$

Online IP: Constraints and variables arrive one bv one

LP Relaxation \& Dual

P: Primal

$$
\min B x+\sum_{i=1}^{k} z_{i}
$$

For each day i: $x+z_{i} \geq 1$

Online LP:

D: Dual

$$
\max \sum_{i=1}^{k} y_{i}
$$

For each day i: $y_{i} \leq 1$

$$
\sum_{i=1}^{k} y_{i} \leq B
$$

- Constraints \& variables arrive one by one.
- Requirement: Satisfy constraints upon arrival.
- Fractional interpretation: $x=.5$ means buy one ski, rent the other one

ALGORITHM FOR ONLINE LP

P: Primal Covering

$$
\min B x+\sum_{i=1}^{k} z_{i}
$$

For each day i: $x+z_{i} \geq 1$

$$
x, z_{i} \geq 0
$$

D: Dual Packing

$$
\max \sum_{i=1}^{k} y_{i}
$$

For each day i: $y_{i} \leq 1$

$$
\sum_{i=1}^{k} y_{i} \leq B
$$

Initially $x \leftarrow 0$
Each day (new variable z_{i}, new constraint y_{i}):
if $x<1$: (skis not yet fully bought)

- $\mathrm{z}_{\mathrm{i}} \leftarrow 1-\mathrm{x}$ (rent necessary fraction)
- $x \leftarrow x+\Delta x$ (buy a little more)
- $y_{i} \leftarrow 1$ (update dual, too!)

A 3-POINT PLAN

P: Primal

$$
\min B x+\sum_{i=1}^{k} z_{i}
$$

On day i: $\quad x+z_{i} \geq 1$

$$
x, z_{i} \geq 0
$$

D: Dual

$$
\max \sum_{i=1}^{k} y_{i}
$$

On day i: $\quad y_{i} \leq 1$

$$
\begin{gathered}
\sum_{i=1}^{k} y_{i} \leq B \\
y_{\mathrm{i}} \leq 0
\end{gathered}
$$

1. PRIMAL IS FEASIBLE.
2. IN EACH ITERATION, $\Delta P \leq(1+C) \Delta D$.
3. DUAL IS FEASIBLE.

THEN: OUTPUT COST $=\Sigma \Delta \mathrm{P}$
$\leq(1+C)$ DUAL BY 2.
$\leq(1+c)$ OPT LP VALUE BY LP DUALITY THEOREM
$\leq(1+c)$ IP
BY LP RELAXATION

Online LP Algorithm:

On day i:
if $x<1$:

$$
\begin{aligned}
& z_{i} \leftarrow 1-x \\
& x \leftarrow x+\Delta x \\
& y_{i} \leftarrow 1
\end{aligned}
$$

1. Why is Primal feasible?

On day i: $\quad x+z_{i} \geq 1$

$$
x, z_{i} \geq 0
$$

Online LP Algorithm:

On day i:
if $x<1$:

$$
\begin{aligned}
& z_{i} \leftarrow 1-x \\
& x \leftarrow x+\Delta x \\
& y_{i} \leftarrow 1
\end{aligned}
$$

2. Why is $\Delta P \leq(1+c) \Delta D$?

... it depends on Δx. $\Delta x=x / B+c / B$ works.
```
Online LP Algorithm:
On day i:
    if \(x<1\) :
        \(z_{i} \leqslant 1-x\)
        \(x \leftarrow x(1+1 / B)+c / B\)
        \(y_{i} \leftarrow 1\)
```

3. Why is Dual feasible?

$$
\begin{gathered}
\text { D: Dual } \\
\text { On day } \mathrm{i}: y_{i} \leq 1 \\
\sum_{i=1}^{k} y_{i} \leq B \\
\mathrm{y}_{\mathrm{i}} \geq 0
\end{gathered}
$$

\ldots it depends on c.
$c=1 /(e-1)$ works
Algorithm e/(e-1) competitive

ONLINE IP ALGORITHM

- Choose (offline) d uniformly in $[0,1]$
- Solve online LP
- Set (online) $x=1$ on day of "bin" d falls in
- Set (online) $z_{i}=1$ until then, $z_{i}=0$ after

Analysis:

- Prob. That $x=1$: LP value of x
- Prob. of rental on day i: LP value of z_{i}

Competitive ratio $=$ that of online LP Alg
e/(e-1) comnetitive alnorithm for ski rental

ONLINE PRIMAL-DUAL

- ONLINE SET COVER
- Virtual circuit routing
- AD AUCTIONS
- WEIGHTED CACHING

MAXCUT BASICS

Input: graph
Goal: cut maximum number of edges

Fact: NP-hard

Fact:

Greedy cuts half of the edges:
(1/2) approximation.

Question: how to do better?

IP MODEL?

$x_{i}=0$ on one side, 1 on the other side of cut
$\operatorname{Max} \Sigma_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}$
$\mathrm{x}_{\mathrm{i}}=0$ or 1
$\mathrm{~d}_{\mathrm{ij}} \leq\left|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right|$

$$
\begin{aligned}
& \operatorname{Max}^{2} \mathrm{~S}_{\mathrm{e}} \\
& \mathrm{~d}_{\mathrm{ij}}=0 \text { or } 1 \\
& d_{\mathrm{ij}}+d_{\mathrm{jk}}+d_{\mathrm{k} \mathrm{i}} \leq 2 \\
& d_{\mathrm{ij}} \leq d_{\mathrm{jk}}+d_{\mathrm{ki}}
\end{aligned}
$$

LP Attempts

$$
\Sigma \mathrm{d}_{\mathrm{ij}} \leq 6
$$

Integrality gap $=2$ Add pentagonal constraints: does not help

Add odd cycle constraints: does not help

Add bounded support constraints: does not help

Bounded degree expander

$\operatorname{Max} \Sigma_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}$ $\mathrm{x}_{\mathrm{i}}=0$ or 1 $\mathrm{d}_{\mathrm{ij}} \leq\left|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right|$

$\operatorname{Max} \sum_{\mathrm{ij} \text { inE }}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}$
$\mathrm{x}_{\mathrm{i}}=0$ or 1
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}} \mathrm{in} 1-\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$ $x_{i}=-1$ or 1
$\operatorname{Max}(1 / 4) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}$ $\mathrm{x}_{\mathrm{i}}=-1$ or 1
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}} \mathrm{inE}{ }^{1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}}$ $\left|v_{i}\right|^{2}=1$
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in E 1- y_{ij} $y_{i i}=1$
Y positive semidefinite

M POSITIVE SEMI-DEFINITE

M real symmetric.
Three equivalent conditions:

- $\mathrm{M}=\mathrm{V}^{\top} \mathrm{V}$
- All eigenvalues of M are ≥ 0
- For every vector a:

$$
\mathrm{a}^{\top} \mathrm{Ma} \geq 0
$$

MAXCUT ALgOrithm

1. Solve sdp relaxation How?

$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij} \text { in }} 1-\mathrm{y}_{\mathrm{ij}}$ $y_{i i}=1$
Y positive semidefinite
2. ROUND RESULT TO GET CUT

$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in E 1- y_{ij} $y_{i i}=1$
 Y symmetric
 For every vector $a: a^{\top} Y a \geq 0$

Ellipsoid method
Polynomial time
Oracle-Based:
Q: "Y feasible?"

A: "yes" or "No since [linear inequality]"

$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in $\mathrm{E} 1-\mathrm{y}_{\mathrm{ij}}$
 $y_{i i}=1$
 Y symmetric
 For every vector $\mathrm{a}: \mathrm{a}^{\top} \mathrm{Y} \mathrm{a} \geq 0$

Oracle-Based:
Q: "Y feasible?"
A: "yes" or "No since [linear inequality]"
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in E $1-\mathrm{y}_{\mathrm{ij}}$
$y_{i i}=1$
Y symmetric
eigenvalues ≥ 0
Oracle: Compute eigenvalues
if $\alpha<0$, compute eigenvector $u: u^{\top} Y u=\alpha|u|^{2}<0$

MAXCUT Algorithm

1. SOLVE SDP RELAXATION

$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in E 1- y_{ij} $y_{i i}=1$
Y positive semidefinite
2. ROUND RESULT TO GET CUT How?
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}} 1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
$\left|v_{i}\right|^{2}=1$
Vertices \longrightarrow Unit vectors

Cut

ROUNDING THE SDP

If v_{i} and v_{j} are close then i and j should end up on same side of graph cut

Take a random hyperplane H
 Through the center of the sphere.

Graph cut:
$L=\left\{i: v_{i}\right.$ is above $\left.H\right\}$
$R=\left\{i: v_{i}\right.$ is below $\left.H\right\}$

MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij}}$ in E - y_{ij}
$y_{i i}=1$
Y positive semidefinite

2. ROUND RESULT TO GET CUT
 $\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}} 1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
 $\left|v_{i}\right|^{2}=1$

Take random hyperplane H through center of sphere.
Output: $L=\left\{i: v_{i}\right.$ is above $\left.H\right\}, R=\left\{i: v_{i}\right.$ is below $\left.H\right\}$

ANALYSIS

SDP relaxation Rounding

$\mathrm{E}($ cut size $)=\Sigma_{\mathrm{ij} \text { in } \mathrm{E}} \operatorname{Pr}(\mathrm{ij}$ in cut $)$
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}} 1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$ $\left|v_{i}\right|^{2}=1$

We have:
OPT $\geq(1 / 2) \Sigma_{\mathrm{ij}}$ in $\mathrm{E} 1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
$\operatorname{Pr}(\mathrm{ij}$ in cut $)=\operatorname{Pr}\left(\mathrm{H}\right.$ between v_{i} and $\left.\mathrm{v}_{\mathrm{j}}\right)$

For random H this equals ...

SDP relaxation

Rounding
E (cut size)=
$\operatorname{Max}(1 / 2) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}} 1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
$\Sigma_{\mathrm{ij} \text { in } \mathrm{E}} \operatorname{Pr}\left(\mathrm{H}\right.$ between v_{i} and $\left.\mathrm{v}_{\mathrm{j}}\right)=$ $\left|v_{i}\right|^{2}=1$

We have:
$\operatorname{OPT} \geq(1 / 2) \Sigma_{\mathrm{ij} \text { in } \mathrm{E}} 1-\cos \left(\theta_{\mathrm{ij}}\right)$

$$
\max _{\theta} \frac{\theta / \pi}{1-\cos (\theta)}=0.878 \ldots
$$

SDP Algorithms

- MaxCut
- Max-k-Sat
- Coloring
- Scheduling (completion times)
- CSP
- Sparsest Cut

Hardness of MaxCut

Assuming $\mathrm{P} \neq \mathrm{NP}$ and UGC, 0.878 is the best possible approximation ratio for MaxCut

Unique Games Conjecture (UGC)

Input: 2 variables per equation

$$
\begin{gathered}
7 x+2 y=11(\bmod 23) \\
5 x+3 z=8(\bmod 23) \\
\ldots \\
\ldots . \\
7 z+w=14(\bmod 23)
\end{gathered}
$$

Goal: maximize number of satisfied equations
UGC Conjecture: NP-hard to distinguish between answer >99\% and answer <1\%.
Liv. Lorn lorgo NIDhord to dictinnitich 1.ofrom.

Uses of UGC

Problem	Best Approximation Algorithm	NP Hardness	Unique Games Hardness
Vertex Cover	$\mathbf{2}$		
Max CUT	0.878	1.36	$\mathbf{2}$
Max 2-SAT	0.9401	0.941	0.878
SPARSEST CUT	$\sqrt{\log n}$		0.9401
Max k-CSP	$\Omega\left(k / 2^{k}\right)$	$O\left(2^{\sqrt{k}} / 2^{k}\right)$	$O\left(k / 2^{k}\right)$

UGC hardness results are intimately connected to the limitations of Semidefinite Programming

- Multiway cut: Calinescu, Karloff, Rabani 1998, Karger, Klein, Stein, Thorup, Young 1999
- Vehicle routing: work in progress
- Correlation clustering: Ailon Charikar Newman 2005
- Online ski rental: by primal-dual, Buchbinder Naor 2009
- Maxcut: Goemans Williamson 1994
- UGC: Khot 2002
- Hardness of MaxCut: Khot Kindler Mossel O'Donnel 2005

Foundational: LP+randomized rounding (Raghavan Thompson 1988), primal-dual (Aggarwal Klein Ravi, Goemans Williamson), SDP (Goemans Williamson)

Updated some slides from Neal Young, LP example from Vazirani's textbook, slides from Seffi Naor, and a couple of slides from Raghavendra.

