LP/SDP ALGORITHMS CLAIRE MATHIEU

BROWN UNIVERSITY

Many optimization problems can be written as integers programs

- Traveling salesman tour, vehicle routing
- Steiner tree, connecting
- Clustering, cuts
- Coloring
- Short paths
- Max satisfiability

Integer programming: NP-hard Linear programming: in P

Maximize (6x+5y)

such that: $2x-5y \le 6$ $6x+4y \le 30$ $x+4y \le 16$ $x,y \ge 0$ x,y integers (IP) x,y real (LP)

LP ALGO SIMPLEX STEEPEST DESCENT WORST CASE EXP FAST IF SMOOTH ELLIPSOID METHOD POLYNOMIAL TIME **ORACLE-BASED:** Q: "X FEASIBLE?" A: "YES" OR "NO SINCE $3x_1 + 2Y_2 + Y_3 < 10$ " APPROX IN N POLYLOG

PACKING/COVERING

LP PLAN

- LINEAR PROGRAMMING
- USING LP PRIMAL FOR ALGORITHM: MULTIWAY CUT
- LP DUALITY
- USING LP DUAL FOR ANALYSIS: VEHICLE ROUTING
- USING LP DUAL FOR ANALYSIS: CORRELATION CLUSTERING
- USING LP PRIMAL-DUAL FOR ONLINE ALGORITHM: SKI RENTAL

WHAT'S LP GOOD FOR?

Approximation algorithm

 Solve LP relaxation instead of IP With luck, it's integral (ex: bipartite matching, totally unimodular matrices) If not,
 "Round" solution to a feasible integer solution

Analysis

3. Relaxation implies that LP profit \geq OPT integer profit 4. Show that profit is not much less than LP profit

THREE-WAY CUT

INPUT: GRAPH, AND THREE "TERMINAL" VERTICES

OUTPUT: MINIMUM SET OF EDGES
 DISCONNECTING TERMINALS FROM
 ONE ANOTHER

REMARK: IF 3 REPLACED BY 2, THEN?

IP FOR THREE WAY CUT

Three colors x,y,z For each 3-coloring of the vertices, count the number of bichromatic edges and minimize that

LP RELAXATION

 $\begin{array}{lll} \mbox{Minimize} & \Sigma_{edges\,e} \ d_e & \\ & \mbox{subject to:} \end{array} \\ \mbox{For vertex u: } \textbf{x}_u + \textbf{y}_u + \textbf{z}_u = 1 & (3\mbox{-coloring}) \\ \textbf{x}_{t1} = 1, \ \textbf{y}_{t2} = 1, \ \textbf{z}_{t3} = 1 & (\mbox{one color per terminal}) \\ \mbox{For edge e=uv: } d_{uv} \ge (1/2)(|\textbf{x}_u - \textbf{x}_v| + |\textbf{y}_u - \textbf{y}_v| + |\textbf{z}_u - \textbf{z}_v|) \\ \mbox{x}_u, \textbf{y}_u, \textbf{z}_u, d_{uv} \ge 0 \end{array}$

Associate to u point (x_u, y_u, z_u) in triangle {x+y+z=1,x,y,z≥0} Terminals at corners Embedding of G

LP goal: min l_1 length of edges in embedding

THE ROUNDING PROBLEM

- Solve LP relaxation gives optimal l embedding
 "Round" solution to 3-way cut: how?
 so that it can be analyzed...
- 3. Relaxation implies that

 l_1 length of embedding \leq OPT

4. Let's round so that cost of 3-way cut ≤ (small)*/₁ length of embedding

HOW TO ROUND • GREEDY: ROUND MAX (X_{U}, Y_{U}, Z_{U}) TO 1, AND THE OTHER TWO COORDINATES TO O INDEPENDENT: ROUND TO 100 W.PROB. X,, 010 W.PROB. Y., 001 W.PROB. Z. GEOMETRIC: BETTER

GEOMETRIC ROUNDING

- Pick random line parallel to triangle side: separates one terminal
- Pick random line parallel to triangle side: use it to separate the remaining two terminals

choose one direction

choose one point along edge

ANALYSIS (1/2)Prob(e crosses cut) \leq Prob(e crosses red or green line) \leq 2 prob(e crosses red) \leq (4/3)d

ANALYSIS (2/2)

E(cost(output)) = E(number of edges cut) = $\Sigma_e prob(e cut) \leq$ $(4/3)\Sigma_e d_e \leq$ (4/3)OPT

[Geometric reasoning gives better cut: (12/11)]

OPEN: finding "right" geometric cut for k-way cut

LP ALGORITHMS

- VERTEX COVER AND SET COVER
- SCHEDULING
- ROUTING
- 3-SAT

ALGS REQUIRE: GOOD LP RELAXATION GOOD ROUNDING

LP DUALITY

Minimize 7x+y+5zsubject to: $x-y+3z \ge 10$ $5x+2y-z \ge 6$ $x,y,z \ge 0$

Upper bound: exhibit feasible solution...

Upper bound (x,y,z)=(2,1,3) feasible …so: OPT≤30

Lower bound For example, can we have $OPT \le 16$?

Minimize 7x+y+5zsubject to: $x-y+3z \ge 10$ $5x+2y-z \ge 6$ $x,y,z \ge 0$ Upper bound (x,y,z)=(2,1,3) feasible ...so: OPT≤30

Lower bound $(x-y+3z)+(5x+2y-z)\ge 10+6$ $6x+y+2z\ge 16$ 7x+y+5x has larger coefficients ... so: OPT ≥ 16

Best lower bound Maximize 10a+6b $7 \ge a+5b$ $1 \ge -a+2b$ $5 \ge 3a-b$ $a,b \ge 0$ LP duality theorem: Both LPs have same value

What's LP duality good for?

Minimize l_1 length of tours

Is this optimal?

IP FOR VEHICLE ROUTING

Variable x_t for each possible tour t visiting $\leq 2n$ customers Length w_t of tour t

 $\begin{array}{l} \mbox{Min } \Sigma_t \; w_t x_t \\ \mbox{subject to} \\ \mbox{For customer c: } & \Sigma_{t \; visiting \; c} \; x_t \geq 1 \\ \mbox{x}_t \geq 0 \\ \mbox{x}_t \; integer \end{array}$

LP PRIMAL-DUAL

 $\begin{array}{l} \text{Min } \Sigma_t \ w_t x_t \\ \quad \text{subject to} \\ \text{For customer c:} \\ \Sigma_t \ \text{visiting c} \ x_t \geq 1 \\ x_t \geq 0 \end{array}$

Know solution of value (3/2)N

 $\begin{array}{l} \text{Max } \Sigma_{c} \; y_{c} \\ \text{subject to} \\ \text{For tour t:} \\ \Sigma_{c \text{ visited by t}} \; y_{c} \leq W_{t} \\ y_{c} \geq 0 \end{array}$

Exhibit dual feasible solution of value (3/2)N

FEASIBLE DUAL

 $\begin{array}{l} \text{Max } \Sigma_{c} \; y_{c} \\ \text{subject to} \\ \text{For tour t:} \\ \Sigma_{c \text{ visited by t}} \; y_{c} \leq W_{t} \\ y_{c} \geq 0 \end{array}$

Feasible? Fix tour t Let L=length of t in NorthEast L customers have $y_c=2$ 2n-L have $y_c=1$

 $y_c=2$

OPEN: replace grid by N random uniform points

OTHER USES OF LP DUALITY

LP PRIMAL USED FOR ALGORITHM
LP DUAL USED FOR ANALYSIS

CORRELATION CLUSTERING

CLUSTERING

- ORGANIZE DATA IN CLUSTERS
- UBIQUITOUS
- MANY DEFINITIONS
- MODEL IS APPLICATION-DEPENDENT

ALGORITHMIC PROBLEM

- Input: complete graph, each edge is labeled "similar" or "dissimilar"
- Output: partition into clusters. Objects inside clusters are similar to one another
- Objective: minimize input/output discrepancies

Two types of inconsistencies

Ź

GREEDY ALGORITHM

 PICK A VERTEX U ARBITRARILY
 CREATE A CLUSTER C CONTAINING ALL THE VERTICES SIMILAR TO U, ALONG WITH U

REMOVE C, AND REPEAT

GREEDY CAN BE BAD

RANDOM GREEDY

PICK VERTEX U UNIFORMLY AT RANDOM

THEOREM: RANDOM GREEDY IS A 3-APPROXIMATION

ANALYSIS: BOUNDING OPT

OPT≥ NUMBER OF DISJOINT BAD TRIANGLES

BOUNDING OPT: BAD TRIANGLES PACKING

- Give each bad triangle t a weight a_t
- Such that each edge carries total weight at most 1
- $\Sigma_{t \text{ containing e}} a_t \le 1$
- Then $\Sigma_t a_t \leq OPT$

.1+.1+.2+.2+.3≤1

these edges cost 1

- Let Z_t=whether Greedy destroys bad triangle t by picking one of its three vertices
- Then Cost(Greedy)= $\Sigma_t Z_t$

k bad triangles containing e Sum Z_t for those triangles Greedy picks a random vertex

Weight carried by e: $E(\Sigma_t Z_t) \le (1+...+1+k+k)/(k+2) \le 3$ So $a_t = EZ_t /3$ is a packing of bad triangles $E(Cost(Greedy)) = \Sigma_t EZ_t \le 3$ OPT Hidden: linear programming duality

Analysis: IP

$$x_{uv}$$
 = 1 if u and v are in same cluster

$$\begin{array}{lll} \mbox{Min} & \Sigma_{uv \ dissimilar} \ x_{uv} + \Sigma_{uv \ similar} \ (1 - x_{uv}) \\ & & \mbox{Subject to} \\ \mbox{for all } u,v,w: & x_{uv} + x_{vw} + (1 - x_{uw}) \leq 2 & (uvw \ consistent) \\ & & x_{uv} \ is \ 0 \ or \ 1 & \ \end{array}$$

u,v in same cluster v,w in same cluster u,w in different clusters is inconsistent

Using both Primal and Dual

Dual is implicit in rounding analysis
 Primal is implicit in Alg design
 Why not do both together?
 Primal-dual algorithms
 Steiner tree and Steiner forest
 Facility location and k-median

ONLINE SKI RENTAL

BUYING SKIS: B € ONCE. RENTING SKIS: 1 € PER DAY.

ONLINE: NUMBER OF SKI DAYS NOT KNOWN IN ADVANCE. ONE ALGORITHM: RENT, RENT, RENT, BUY. GOAL: MINIMIZE TOTAL COST.

ONLINE IP

 $x = \begin{cases} 1 - \text{Buy} \\ 0 - \text{Don't Buy} \end{cases} z_i = \begin{cases} 1 - \text{Rent on day i} \\ 0 - \text{Don't rent on day i} \end{cases}$

 $\min Bx + \sum_{i=1}^{k} Z_i$

SUBJECT TO: FOR EACH DAY I: $x + z_i \ge 1$ $x, z_i \in \{0, 1\}$

Online IP: Constraints and variables arrive one by one

LP Relaxation & Dual

D: Dual

P: Primal

$$\min Bx + \sum_{i=1}^{k} z_i$$

For each day i: $x + z_i \ge 1$

$$\max \sum_{i=1}^{k} y_i$$

For each day i: $y_i \le 1$
$$\sum_{i=1}^{k} y_i \le B$$

y_i≥0

k

Online LP:

Constraints & variables arrive one by one.

 $x, z_i \ge 0$

- Requirement: Satisfy constraints upon arrival.
- Fractional interpretation: x=.5 means buy one ski, rent the other one

ALGORITHM FOR ONLINE LP **D: Dual Packing P: Primal Covering** $\max \sum_{i=1}^{n} y_i$ $\min Bx + \sum z_i$ For each day i: $y_i \leq 1$ For each day i: $x + z_i \ge 1$ $\sum_{i=1}^{i} y_i \le B$ $\mathbf{y}_i \ge \mathbf{0}$ $x, z_i \ge 0$

Initially $x \leftarrow 0$

Each day (new variable z_i, new constraint y_i): if x<1: (skis not yet fully bought)

- $z_i \leftarrow 1-x$ (rent necessary fraction)
- $x \leftarrow x + \Delta x$ (buy a little more)
- $y_i \leftarrow 1$ (update dual, too!)

Online LP Algorithm: On day i: if x<1: $z_i \leftarrow 1-x$ $x \leftarrow x + \Delta x$ $y_i \leftarrow 1$

1. WHY IS PRIMAL FEASIBLE? On day i: $x + z_i \ge 1$ $x, z_i \ge 0$ Online LP Algorithm: On day i: if x<1: $z_i \leftarrow 1-x$ $x \leftarrow x+\Delta x$ $y_i \leftarrow 1$

2. Why is $\Delta P \leq (1 + c)\Delta D$?

P: Primal $\min Bx + \sum_{i=1}^{k} z_i$ **D: Dual** $\max \sum_{i=1}^{k} y_i$

... it depends on Δx . $\Delta x = x/B + c/B$ works.

Online LP Algorithm: On day i: if x<1: $z_i \leftarrow 1-x$ $x \leftarrow x(1+1/B) + c/B$ $y_i \leftarrow 1$

3. Why is Dual feasible?

D: Dual On day i: $y_i \le 1$ $\sum_{i=1}^{k} y_i \le B$ $y_i \ge 0$

... it depends on c. c=1/(e-1) works

Algorithm e/(e-1) competitive

- Choose (offline) d uniformly in [0,1]
- Solve online LP
- Set (online) x=1 on day of "bin" d falls in
- Set (online) z_i=1 until then, z_i=0 after

Analysis:

- Prob. That x=1: LP value of x
- Prob. of rental on day i: LP value of z_i

Competitive ratio = that of online LP Alg

e/(e-1) competitive algorithm for ski rental

ONLINE PRIMAL-DUAL

ONLINE SET COVER
VIRTUAL CIRCUIT ROUTING
AD AUCTIONS
WEIGHTED CACHING

MAXCUT BASICS

Input: graph Goal: cut maximum number of edges

Fact: NP-hard

Fact:

Greedy cuts half of the edges: (1/2) approximation.

Question: how to do better?

IP MODEL?

x_i=0 on one side, 1 on the other side of cut

Max $\Sigma_{e} d_{e}$ $d_{ij}=0 \text{ or } 1$ $d_{ij}+d_{jk}+d_{ki} \leq 2$ $d_{ij} \leq d_{jk}+d_{ki}$

LP Attempts

Integrality gap = 2 Add pentagonal constraints: does not help

 $\begin{aligned} &\text{Max } \Sigma_e \ d_e \\ &0 \leq d_{ij} \leq 1 \\ &d_{ij} + d_{jk} + d_{ki} \leq 2 \\ &d_{ii} \leq d_{ik} + d_{ki} \end{aligned}$

Add odd cycle constraints: does not help

Add bounded support constraints: does not help

Bounded degree expander

$$Max \Sigma_{e} d_{e}$$

$$x_{i}=0 \text{ or } 1$$

$$d_{ij} \leq |x_{i}-x_{j}|$$

$$Max \Sigma_{ij \text{ in } E} (x_{i}-x_{j})^{2}$$

$$x_{i}=0 \text{ or } 1$$

$$Max (1/2) \Sigma_{ij \text{ in } E} 1-x_{i}x_{j}$$

$$Max (1/4) \Sigma_{ij \text{ in } E} (x_{i}-x_{j})^{2}$$

$$x_{i}=-1 \text{ or } 1$$

$$Max (1/2) \Sigma_{ij \text{ in } E} 1-v_{i}v_{j}$$

M POSITIVE SEMI-DEFINITE

M real symmetric. Three equivalent conditions: $M = V^T V$ All eigenvalues of M are ≥ 0 For every vector a: $a^TMa \ge 0$

MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

Max (1/2) $\Sigma_{ij in E}$ 1-y_{ij} y_{ii}=1 Y positive semidefinite

2. ROUND RESULT TO GET CUT

Ellipsoid method Polynomial time Oracle-Based: Q: "Y feasible?" A: "yes" or "No since [linear inequality] "

Max (1/2) $\Sigma_{ij \text{ in } E} 1 - y_{ij}$ $y_{ii} = 1$ Y symmetric For every vector a: $a^T Ya \ge 0$

Oracle-Based: Q: "Y feasible?" A: "yes" or "No since [linear inequality] "

Max (1/2) Σ_{ij in E} 1-y_{ij} y_{ii}=1 Y symmetric eigenvalues≥0

Linear in (y_{ij})

Oracle: Compute eigenvalues if $\alpha < 0$, compute eigenvector u: $u^TYu = \alpha |u|^2 < 0$

MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

Max (1/2) $\Sigma_{ij in E} 1-y_{ij}$ $y_{ii}=1$ Y positive semidefinite

2. ROUND RESULT TO GET CUT

Max (1/2)
$$\Sigma_{ij \text{ in E}} 1 - v_i v_j$$

 $|v_i|^2 = 1$

Vertices → Unit vectors

ROUNDING THE SDP

$$\begin{array}{c|c} Max (1/2) \Sigma_{ij \text{ in } E} 1 - v_i v_j \\ |v_i|^2 = 1 \\ 0 \text{ if } v_i = v_j \\ \hline v_i \\$$

/ertices → Unit vectors

If v_i and v_j are close then i and j should end up on same side of graph cut If v_i and v_j are close then i and j should end up on same side of graph cut

Take a random hyperplane H Through the center of the sphere.

Graph cut: L={i: v_i is above H} R={i: v_i is below H}

MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

Max (1/2) $\Sigma_{ij in E}$ 1-y_{ij} y_{ii}=1 Y positive semidefinite

2. ROUND RESULT TO GET CUT

Max (1/2)
$$\Sigma_{ij \text{ in E}} 1 - v_i v_j$$

 $|v_i|^2 = 1$

Take random hyperplane H through center of sphere. Output: L={i: v_i is above H}, R={i: v_i is below H}

ANALYSIS

SDP relaxation

Max (1/2) $\Sigma_{ij \text{ in E}} 1 - v_i v_j$ $|v_i|^2 = 1$

We have: OPT \geq (1/2) $\Sigma_{ij in E}$ 1- $v_i v_j$ Rounding E(cut size)= $\Sigma_{ij in E}$ Pr(ij in cut) Pr(ij in cut)= Pr(H between v_i and v_j) V_i H

For random H this equals ...

SDP Algorithms

- MaxCut
- Max-k-Sat
- Coloring
- Scheduling (completion times)
- CSP

...

Sparsest Cut

Hardness of MaxCut

Assuming P≠NP and UGC, 0.878 is the best possible approximation ratio for MaxCut

Unique Games Conjecture (UGC)

Input: 2 variables per equation

7x+2y = 11 (mod 23) 5x+3z = 8 (mod 23)

7z+w = 14(mod 23)

. . . .

Goal: maximize number of satisfied equations

UGC Conjecture: NP-hard to distinguish between

answer >99% and answer <1%.

Fix a For n Jargo NID-hard to distinguish 1-a from a

USES OF UGC

Problem	Best Approximation Algorithm	NP Hardness	Unique Games Hardness
Vertex Cover Max CUT Max 2- SAT	2 0.878 0.9401	1.36 0.941 0.9546	2 0.878 0.9401
SPARSEST CUT Max k-CSP	$\frac{\sqrt{\log n}}{\Omega(k/2^k)}$	$O\left(2^{\sqrt{k}}/2^k\right)$	Every Constant $O(k/2^k)$

UGC hardness results are intimately connected to the limitations of Semidefinite Programming

- Multiway cut: Calinescu, Karloff, Rabani 1998, Karger, Klein, Stein, Thorup, Young 1999
- Vehicle routing: work in progress
- Correlation clustering: Ailon Charikar Newman 2005
- Online ski rental: by primal-dual, Buchbinder Naor 2009
- Maxcut: Goemans Williamson 1994
- UGC: Khot 2002
- Hardness of MaxCut: Khot Kindler Mossel O'Donnel 2005

Foundational: LP+randomized rounding (Raghavan Thompson 1988), primal-dual (Aggarwal Klein Ravi, Goemans Williamson), SDP (Goemans Williamson) Updated some slides from Neal Young, LP example from Vazirani's textbook, slides from Seffi Naor, and a couple of slides from Raghavendra.