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Many optimization
problems can be written
as integers programs

 Traveling salesman
tour, vehicle routing

 Steiner tree, connecting
 Clustering, cuts
 Coloring
 Short paths
 Max satisfiability
 …



Integer programming: NP-hard
Linear programming: in P

Maximize (6x+5y)

such that:
2x-5y≤6
6x+4y≤30
x+4y≤16
x,y≥0
x,y integers (IP)
x,y real (LP)



LP Algorithms
 Simplex
Steepest descent
Worst case exp
Fast if smooth
 Ellipsoid method
Polynomial time
Oracle-Based:
Q: “x feasible?”
A: “yes” or “No since

3x1+2y2+y3<10”
 Approx in n polylog

packing/covering



LP Plan

 Linear programming
 Using LP primal for algorithm:

multiway cut
 LP duality
 Using LP dual for analysis: vehicle

routing
 Using LP dual for analysis:

Correlation clustering
 Using LP Primal-dual for online

algorithm: ski rental



1. Solve LP relaxation instead of IP
With luck, it’s integral
(ex: bipartite matching, totally unimodular matrices)
If not,
2. “Round” solution to a feasible integer solution

Approximation algorithm

Analysis

3. Relaxation implies that LP profit ≥ OPT integer profit
4. Show that profit is not much less than LP profit

What’s LP good for?



Three-Way Cut

 Input: Graph, and three
“terminal” vertices

 Output: minimum set of edges
disconnecting terminals from
one another

Remark: if 3 replaced by 2, then?





IP for three way cut

Minimize    Σ edges e  de
subject to:

For vertex u: xu+yu+zu=1                (3-coloring)
xt1=1, yt2=1, zt3=1         (one color per terminal)
For edge e=uv: duv≥(1/2)(|xu-xv|+|yu-yv|+|zu-zv|)
xu,yu,zu,duv≥0
xu,yu,zu,duv integers

Three colors x,y,z
For each 3-coloring of the vertices, 
count the number of bichromatic edges
and minimize that



LP relaxation
Minimize    Σ edges e  de

subject to:
For vertex u: xu+yu+zu=1                (3-coloring)
xt1=1, yt2=1, zt3=1         (one color per terminal)
For edge e=uv: duv≥(1/2)(|xu-xv|+|yu-yv|+|zu-zv|)
xu,yu,zu,duv≥0

Associate to u  point (xu,yu,zu) in triangle
 {x+y+z=1,x,y,z≥0}

Terminals at corners
              Embedding of G

LP goal: min l1 length of edges in embedding



The rounding problem

1. Solve LP relaxation gives optimal  l1 embedding 
2. “Round” solution to 3-way cut: 
                                      how?
… so that it can be analyzed…

3. Relaxation implies that

         l1 length of embedding ≤ OPT

4. Let’s round so that
      cost of 3-way cut ≤ (small)*l1 length of embedding





How to round
 Greedy: round max(xu,yu,zu) to 1, and

the other two coordinates to 0

 Independent: round to

100 w.prob. xu,

010 w.prob. yu,

001 w.prob. zu

 Geometric: better



Geometric rounding

 Pick random line parallel to triangle
side: separates one terminal

 Pick random line parallel to triangle
side: use it to separate the remaining
two terminals

choose 
one 
direction

choose one point along edge



Analysis (1/2)
Prob(e crosses cut)≤
Prob(e crosses red or green line)≤
2 prob(e crosses red)≤
(4/3)d



Analysis (2/2)

E(cost(output)) =
E(number of edges cut) =

Σeprob(e cut) ≤
(4/3)Σede ≤

(4/3)OPT

[Geometric reasoning gives better cut: (12/11)]

OPEN: finding “right” geometric cut for k-way cut



LP Algorithms

 Vertex cover and set cover

 Scheduling

 Routing

 3-sat

 …

Algs require:

Good LP relaxation

Good rounding



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound: 
exhibit feasible solution…

LP Duality



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound
(x,y,z)=(2,1,3) feasible
…so: OPT≤30

Lower bound
For example,
can we have OPT ≤ 16?



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound
(x,y,z)=(2,1,3) feasible
…so: OPT≤30

Lower bound
(x-y+3z)+(5x+2y-z)≥10+6
6x+y+2z ≥ 16
7x+y+5x has larger coefficients
… so: OPT ≥ 16

Best lower bound
Maximize 10a+6b
7 ≥ a+5b
1 ≥ -a+2b
5 ≥ 3a-b
a,b ≥ 0

LP duality theorem:
Both LPs have same value

times a
times b



What’s LP duality good for?

n
depot

n

N=n2 customers
Vehicle of capacity 2n
Minimize l1 length of tours



Is this optimal?

Length=N+n(n-1)/2
About (3/2)N



IP for vehicle routing
Variable xt for each possible tour t visiting ≤ 2n customers
Length wt of tour t

Min Σt wtxt
subject to
For customer c:   Σ t visiting c xt ≥ 1
xt ≥0
xt integer



LP primal-dual

Min Σt wtxt
subject to

For customer c:
  Σ t visiting c xt ≥ 1

xt ≥0

Max Σc yc
subject to

For tour t:
  Σ c visited by t yc ≤ wt

yc ≥0

Know solution
of value (3/2)N

Exhibit dual feasible
solution
of value (3/2)N



Feasible dual
Max Σc yc

subject to
For tour t:

  Σ c visited by t yc ≤ wt
yc ≥0

yc=1

yc=2

Feasible?
Fix tour t
Let L=length of t in NorthEast
L customers have yc=2
2n-L have yc=1 ✔

OPEN: replace grid by N random uniform points



Other uses of LP duality

 LP primal used for algorithm

 LP dual used for analysis

Correlation clustering



Clustering

 Organize data in clusters

 Ubiquitous

 Many definitions

 Model is application-dependent





Algorithmic Problem
 Input: complete graph, each edge is

labeled “similar” or “dissimilar”
 Output: partition into clusters. Objects

inside clusters are similar to one
another

 Objective: minimize input/output
discrepancies

=

≠

Two types of inconsistencies



Greedy Algorithm

 Pick a vertex u arbitrarily

 Create a cluster C containing
all the vertices similar to u,
along with u

 Remove C, and repeat



Greedy can be bad

≠

=



Random Greedy

Pick vertex u uniformly at random

Theorem:

Random Greedy is a 3-
approximation



Analysis: Bounding OPT

OPT≥

number of
disjoint bad
triangles

≠

==



Bounding OPT:
bad triangles packing

 Give each bad triangle t
a weight at

 Such that each edge
carries total weight at
most 1

Σ t containing e at ≤ 1
 Then Σtat≤OPT

.1+.1+.2+.2+.3≤1

.1
.1

.2

.2
.3



Analysis: Bounding
Greedy

 Let Zt=whether Greedy destroys bad triangle t by
picking one of its three vertices

 Then Cost(Greedy)=Σ tZt

Rest Rest

u u
or

these edges cost 1



e

e ee e e e

k bad triangles containing e
Sum Zt for those triangles

Greedy picks a random vertex

ΣtZt =1 1 1 1 k k

Weight carried by e: E(ΣtZt)≤(1+…+1+k+k)/(k+2)≤3
So at=EZt /3 is a packing of bad triangles 
E(Cost(Greedy))= ΣtEZt ≤ 3 OPT 
Hidden: linear programming duality



Analysis: IP
xuv= 1 if u and v are in same cluster

Min      Σuv dissimilar xuv+Σuv similar (1-xuv)
Subject to

for all u,v,w :     xuv+xvw+(1-xuw)≤2       (uvw consistent)
                         xuv  is 0 or 1

u

v

w

u,v in same cluster
v,w in same cluster
u,w in different clusters
is inconsistent



Using both Primal and Dual

 Dual is implicit in rounding analysis
 Primal is implicit in Alg design
             Why not do both together?

Primal-dual algorithms
Steiner tree and Steiner forest
Facility location and k-median
…



Online Ski Rental

 Buying skis: B € once.
 Renting skis: 1€ per day.

Online:
Number of ski days not known in advance.
One Algorithm:
Rent, rent, rent, buy.
Goal:
Minimize total cost.



Online  IP

Subject to:

For each day i:

1 - Rent on day i          

0 - Don't rent on day i 
i
z

!
= "
#

1 - Buy          

0 - Don't Buy
x

!
= "
#

1

min

k

i

i

Bx z

=

+!

1
i

x z+ !

, {0,1}
i

x z !
Online IP: Constraints and variables arrive one by one 



LP Relaxation & Dual

Online LP:
• Constraints & variables arrive one by one.
• Requirement: Satisfy constraints upon arrival.
• Fractional interpretation: x=.5 means buy one ski, rent

the other one

D: Dual 

For each day i:
1

min

k

i

i

Bx z

=

+!

1
i
y !

, 0
i

x z !

1

max

k

i
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y
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!

1
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1

k

i

i

y B
=

!"

P: Primal 

For each day i:

yi≥0



Algorithm for online LP

Initially x 0
Each day (new variable zi, new constraint yi):
   if x<1: (skis not yet fully bought)

 zi  1-x  (rent necessary fraction)
 x    x + Δx    (buy a little more)
 yi  1 (update dual, too!)

D: Dual Packing

For each day i:
1

min

k

i

i

Bx z
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i
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, 0
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P: Primal Covering

For each day i:

yi≥0



A 3-point plan

1. Primal is feasible.
2. In each iteration, ΔP ≤ (1+ c)ΔD.
3. Dual is feasible.
          Then:    Output cost =Σ ΔP
≤ (1+c) Dual                  by 2.
≤ (1+c) Opt LP value by LP duality theorem
≤ (1+c) IP                         by LP relaxation
              Algorithm is (1+ c)-competitive ✔

D: Dual 

On day i:
1

min

k

i

i
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=
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P: Primal 

On day i:

yi≥0



1. Why is Primal feasible?

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x +Δx
       yi1

, 0
i

x z !

1
i

x z+ !

, 0
i

x z !

1
i

x z+ !On day i:



2. Why is ΔP ≤ (1+ c)ΔD?

… it depends on Δx.
Δx=x/B+c/B works.

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x+Δx
       yi1

D: Dual 

1

min

k

i

i

Bx z

=

+!
1

max

k

i

i

y
=

!

P: Primal 



3. Why is Dual feasible?

… it depends on c.
c=1/(e-1) works               Algorithm e/(e-1) competitive

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x(1+ 1/B) + c/B
       yi1

D: Dual 
On day i: 1

i
y !

1

k

i

i

y B
=

!"

yi≥0



online IP Algorithm

 Choose (offline) d uniformly in [0,1]
 Solve online LP
 Set (online) x=1 on day of “bin” d falls in
 Set (online) zi=1 until then, zi=0 after
Analysis:
 Prob. That x=1: LP value of x
 Prob. of rental on day i: LP value of zi

                 Competitive ratio = that of online LP Alg
                  e/(e-1) competitive algorithm for ski rental

0 1
X:

day1 day2 day3 day4



Online primal-dual

 Online set cover

 Virtual circuit routing

 Ad auctions

 Weighted caching

 …



MaxCut basics

Input: graph
Goal: cut maximum number of edges

Fact: NP-hard

Fact:
Greedy cuts half of the edges:
(1/2) approximation.

Question: how to do better?



IP model?

xi=0 on one side, 1 on the other side of cut

Max Σe de
xi=0 or1
dij≤|xi-xj|



Max Σe de
0≤dij≤1
dij+djk+dki≤2
dij≤djk+dki

Max Σe de
dij=0 or 1
dij+djk+dki≤2
dij≤djk+dki

Integrality gap = 2

Σdij≤6
Add pentagonal constraints:
does not help

Add odd cycle constraints:
does not help

Add bounded support constraints:
does not help

Bounded degree expander
with large girth

LP Attempts



Max Σij in E (xi-xj)2 
xi=0 or 1

Max Σe de
xi=0 or 1
dij≤|xi-xj|

Max (1/4) Σij in E (xi-xj)2 
xi= -1 or 1

Max (1/2) Σij in E 1-xixj 
xi= -1 or 1

Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

Max (1/2) Σij in E 1-vivj 
|vi|2= 1



M positive semi-definite

M real symmetric.
Three equivalent conditions:
 M = VT V
 All eigenvalues of M are ≥ 0
 For every vector a:
                 aTMa ≥ 0



Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

MaxCut Algorithm

1. Solve SDP relaxation

2. Round result to get cut

How?



Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
For every vector a: aTYa ≥ 0

Linear in (yij)

Ellipsoid method 
Polynomial time
Oracle-Based:
Q: “Y feasible?”
A: “yes” or “No since [linear inequality] ”



Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
For every vector a: aTYa ≥ 0

Oracle-Based:
Q: “Y feasible?”
A: “yes” or “No since [linear inequality] ”

Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
eigenvalues≥0

Oracle: Compute eigenvalues 
if α<0, compute eigenvector u: uTYu=α|u|2<0

Linear in (yij)



Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

MaxCut Algorithm

1. Solve SDP relaxation

2. Round result  to get cut

✔

How?

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Vertices       Unit vectors

Cut



Rounding the SDP

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Vertices       Unit vectors

Cut

0 if vi=vj 1 if vj=-vi

vi

vj
vi

vj
If vi and vj are close
then i and j should
end up on same
side of graph cut



If vi and vj are close
then i and j should
end up on same
side of graph cut

v1

v2

v3

v4

v5

Take a random hyperplane H
Through the center of the sphere.

Graph cut:
L={i: vi is above H}
R={i: vi is below H}

H



MaxCut Algorithm

1. Solve SDP relaxation

2. Round result  to get cut

Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Take random hyperplane H through center of sphere.
Output: L={i: vi is above H}, R={i: vi is below H}



Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Analysis

SDP relaxation

We have: 
OPT≥ (1/2) Σij in E 1-vivj 

Rounding
E(cut size)= Σij in E Pr(ij in cut)

Pr(ij in cut)= Pr(H between vi and vj)

H
vi

vj

For random H this equals …



Max (1/2) Σij in E 1-vivj 
|vi|2= 1

SDP relaxation

We have: 
OPT≥ (1/2) Σij in E 1-cos(θij) 

Rounding
E(cut size)=
 Σij in E Pr(H between vi and vj)=
                                     θij/π

H
vi

vj

1-cos(θ) 

θ/π
maxθ =0.878…



SDP Algorithms

 MaxCut
 Max-k-Sat
 Coloring
 Scheduling (completion times)
 CSP
 Sparsest Cut
 …



Hardness of MaxCut

Assuming P≠NP and UGC, 0.878 is the best 
possible approximation ratio for MaxCut



Unique Games Conjecture (UGC)
Input: 2 variables per equation

Goal: maximize number of satisfied equations

UGC Conjecture: NP-hard to distinguish between

answer >99%  and answer <1%.

Fix ε. For p large, NP-hard to distinguish 1-ε from ε

7x+2y =  11 (mod 23)
5x+3z = 8 (mod 23)

…
….

7z+w  = 14(mod 23)



Uses of UGC
Problem Best

Approximation
 Algorithm

NP Hardness Unique Games
Hardness

Vertex Cover
Max CUT
Max 2- SAT

SPARSEST CUT

Max k-CSP

2
0.878
0.9401

1.36
0.941
0.9546

1+ε

2
0.878
0.9401

Every Constantnlog

( )kk 2/! ( )kk
O 2/2 ( )kkO 2/

UGC hardness results are intimately connected to 
the limitations of Semidefinite Programming



 Multiway cut: Calinescu, Karloff, Rabani 1998,
Karger, Klein, Stein, Thorup, Young 1999

 Vehicle routing: work in progress
 Correlation clustering: Ailon Charikar Newman 2005
 Online ski rental: by primal-dual, Buchbinder Naor

2009
 Maxcut: Goemans Williamson 1994
 UGC: Khot 2002
 Hardness of MaxCut: Khot Kindler Mossel O’Donnel

2005

Foundational: LP+randomized rounding (Raghavan
Thompson 1988), primal-dual (Aggarwal Klein Ravi,
Goemans Williamson), SDP (Goemans Williamson)



Updated some slides from Neal Young, 
LP example from Vazirani’s textbook,
slides from Seffi Naor, and a couple of 
slides from Raghavendra.


