
Algorithms for embedded graphs

Éric Colin de Verdière

MPRI, 2013–2014

ALGORITHMS FOR EMBEDDED GRAPHS Foreword and introduction

Foreword and introduction

Foreword

These are the course notes for half of the MPRI course “Algorithms for em-
bedded graphs”. Announcements for this course may be found on the web-
page https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:
c-2-38-1. The other half of the course will be taught by Claire Mathieu,
who will provide notes independently.

These notes are certainly not in final shape, and comments by e-mail are
welcome. The course may depart from these notes both in content and
presentation.

It is strongly recommended to work on the exercises. Each exercise is
labeled with one to three stars, supposed to be an indication of its im-
portance (in particular, depending on whether it is used later), not of its
difficulty.

Introduction

This is an introduction to the computational aspects of graphs drawn
without crossings in the plane or in more complicated surfaces. This topic
has been a subject of active research, especially over the last decade, and
is related to rather diverse fields and communities:

� in graph algorithms: As we shall see, because planar graphs bear
important properties, many general graph problems become easier

Date of this version: September 11, 2013. Latest version available at http://www.
di.ens.fr/~colin/cours/algo-embedded-graphs.pdf.

when restricted to planar graphs (shortest path, flow and cut, min-
imum spanning trees, vertex cover, graph isomorphism, etc.). The
same holds for graphs on surfaces, to some extent;

� in graph theory, the theory of graph minors founded by Robertson
and Seymour makes heavy use of graphs embeddable on a fixed sur-
face, as well as graphs excluding a fixed minor. Edge-width and face-
width are closely related to the notion of shortest non-contractible
closed curve;

� in topology, the classification of surfaces, as discovered in the begin-
ning of the 20th century, is inherently algorithmic. Surfaces play
a prominent role in the deep theories of knots and three-manifolds;
there are also many algorithmic questions in these areas;

� in computational geometry, surfaces arise naturally in various ap-
plications. Operations in geometric spaces such as decomposition,
extraction of important features, and shortest path computation are
basic computational geometry tasks that are relevant in particular
for surfaces, usually embedded in R3, or even planar surfaces.

Many graphs encountered in practice are geometric, and either are planar
or have a few crossings (think of a road network with a few overpasses
and underpasses). Thus it makes sense to look for efficient algorithms
dedicated to such graphs. In addition, in computer graphics, one needs
to efficiently process surfaces represented by triangular meshes, e.g., to
cut them to make them planar; we shall introduce algorithms for such
purposes.

The first chapter introduces planar graphs from the topological and combi-
natorial point of view. The second chapter considers the problem of testing
whether a graph is planar, and, if so, of drawing it without crossings in
the plane. Then we move on with some general graph problems, for which
we give efficient algorithms when the input graph is planar.

In the second part of the course, we consider graphs on surfaces (pla-
nar graphs being an important special case). In Chapter 4, we introduce
surfaces from the topological point of view; in Chapter 5, we present al-
gorithms using the cut locus to build short curves and decompositions of

2

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-38-1
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-38-1
http://www.di.ens.fr/~colin/cours/algo-embedded-graphs.pdf
http://www.di.ens.fr/~colin/cours/algo-embedded-graphs.pdf

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

surfaces. In Chapter 6, we use such decompositions to give an efficient
algorithm for computing minimum cuts in surface-embedded graphs.

Only a part of the material covered in this course appeared in textbooks.
For further reading or different expositions, mostly on the topological as-
pects, recommended books are Mohar and Thomassen [41], Armstrong [2],
and Stillwell [47]. For the algorithmic aspects and a wider perspective, see
the very recent course notes by Erickson [18].

Acknowledgments

I would like to thank several people who suggested some corrections in
previous versions: Jeff Erickson, Francis Lazarus, Arthur Milchior, and
Vincent Pilaud. Thanks to Éric Fusy for helpful informations on graph
drawing algorithms.

Chapter 1

Basic properties of planar
graphs

1.1 Topology

1.1.1 Preliminaries on topology

We assume some familiarity with basic topology, but we recall some defi-
nitions nonetheless.

A topological space is a set X with a collection of subsets of X, called open
sets, satisfying the three following axioms:

� the empty set and X are open;
� any union of open sets is open;
� any finite intersection of open sets is open.

There is, in particular, no notion of metric (or distance, angle, area) in a
topological space. The open sets give merely an information of neighbor-
hood : a neighborhood of x ∈ X is a set containing an open set contain-
ing x. This is already a lot of information, allowing to define continuity,
homeomorphisms, connectivity, boundary, isolated points, dimension. . . .
Specifically, a map f : X → Y is continuous if the inverse image of any
open set by f is an open set. If X and Y are two topological spaces, a map
f : X → Y is a homeomorphism if it is continuous, bijective, and if its
inverse f−1 is also continuous. A point of detail, ruling out pathological
spaces: the topological spaces considered in these notes are assumed to be

3

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Figure 1.1. The stereographic projection.

Hausdorff, which means that two distinct points have disjoint neighbor-
hoods.

Example 1.1. Most of the topological spaces here are endowed with a
natural metric, which should be “forgotten”, but define the topology:

� Rn (n ≥ 1);
� the n-dimensional sphere Sn, i.e., the set of unit vectors of Rn+1;
� the n-dimensional ball Bn, i.e., the set of vectors in Rn of norm at
most 1; in particular B1 = [−1, 1] and [0, 1] are homeomorphic;

� the set of lines in R2, or more generally the Grasmannian, the set of
k-dimensional vector spaces in Rn.

Exercise 1.2 (stereographic projection). 99 Prove that the plane is
homeomorphic to S2 with an arbitrary point removed. (Indication: see
Figure 1.1.)

A closed set in X is the complement of an open set. The closure of a subset
of X is the (unique) smallest closed set containing it. The interior of a
subset of X is the (unique) largest open set contained in it. The boundary
of a subset of X equals its closure minus its interior. A topological space X
is compact if any set of open sets whose union is X admits a finite subset
whose union is still X.

A path in X is a continuous map p : [0, 1]→ X; its endpoints are p(0) and
p(1). Its relative interior is the image by p of the open interval (0, 1). A
path is simple if it is one-to-one. A space X is connected1 if it is non-empty
and, for any points a and b in X, there exists a path in X whose endpoints
are a and b. The connected components of a topological space X are the
classes of the equivalence relation on X defined by: a is equivalent to b if
there exists a path between a and b. A topological space X is disconnected
(or separated) by Y ⊆ X if and only if X \ Y is not connected; points in
different connected components of X \ Y are separated by Y .

1.1.2 Graphs and embeddings

We will use standard terminology for graphs. Unless noted otherwise, all
graphs are undirected and finite but may have loops and multiple edges.
A circuit in a graph G is a closed walk without repeated vertices.2

A graph yields naturally a topological space:
� for each edge e, let Xe be a topological space homeomorphic to [0, 1];
let X be the disjoint union of the Xe;

� for e, e′, identify (quotient topology), in X, endpoints of Xe and Xe′

if these endpoints correspond to the same vertex in G.

An embedding of G in the plane R2 is a continuous one-to-one map from G
(viewed as a topological space) to R2. Said differently, it is a “crossing-free
drawing” of G on R2, being the data of two maps:

� ΓV , which associates to each vertex of G a point of R2;
� ΓE , which associates to each edge e of G a path in R2 between the
images by ΓV of the endpoints of e,

in such a way that:
� the map ΓV is one-to-one (two distinct vertices are sent to distinct
points of R2);

1In this course, the only type of connectivity considered is path connectivity.
2This is often called a cycle; however, in the context of these notes, this word is

also used to mean a homology cycle or a closed curve, so it seems preferable to avoid
overloading it again.

4

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

� for each edge e, the relative interior of ΓE(e) is one-to-one (the image
of an edge is a simple path, except possibly at its endpoints);

� for all distinct edges e and e′, the relative interiors of ΓE(e) and
ΓE(e′) are disjoint (two edges cannot cross);

� for each edge e and for each vertex v, the relative interior of ΓE(e)
does not meet ΓV (v) (no edge passes through a vertex).

We can actually replace R2 above with any topological space Y and talk
about an embedding of a graph in Y .

When we speak of embedded graphs, we sometimes implicitly identify the
graph, its embedding, and the image of its embedding.

1.1.3 Planar graphs and the Jordan curve theorem

In the remaining part of this chapter, we only consider embeddings of
graphs into the sphere S2 or the plane R2.

A graph is planar if it admits an embedding into the plane. By Ex-
ercise 1.2, this is equivalent to the existence of an embedding into the
sphere S2.
The faces of a graph embedding are the connected components of the
complement of the image of the vertices and edges of the graph.

Here are the most-often used results in the area.

Theorem 1.3 (Jordan curve theorem, reformulated; see [49]). Let G be
a graph embedded on S2 (or R2). Then G disconnects S2 if and only if it
contains a circuit.

Theorem 1.4 (Jordan–Schönflies theorem; see [49]). Let f : S1 → S2 be
a one-to-one continuous map. Then S2 \ f(S1) is homeomorphic to two
disjoint copies of the open disk.

Exercise 1.5. 99 Sketch a proof of the Jordan curve theorem in the
case where G is embedded in the plane with polygonal edges.

These results are, perhaps surprisingly, difficult to prove: the difficulty
comes from the generality of the hypotheses (only continuity is required).

For example, if in the Jordan curve theorem one assumes that G is em-
bedded in the plane with polygonal edges, the theorem is not hard to
prove.

A graph is cellularly embedded if its faces are (homeomorphic to) open
disks. Henceforth, we only consider cellular embeddings. It turns out that
a graph embedded on the sphere is cellularly embedded if and only if it is
connected.3

1.2 Combinatorics

So far, we have considered curves and graph embeddings in the plane that
are rather general.

1.2.1 Combinatorial maps for planar graph embeddings

We now focus on the combinatorial properties of cellular graph embeddings
in the sphere. Since we are not interested in the geometric properties,
it suffices to specify how the faces are “glued together”, or alternately
the cyclic order of the edges around a vertex. Embeddings of graphs on
the plane are treated similarly: just choose a distinguished face of the
embedding into S2, representing the “infinite” face of the embedding in the
plane.

An algorithmically sound way of representing combinatorially a cellular
graph embedding in S2 is via combinatorial maps, which we now describe.
The basic notion is the flag, which represents an incidence between a ver-
tex, an edge, and a face of the embedding. Three involutions allow to move
to a nearby flag, and, by iterating, to visit the whole graph embedding;
see Figure 1.2:

� vi moves to the flag with the same edge-face incidence, but with a
different vertex incidence;

3Although this statement should be intuitively clear, it is not so obvious to prove. It
may help to use the results of Chapter 4, especially the fact that every face of a graph
embedding is a surface with boundary.

5

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

fivi

ei

Figure 1.2. The flags are represented as line segments parallel to the edges;
there are four flags per edge. The involutions vi, ei, and fi on the thick flag are
also shown.

int vertex_degree(Flag fl) {
int j=0;
Flag fl2=fl;
do {

++j;
fl2=fl2->ei()->fi();

} while (fl2!=fl);
return j;

}

int face_degree(Flag fl) {
int j=0;
Flag fl2=fl;
do {

++j;
fl2=fl2->ei()->vi();

} while (fl2!=fl);
return j;

}

Figure 1.3. C++ code for degree computation.

� ei moves to the flag with the same vertex-face incidence, but with a
different edge incidence;

� fi moves to the flag with the same vertex-edge incidence, but with a
different face incidence.

Example 1.6. Figure 1.3, left, presents code to compute the degree of
a vertex, i.e., the number of vertex-edge incidences of this vertex. The
function takes as input a flag incident with that vertex. Note that a loop
incident with the vertex makes a contribution of two to the degree. Dually,
on the right, code to compute the degree of a face (the number of edge-face

incidences of this face) is shown.

Note that a flag is not necessarily uniquely defined by its triple (vertex,
edge, and face), as shows the example of a graph with a single vertex and
a single (loop) edge.

The complexity of a graph G = (V,E) is |V | + |E|. The complexity of a
cellular graph embedding is the total number of flags involved, which is
linear in the number of edges (every edge bears four flags), and also in the
number of vertices, edges, and faces. Therefore the complexity of a graph
cellularly embedded in the plane and of one of its embeddings are linearly
related.

The data structure indicated above allows to “navigate” throughout the
data structure, but does not store vertices, edges, and faces explicitly. In
many cases, however, it is necessary to have one data structure (“object”)
per vertex, edge, or face. For example:

� if one has to be able to check in constant time whether an edge is
a loop (incident twice to the same vertex), the data structure given
above is not sufficient. On the other hand, if every flag has a pointer
to the incident vertex, then testing whether an edge is a loop can be
done by testing the equality of two pointers in constant time;

� in coloring problems, one need to store colors on the vertices of the
graph. Such information can be stored in the data structure used for
each vertex.

For such purposes, each flag can have a pointer to the underlying vertex,
edge, and face (called respectively vu, eu, fu). Each such vertex, edge,
or face contains no information on the incident elements, only informa-
tion needed in the algorithms. If needed, one may similarly put some in-
formation in the vertex-edge, edge-face, vertex-face, and vertex-edge-face
incidences. Maintaining such informations, however, comes with a cost,
which is not always desirable. For example, assume we want to be able
to remove one edge incident to two different faces in constant time. If we
keep the information fu, this must take time proportional to the smaller
degree of the two faces (since the two faces are merged, the fu pointer has
to be updated at least on one side of the edge). If we only keep vu, say,

6

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Figure 1.4. Duality.

then such an update is not needed, and this edge removal can be done in
constant time.

1.2.2 Duality and Euler’s formula

A dual graph of a cellular graph embedding G = (V,E) on S2 is a graph
embedding G∗ defined as follows: put one vertex f∗ of G∗ in the interior
of each face f of G; for each edge e of G, create an edge e∗ in G∗ crossing e
and no other edge of G (if e separates faces f1 and f2, then e∗ connects
f∗1 and f∗2). See Figure 1.4.

A dual graph embedding is also cellular. The combinatorial map of the
dual graph is unique. Actually, with the map representation, dualizing is
easy: simply replace fi with vi and vice-versa. This in particular proves
that duality is an involution: G∗∗ = G.

Exercise 1.7 (easy). 999 Every tree (acyclic connected graph) with
v vertices and e edges satisfies v − e = 1.

Lemma 1.8. Let G = (V,E) be a cellular graph embedding in S2, and let
G∗ = (F ∗, E∗) be its dual graph. Furthermore, let E′ ⊆ E.
Then (V,E′) is acyclic if and only if (F ∗, (E \ E′)∗) is connected. In
particular, (V,E′) is a spanning tree if and only if (F ∗, (E \ E′)∗) is a
spanning tree.

Proof. (V,E′) is acyclic if and only if S2 \ E′ is connected, by the Jordan
curve theorem 1.3. Furthermore, S2\E′ is connected if and only if (F ∗, (E\
E′)∗) is connected: Two points x and x′ in faces f and f ′ of G can be
connected by a path avoiding E′ and not entering any face other than f
and f ′ if and only if f and f ′ are adjacent by some edge not in E′, i.e. if
and only if f∗ and f ′∗ are adjacent in (F ∗, (E \ E′)∗).

Corollary 1.9 (Euler’s formula for cellular graph embeddings in S2). For
every cellular graph embedding in S2 with v vertices, e edges, and f faces,
we have v − e+ f = 2.

Hence this formula also holds for every embedding of a connected graph
in the plane.

Proof. Let T be the edge set of a spanning tree of G. The dual edges of its
complement, (E \ T)∗, is also a spanning tree. The number of edges of G
is e = |T |+ |(E \T)∗|, which, by Exercise 1.7, equals (v− 1) + (f − 1).

Exercise 1.10 (easy direction of Kuratowski’s theorem). 999 Show
that the complete graph with 5 vertices, K5, is not planar. Indication:
Use Euler’s formula and double-counting on the number of vertex-edge
and edge-face incidences. Also show that the bipartite graph K3,3 (with
6 vertices v1, v2, v3, w1, w2, w3 and 9 edges, connecting every possible pair
{vi, wj}) is not planar.

1.3 Notes

For more information on basic topology, see for example Armstrong [2] or Henle [29];
see also Stillwell [47]. For more informations on planar graphs, see (the next two
chapters and) Mohar and Thomassen [41, Chapter 2].

7

ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Figure 1.5. The barycentric subdivision of the part of the graph shown in
Figure 1.4.

There are many essentially equivalent ways of representing planar graph em-
beddings [16, 33]; the computational geometry library CGAL implements one
of them4. We will see later that (most of) these data structures generalize to
graphs embedded on surfaces. There are further generalizations to higher dimen-
sions [3, 37,38]; this is important especially in geometric modelling.

Eppstein provides many proofs of Euler’s formula5.

Exercise 1.10 shows that K5 and K3,3 are not planar. There is a converse state-
ment: Kuratowski’s theorem asserts that a graph G is planar if and only if it does
not contain K5 or K3,3 as a subdivision; in other words, if and only if one cannot
obtain K5 or K3,3 from G by removing edges and isolated vertices and replacing
every degree-two vertex and its two incident edges with a single edge [34,39,48].

Let G be a cellular embedding of a graph on S2. By overlaying G with its dual
graph G∗, we obtain a quadrangulation: a cellular embedding of a graph G+

where each face has degree four. See Figure 1.4. Every face of G+ is incident
with four vertices: one vertex vG of G, one vertex vG∗ of G∗, and two vertices that

4http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/
Chapter_main.html.

5http://www.ics.uci.edu/~eppstein/junkyard/euler/.

are the intersection of an edge of G and an edge of G∗. If, within each face, we
connect vG with vG∗ , we obtain a triangulation, called the barycentric subdivision
of G (Figure 1.5). Each triangle in the barycentric subdivision corresponds to a
flag; its three neighbors are the flags reachable via the operations vi, ei, and fi.

8

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://www.ics.uci.edu/~eppstein/junkyard/euler/

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Chapter 2

Planarity testing and graph
drawing

Given a graph G in a “usual” form, e.g., where each vertex has a linked
list of pointers to its incident edges, and each edge has two pointers to its
incident vertices, how can we determine whether G is planar? Section 2.1
answers this question. Then we move on by considering algorithms to draw
a planar graph in the plane.

2.1 Planarity testing

Given a graph G, how hard is it to determine whether G is planar?

Theorem 2.1. Given a graph G, one can, in (optimal) linear time, deter-
mine whether G is planar, and if so, compute a combinatorial map of G
in the plane.

We shall here prove this theorem with a weaker, cubic complexity. With
much care, refining these ideas indeed leads to a linear-time algorithm [30].

To check whether G is planar, we can obviously assume that G is con-
nected. Furthermore, we can assume that every edge belongs to a circuit
of G (another equivalent terminology is that G is 2-edge-connected); for
if an edge e belongs to no circuit of G, we can remove it; G is planar if
and only if G− e is planar. In other words, define a bridge of a graph any
edge that belongs to no circuit of the graph (equivalently, it is an edge

whose removal disconnects the graph). It is a standard fact that one can
determine all bridges of a graph in linear time:

Lemma 2.2. Let G be a graph of complexity n. One can in O(n) time
determine all the bridge edges of G.

Proof. Run a depth-first search on the graph G, starting from an arbitrary
root vertex. Recall that this partitions the edges of G into link edges,
which belong to the rooted search tree T , and back edges, which connect
a vertex v with an ascendent of v in T . Clearly, no back edge is a bridge.
A link edge e with endpoints u and v, where u is visited before v, is a
non-bridge edge if and only if there exists a back edge from a descendent
of v (maybe v itself) to an ascendent of u (maybe u itself). The algorithm
will consider each back edge (uv) in turn and mark as non-bridge the edges
on the path from u to v in T ; the remaining edges are exactly the bridge
edges.

To achieve this in linear time, take all back edges (x1, y1), . . . , (xk, yk)
(where yk is an ascendent of xk), ordered such that y1, . . . , yk are discovered
in this order during the depth-first search (such an ordering can easily be
found in O(n) time). Starting from x1, and walking towards the root
of T , mark every edge as being a non-bridge edge until reaching y1. Start
from x2, and walk towards the root of the tree, marking every edge as non-
bridge, until either reaching y2 or reaching an edge e that is already marked
as non-bridge. If the latter possibility occurs, y1 must be an ancester of y2
in T by the choice of the ordering, so all edges between e and y2 must
be already marked. Continue similarly with the other back edges. This
process clearly takes linear time in total.

We can then remove all bridge edges of G in linear time. Now, each edge
of G lies on a circuit. We can furthermore assume that G is connected, by
considering connected components separately.

Let C be a circuit of G. We partition the edges of G − C into pieces as
follows (see Figure 2.1): Two edges are in the same class if there is a path
in G between them that does not contain any vertex of C. The vertices of
a piece P that are in C are called its attachments. Since G is bridgeless,
each piece has at least two attachments.

9

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

1

3

2
4

C

Figure 2.1. A graph G with a circuit C (on the outside of the figure) and the
four pieces with respect to C numbered from 1 to 4. All pairs of pieces conflict
except (1, 3) and (3, 4).

Lemma 2.3. In linear time, we can either compute a circuit of G that has
at least two pieces, or certify that G is planar.

Proof. First compute any circuit C, using, e.g., depth-first search. Deter-
mine the pieces of C. If C has no piece, then G = C, thus G is planar. If C
has two or more pieces, then C satisfies the conclusion, so we are done. So
assume that C has a single piece P . Let v1, . . . , vk be the attachments of P
on C, in cyclic order around C. Let p be a path in P between v1 and v2.
Now, let C ′ be the circuit obtained by concatenating p with the subpath
of C with endpoints v1 and v2 that also contains v3, . . . , vk (pick either of
the two subpaths if k = 2). One piece of C ′ is the other subpath of C, and
another piece of C ′ is P \ p, unless P = p, in which case G = C ∪ {p} is
planar.

All of this takes linear time.

If G is planar then, in a planar drawing of G, each piece of a circuit C
must be entirely inside or outside C. We say that two pieces P and Q
of G are non-conflicting with respect to C if, intuitively, in any planar
drawing of G (if it exists), exactly one of P and Q must be drawn inside C.

More formally, P and Q are non-conflicting if there are two (possibly
identical) vertices u and v of C, splitting C into two subpaths C1 and C2

with endpoints u and v, such that all attachments of P are in C1 and all
attachments of Q are in C2. Otherwise, P and Q are in conflict. The
conflict graph of G with respect to C is a graph with vertex set the pieces
of C; two pieces are connected if and only if they conflict.

Lemma 2.4. Let C be a circuit of G. The graph G is planar if and only
if the following conditions are satisfied:

i. The conflict graph of G with respect to C is bipartite;
ii. for every piece P of G with respect to C, the graph obtained by

adding P to C is planar.

Proof. Assume first that G is planar. In a planar embedding, each piece is
drawn either entirely inside or outside C. Furthermore, two pieces drawn
on the same side of C must be non-conflicting because, in the cyclic order
around C, edges of P and of Q cannot be interlaced. (Otherwise, we
would essentially have, after removal, contractions, and expansions of edges
if needed, four vertices v1, v2, v3, v4 in this order on circuit C, with v1
connected to v3 and v2 connected to v4 by edges inside C; adding a new
vertex outside C and connecting it to all four vertices, we would get K5,
which is nonplanar.) This implies that the conflict graph is bipartite. The
second property is trivial.

For the opposite direction, by (i), we consider a bipartition of the conflict
graph P ∪ Q. Our embedding will have all pieces of P inside C and all
pieces of Q outside C. We consider P, since the same process applies to Q.
Since no two pieces in P are in conflict, we can order the pieces of P as
P1, . . . , Pk and write the circuit C as a concatenation of paths (possibly
reduced to a single vertex) p1, . . . , pk, such that Pk has all its attachment
points on pk. We draw disjoint simple paths q1, . . . , qk with the same
endpoints as p1, . . . , pk respectively, inside C, such that the zones Zi with
boundary pi∪qi are disjoint (except perhaps at the endpoints of pi). Now,
using Condition (ii), we embed each piece Pi of P inside Zi.

At a high level, the algorithm first applies Lemma 2.3 to compute a cir-
cuit C with at least two pieces (unless G is planar, which concludes). Then

10

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

it uses the characterization of Lemma 2.4: If the conflict graph of G with
respect to C is non-bipartite, it returns that G is non-planar; otherwise, it
recursively checks that C ∪P is planar, for each piece P of G (such graphs
are clearly connected and bridgeless). The correctness is clear.

To get an efficient algorithm, however, we need to be slightly more spe-
cific. The algorithm takes as input a connected bridgeless graph G, and a
circuit C of G with at least two pieces.

1. Compute the pieces of G with respect to C.
2. For each piece P of G that is not a path:

(a) let G′ be the graph obtained by adding P to C;
(b) let C ′ be the circuit of G′ obtained from C by replacing the

portion of C between two consecutive attachments with a path
of P between them;

(c) apply the algorithm recursively to graph G′ and circuit C ′. If
G′ is non-planar, return “non-planar”.

3. Compute the conflict graph of the pieces.
4. Return “planar” or “non-planar” according to whether the conflict

graph is bipartite or not.
The correctness follows from the proof of Lemma 2.3 and from the fact
that each graph considered is connected and bridgeless.

Now, we study the complexity of Step 3:

Lemma 2.5. Given a circuit C, we can determine the conflict graph of G
with respect to C in quadratic time.

Proof. Let P be a piece of C, with attachments v1, . . . , vk in cyclic order
around C. Then another piece Q does not conflict with P if and only if
all its attachments are in some interval [vi, vi+1], in cyclic order around C
(indices are taken modulo k). This suggests the following approach: Mark
each vertex of C according to which interval(s) [vi, vi+1] it belongs to;
for each piece Q 6= P , determine if all its attachments belong to a single
interval using this marking. This takes linear time plus a time linear in
the number of attachment points of all the pieces, which is also linear.
Iterating for every piece P , we obtain the conflict graph of G in quadratic
time.

Since testing whether a graph is bipartite can be done in linear time, this
shows that each recursive invocation of the algorithm takes quadratic time.
Furthermore:

Lemma 2.6. The number of recursive invocations is linear in the com-
plexity of the input graph.

Proof. We associate a different edge of G to each invocation of the recursive
algorithm. Namely, for a given invocation on graph G and circuit C, we
select a witness edge e of C that does not belong to the circuit of the
parent invocation. That edge e does not appear in the siblings’ graphs,
so it will not show up as a witness edge in any sibling invocation nor
in any descendent of a sibling. There remains to prove that e does not
appear as the witness edge of a descendent invocation. Consider a path of
recursive invocations towards that descendent. If e belongs to the circuit
of the current invocation, it cannot be chosen as the witness of a child’s
invocation, so we are safe; and if e ceases to belong to the circuit of the
current invocation, then by choice of the new circuit C ′, e now belongs to
a piece of C ′ that is a path, and therefore is absent from any descendent
invocation.

This proves Theorem 2.1.

2.2 Graph drawing

Now we consider the following problem: Given a planar graph G, given in
the form of a combinatorial map (for example, obtained by the algorithm
in the previous section), how can we build an actual embedding of G in
the plane?

To be more specific, we need some definitions. A simple graph is a graph
without loops or multiple edges. A planar graph is triangulated if every
face of G, including the outer face, has degree three. A graph emebdding
in the plane is straight-line if every edge is a straight-line segment (such an
embedding is thus uniquely determined by the coordinates of its vertices).
We shall prove:

11

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Theorem 2.7. Let G be a simple planar graph, given in the form of a com-
binatorial map. In O(n) time, we can compute a straight-line embedding
of G where the vertices are on a regular O(n)×O(n)-grid.

The restriction of having a simple graph is legitimate, because non-simple
graphs do not have a straight-line embedding. Furthermore, we can remove
all loops and multiple edges in a graph in linear time if desired:

Lemma 2.8. Let G be a graph (not necessarily planar) of complexity n.
In O(n) time, we can determine all loop edges and multiple edges of G.

Proof. Let v be a vertex of G. Mark each neighbor w of v with the list
of edges with endpoints v and w, by visiting each edge incident with v
in turn. Any list containing more than one edge corresponds to multiple
edges; if the list of v is non-empty, it corresponds to one or several loops.
This operation takes a time linear in the degree of v. We can iterate the
process over all vertices v in turn.

Reusing the technique, we also obtain:

Lemma 2.9. Let G be a simple planar graph. In linear time, we can add
edges to G to obtain a simple, triangulated, planar graph.

Proof. It is easy to add edges so that the resulting graph is connected, and
then triangulated, in linear time. The only problem is that the resulting
graph may be non-simple. Let e be an edge of a triangulated graph;
removing e yields a degree-four face, which we can triangulate by inserting
the unique edge e′ 6= e; we call this procedure a flip of e.

For each vertex v, compute all loops and multiple edges incident with v,
using the technique of the previous lemma. Now, we flip all loop edges
incident with v (no such edge belongs to the original graph G). Further-
more, for each neighbor u of v, consider the set of edges Euv with both
u and v as endpoints. Assume |Euv| ≥ 2. The original graph G has at
most one edge in Euv; if G contains one edge of Euv, we let e be that
edge, otherwise we let e be an arbitrary edge of Euv. Now flip all edges
in Euv \ {e}.

Figure 2.2. After flipping a multiple edge (left) or a loop (right) in a planar
graph, the new edge is not a loop and is not a multiple edge.

The crucial observation is that none of these flips introduce loops or mul-
tiple edges, by planarity of the triangulated graph (Figure 2.2).

Iterating this process for each vertex v in turn, we obtain the desired
linear-time algorithm.

The previous lemma implies that, to prove Theorem 2.7, we can assume
thatG is triangulated. Another key ingredient for the proof of this theorem
is the following inductive decomposition of a planar, simple, triangulated
graph, depicted in Figure 2.3.

Proposition 2.10. Let G be a planar, simple, triangulated graph. Let v1
and v2 be two vertices on its outer circuit. In linear time, we can order
the vertices of G as v1, . . . , vn such that, for each k ≥ 3, the subgraph Gk

of G induced by v1, . . . , vk satisfies:
� Gk is connected;
� the boundary of Gk is a circuit;
� each inner face of Gk has degree three;
� vk+1 is in the outer face of Gk.

The proof of this proposition rests on the following lemma.

Lemma 2.11. Let G be a planar, simple graph; assume that the boundary
of the outer face forms a circuit (without repeated vertices) C. Let v1v2 be
an edge on C. There exists a vertex v on C, different from v1 and v2, that
has exactly two neighbors on C.

12

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

1 2

3

4

6

7

5

Figure 2.3. Illustration of Proposition 2.10. The directed tree is used later in
the proof of Theorem 2.7.

Proof. If every vertex of C has exactly two neighbors of C, we are done.
Let the vertices of C be v1 = w1, . . . , wm = v2, in this order. Consider an
edge connecting wi to wj where j − i is minimal but at least two. Then
the only neighbors of wi+1 in C are wi and wi+2 (Figure 2.4): None of
wi+3, . . . , wj can be a neighbor of wi+1 by minimality of j − i, and none
of the other vertices on C either, by planarity.

Proof of Proposition 2.10. We choose vn, . . . , v3 in this order by repeated
applications of Lemma 2.11; the conditions are obviously satisfied.

To do this in linear total time, we maintain the following information on
each vertex v of the current graph: Whether v belongs to the outer circuit
and, if so, its number of neighbors on the outer circuit. We maintain a
list of (pointers to) vertices on the outer circuit that have exactly two
neighbors on the outer circuit; by Lemma 2.11, this list is never empty.
The algorithm iteratively picks a vertex in the list, updates the data, and
iterates until exactly three vertices are left.

This takes linear time, since each edge is considered only if one of the

v1 v2

wi

wjwi+1

Figure 2.4. Illustration of the proof of Lemma 2.11.

endpoints enters or leaves the circuit.

Proof of Theorem 2.7. The algorithm iteratively embeds the subgraph Gk

of G induced by v1, . . . , vk, where k goes from 3 to n. Actually, instead of
computing x- and y-coordinates of the vertices, we compute y-coordinates
of the vertices and x-spans of the edges, namely, the difference between
the x-coordinates of their endpoints; trivially, this information is enough
to recover the embedding.

Assume inductively that we already embedded Gk (k ≥ 3) on the grid in
such a way that:

1. The y-coordinates of v1 and v2 are zero;

2. If v1 = w1, . . . , w2, . . . , wm = v2 are the vertices on the outer face
of Gk, in cyclic order, then the x-spans of each edge wiwi+1 is posi-
tive;

3. each edge wiwi+1, 1 ≤ i ≤ m, has slope +1 or −1.

Vertex vk+1 is incident, in Gk+1, to a contiguous set of vertices wp, . . . , wq

on the boundary of the outer face of Gk. Let P (wp, wq) be the inter-
section point of the line of slope +1 passing through wp with the line of
slope −1 passing through wq; Condition (3) implies that P (wp, wq) has
integer coordinates. Putting vk+1 at position P (wp, wq) almost yields a
planar drawing of Gk+1, except that it may fail to see, e.g., wp. To avoid
this problem (Figure 2.5), we shift vertices w1, . . . , wp by one unit to the

13

ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

wp

v1 = w1 wm = v2

wq

v1 = w1

wq−1

wm = v2

P (wp, wq)

P (wp, wq)

wp

wp+1

wq

wp+1 wq−1

Figure 2.5. Illustration of the proof of Lemma 2.11.

left, so that the slope of wpwp+1 becomes now smaller than +1; and sim-
ilarly we shift wq, . . . , wm by one unit to the right. In our choice of rep-
resentation of points with x-spans and y-coordinates, this takes constant
time: Simply increase by one the x-span of wpwp+1 and of wq−1wq. The
only problem is that the resulting drawing is inconsistent, so we need an
adjustment phase to increase the x-spans of some internal edges. We first
explain how to do this adjustment of the x-spans of internal edges at each
step from Gk to Gk+1. However, for the purposes of an efficient algorithm,
it will be useful to do these adjustments at once.

We maintain a spanning tree T ∗ of the dual of Gk, rooted at the outer
face and oriented away from the root, as follows (Figure 2.3). Initially
(say k = 3), there is one edge from the root outer face to the inner face,
crossing edge v1v2. When we add vertex vk+1, for each newly created
internal face of the drawing, we create an edge of T ∗ arriving to that face
by crossing the unique edge incident to that face that belongs to Gk.

When adding edges in Gk to build Gk+1, the adjustment phase consists

in increasing by one the x-span of the edges crossed by the subpath of T ∗

from the root to the first vertex incident to (wpwp+1)
∗, and similarly of

the edges crossed by the subpath to the first vertex incident to (wq−1wq)
∗.

(Edges crossed by both subpaths have thus their x-span increased by two.)
Combined with the initial shift of the boundary edges, this results in a shift
of a “left” part of the graph to the left and of a “right” part of the graph
to the right. To prove that this results in a valid embedding, it suffices to
note that the following property is maintained during the algorithm: For
every edge e∗ of T ∗ oriented away from the root, the vertex of Gk to the
left of e∗ has smaller x-coordinate than the vertex of Gk to the right of e∗.
It is clear that, at the end, the vertices are on an O(n)×O(n)-grid.

To implement this idea in linear time, we first compute the x-spans and
y-coordinates in G3, . . . , Gn without doing the adjustment steps; this takes
O(n) time. Omitting this adjustment step does not harm because, at each
step, we only need to know that the x-spans and y-coordinates of the
vertices on the outer face are correct. Afterwards, we need to increase the
x-span of each edge e by the cumulated increase it would have received
during all adjustment steps. This amounts to determining how many times
e is crossed by the paths of T ∗ considered during the adjustment steps.
For this purpose, during the incremental construction, we record, for each
vertex of T ∗ other from the root, the number of times it appears as an
endpoint of such a path. At the end of the incremental construction, we
can by a simple search in T ∗ compute, for each edge of T ∗, the number of
times it is contained in a path. This takes linear time.

2.3 Notes

The planarity testing algorithm is taken from [14, Section 3.3]. The graph draw-
ing algorithm is due to de Fraysseix et al. [13], with simplifications from Castelli
Aleardi et al. [6].

The fact that every planar graph without loops or multiple edges admits a
straight-line embedding was shown a few decades before the discovery of the
algorithm given above [22,46,51]. Actually, if G is a planar graph without loops
or multiple edges with n vertices, a straight-line embedding exists where all ver-
tices lie in the (n− 2)× (n− 2)-grid [23]. Many other representations exist, such

14

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

as circle packing representations: the vertices are mapped to non-overlapping
disks in the plane, two of which are tangent if and only if an edge between the
corresponding vertices exists (see Mohar and Thomassen [41, Chapter 2] for a
proof and references).

Chapter 3

Efficient algorithms for planar
graphs

In this chapter, we illustrate the general idea that algorithmic problems on
graphs are easier to deal with when the graph is assumed to be planar. By
Theorem 2.1, if we are given a planar graph G, we can compute in linear
time a combinatorial map of G in the plane; therefore, we can assume that
in all algorithms for planar graphs, a combinatorial map of the graph is
given. More advanced algorithms will be described in Claire Mathieu’s
course.

3.1 Minimum spanning tree algorithm

Let G = (V,E) be a cellular graph embedding in S2, with a weight function
w : E → R on its edges. Let n be its complexity.

Theorem 3.1. A minimum spanning tree of G can be computed in O(n)
time.

We note that, by Lemma 1.8, E′ ⊆ E is a minimum spanning tree of G if
and only if (E \E′)∗ is a max imum spanning tree of G∗ (where the weight
of a dual edge equals the weight of the corresponding primal edge).

Exercise 3.2. 999 Prove that a connected planar graph has either a
vertex or a face with degree at most three.

15

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

We introduce two operations to transform a cellular graph embedding in S2
into another one. These operations (together with their reverses) are called
Euler operations. Let e be an edge of G that is incident with two different
faces. Then removing e yields a cellular graph embedding, denoted byG\e.
The dual operation is contraction: let e be an edge of G that is incident
with two different vertices (i.e., that is not a loop), then we may contract e
by identifying its two incident vertices; the resulting graph embedding is
denoted by G/e. Obviously, these two operations preserve the planarity.

Proof of Theorem 3.1. The two following dual rules allow to build induc-
tively the set of edges T (G) of a minimum spanning tree of G:

� Let v be a vertex of G. If all edges incident with v are loops, then
G has exactly one vertex, so there is a unique, empty, spanning tree.
Otherwise, let e be a minimum-weight edge incident exactly once
with v. Necessarily, edge e belongs to a minimum spanning tree
of G. Hence T (G/e) ∪ e is a minimum spanning tree of G;

� let f be a face of G. If all edges incident with f have f on both sides,
then G has exactly one face, so G is a tree, and there is a unique
spanning tree, G itself. Otherwise, let e be a maximum-weight edge
incident exactly once with f . Then e does not belong to a minimum
spanning tree of G (because e∗ belongs to a maximum spanning tree
of G∗). It follows that T (G \ e) is a minimum spanning tree of G.

The number of iterations of this algorithm is O(n). Assuming we can pick
a vertex v or a face f with degree O(1) (whose existence is guaranteed
by Exercise 3.2) in constant amortized time, we have a linear-time algo-
rithm. Indeed, without loss of generality assume we have a vertex v with
degree O(1); the dual case is similar. Determining which edges incident
to v are loops takes O(1) time. If all of them are loops, then the recursion
stops; otherwise, finding a minimum-weight edge e that is not a loop can
clearly be done in O(1) time. Also, contracting e can be done in O(1)
time, since there are O(1) flags to update: this uses the fact that one
vertex incident with e has degree O(1).

It remains to explain how to compute in O(1) amortized time a vertex or a
face with degree at most three. For this purpose, we maintain a bucketB (a
list) containing all vertices and faces of degree at most three (and possibly

other vertices and faces, possibly some of them being destroyed in the
course of the algorithm after they are put in the bucket). Initially, put
all vertices and faces in B. When contracting or deleting an edge e, only
the degrees of the vertices and faces incident with e can change, so we put
them in the bucket before contracting or deleting e. Therefore in total
O(n) vertices and faces are put into B.

To find a vertex or face of degree at most three in the current graph, pick
an element of B, check in O(1) time whether it still belongs to the current
graph and, if so, whether it has degree at most three. If it is not the case,
remove it from B and proceed with the next element. Since O(n) elements
in total are put in B, also O(n) elements are removed from B, so the total
time spent to find vertices and faces with degree at most three is O(n).

3.2 Graph coloring

Let G = (V,E) be a graph and k ≥ 1 be an integer. A coloring of G with
k colors is a map V → {1, . . . , k} such that adjacent vertices are mapped
to different integers (“colors”). If a graph has a coloring with k colors, we
say that it is k-colorable.

In coloring problems, we can safely ignore graphs with loops (edges incident
twice to the same vertex), because such graphs are not k-colorable, for
any k. In this section, we implicitly only consider graphs without loops,
and all subsequent graphs built in the proofs have this property.

Determining whether a graph is k-colorable is NP-hard, except for k = 1
(it is equivalent to have no edge in the graph) and k = 2 (it is equivalent
to have a bipartite graph, a problem easily solvable in linear time). For
planar graphs, life seems to be no easier: It is NP-hard to decide whether
a planar graph is 3-colorable [27], by reduction from 3-SAT.

However, it is a remarkable fact that every planar graph is 4-colorable [1];
this was proved by Appel and Haken, heavily relying on computer assis-
tance (up to date, no proof is known that does not involve a lot of case
distinctions). We shall prove that every graph is 5-colorable, and give an
algorithm to color a planar graph in linear time, assuming a combinatorial

16

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

map is given.

Theorem 3.3. Every planar graph is 5-colorable.

Proof. Consider a planar drawing of a graph G in the plane. We can
assume without loss of generality that G is connected and has no face
(including the outer face) of degree one or two. Let v, e, and f be the
number of vertices, edges, and faces of G. Euler’s formula v − e + f = 2
and double-counting of the edge-face incidences 2e ≥ 3f implies e ≤ 3v−6
and thus the average degree of a vertex, 2e/v, is strictly less than 6. Thus,
G has at least one vertex of degree at most five. This directly implies that
G is 6-colorable, since if x is a vertex of degree at most five, we can assume
by induction that the graph G−x obtained from G by removing x and its
incident vertices is 6-colorable, and then color x with one color not used
by any of its neighbors. To prove that every planar graph is 5-colorable,
we only need to refine the argument slightly.

If G has a vertex incident with at most four distinct vertices, then by
induction we are done. So let x be a vertex of degree exactly five, with
distinct neighbors v1, . . . , v5 in clockwise order around x. Let a 5-coloring
of G−x be given. If v1, . . . , v5 do not have distinct colors, then at least one
color remains to color x, so we are done. So assume (up to permutation)
that vi bears color i.

Let G13 be the subgraph of G−x induced by the vertices colored 1 and 3.
Assume first that there is no path in G13 connecting v1 to v3. We can
exchange colors 1 and 3 in the component of G13 that contains v1 (this is
clearly valid). Now, both v1 and v3 are colored 3, which frees one color for
vertex x, and we are done.

On the other hand, if v1 and v3 are connected in G13, then we claim that
v2 and v4 cannot be connected in G24 (the subgraph of G− x induced by
the vertices colored 2 and 4), which implies that we can use the same trick
with v2 and v4 in place of v1 and v3.

To prove the claim, we assume the contrary: There are two disjoint paths
p13 and p24 in G−x connecting pairs (v1, v3) and (v2, v4) respectively. We
can modify G−x to exhibit a planar graph that is K5, the complete graph
with five vertices (Figure 3.1), which is a contradiction (Exercise 1.10).

v4

v5

v1

v2

v3

v1

v5

v4 v3

v2x

Figure 3.1. The last step in the proof of Theorem 3.3.

To do that, take the graph with vertex set {x, v1, v2, v3, v4} and with the
following edges: x is connected to all other vertices via edges drawn like
in G; v1 and v3 are connected via p13, similarly v2 and v4 are connected via
p24. Moreover, (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v2, v5), and (v3, v5) can
be connected together without crossing other edges because they appear
in cyclic order around x. This is K5.

We can actually obtain an efficient 5-coloring algorithm:

Theorem 3.4. Every planar graph, given in the form of a combinatorial
map, can be 5-colored in linear time.

We will rely on the following independent proposition.

Proposition 3.5. Let G be a planar graph with no face of degree one or
two. Then G has either a vertex of degree at most four, or a vertex of
degree five incident to two vertices of degree at most six.

(Precisely, this should be understood as follows: among the three vertices
involved in the second alternative, some of them can be the same, however
the two edges involved should be distinct.)

Proof. It suffices to prove the result assuming G is triangulated. We pro-
ceed by contradiction, assuming that such configurations cannot occur.

17

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

Let us put a charge equal to 6 in each triangle. Now each triangle T sends
its charge to all its incident vertices of degree five and six, in a way that
the degree-5 incident vertices get all the same charge from T , the degree-6
incident vertices get all the same charge from T , and any degree-5 incident
vertex gets twice the charge of a degree-6 incident vertex from T . (If T
has no vertex of degree 5 or 6, the charge remains in T .)

After this operation, each degree-6 vertex v gets charge at least 2 from
each of its incident triangles. Indeed, excepting v, such a triangle can be
incident to at most two other degree-6 vertices, or to one degree-5 vertex
and to a vertex of degree at least 7. Therefore, each degree-6 vertex gets
charge at least 12. Not that the reasoning is also valid if some triangles
around v are identified.

Also, each degree-5 vertex v gets charge at least 24. Indeed,
� If it is not adjacent to any degree-5 or degree-6 vertex, except pos-
sibly itself, it gets all the charge from its incident triangles, which
is 30;

� if it is adjacent to a degree-5 vertex w 6= v, then it has no other
vertex of degree 5 or 6 around, so it gets all the charge from the 3
triangles not incident to w and half the charge from the 2 triangles
also incident to w, and thus 24;

� if it is incident to a degree-6 vertex w, similarly, it gets all the charge
from the 3 triangles not incident to w and 2/3 of the charge from
the 2 triangles also incident to w, which is 26.

Let t be the number of triangles in G, and ni be the number of vertices
of degree i in G. The previous discussion implies 6t ≥ 24n5 + 12n6, or
equivalently t ≥ 4n5 + 2n6 (∗).
On the other hand, Euler’s formula can be rewritten in the two following
ways:

�
∑

i(2− i)ni = 4− 2t, since 2e =
∑

i ini;
�
∑

i 2ni = t+ 4, since 2e = 3t.
Eliminating n7 in these two linear equations yields

∑
i(14−2i)ni = t+28.

Since ni = 0 for i ≤ 4, this implies 4n5 + 2n6 − 2n8 − 4n9 − . . . = t+ 28.
In particular, t < 4n5 + 2n6, contradicting (∗).

vkx

vk

v`

v`

Figure 3.2. Illustration of the inductive construction in the proof of Theo-
rem 3.4.

Proof of Theorem 3.4. We can assume that our input planar graph G is
triangulated. Indeed, we can without harm remove any edge bounding a
degree-one face, and, for any set of parallel edges forming adjacent faces
of degree two, we can remove all but one such edges; finally, we may
triangulate the remaining edges without adding loops (as in the proof of
Lemma 2.9). This can be done in linear time.

We first describe the high-level approach, without worrying about com-
plexity. We also proceed by induction, like in the proof of Theorem 3.3.
Let x be a vertex of G obtained by Proposition 3.5. If x has at most four
distinct neighbors, then we are done by applying induction to G−x (after
triangulating the new face). Otherwise, x has degree five, and five distinct
neighbors v1, . . . , v5 in this cyclic order around x, two of which, say v1
and vi (i ∈ {2, 3}), have degree at most six.

By planarity, if i = 2, then either v1 and v3 are not adjacent, or v2 and v4
are not adjacent. If i = 3, then either v1 and v4 are not adjacent, or v3
and v5 are not adjacent. So let k, ` ∈ {1, . . . , 5} such that vk and v` are
not adjacent and vk has degree at most six.

Let H be the graph obtained from G − x by identifying vk and v`, as in
Figure 3.2 (this operation preserves planarity since vk and v` belong to the
same face of G−x, and no loop is created since vk and v` are not adjacent
in G). We apply induction to H. After H is 5-colored, this corresponds

18

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

to a coloring of G − x where vk and v` have the same color, which leaves
one color free to color x.

If we omit the time taken to find vertex x, then this algorithm can be
implemented in linear time. Indeed, finding which vertices adjacent to x
have degree at most six takes constant time. Using the fields vu described
in Section 1.2.1, we can test whether the neighbors of x are distinct in
constant time. We can also test whether two given vertices are adjacent
in constant time if one of the vertices has bounded degree; this allows to
determine vk and v` in constant time. Then identifying vk to v` takes con-
stant time because vk has bounded degree (this latter property is needed
since updating the fields vu takes time linear in the smaller degree of vk
and v`).

There remains to compute vertex x efficiently. To do this, we maintain,
during the algorithm, a stack (a linked list, for example) containing the
vertices of degree at most four, and the vertices of degree five adjacent to
two vertices of degree at most six. At each step, a constant number of
vertices can enter or leave the stack, which can be updated in constant
time.

3.3 Minimum cut algorithm

We now give an efficient algorithm for computing minimum cuts in planar
graphs.

Before that, we need to state without proof a result on shortest paths in
planar graphs. Let G = (V,E) be a connected graph where each edge
has a non-negative length (also called weight), and let s be a vertex of G.
A shortest path tree is a spanning tree of G rooted at s that contains a
shortest path from s to each vertex in G. Dijkstra’s algorithm (with the
appropriate data structure for the priority queue, for example Fibonacci
heaps) allows to compute a shortest path tree in O(|E|+ |V | log|V |) time.
The following result, which is (fortunately) admitted, improves the result
for planar graphs.

Theorem 3.6. Given a graph cellularly embedded in S2, a shortest path

tree from a given vertex can be computed in time linear in the complexity
of the graph.

We shall use this result to prove the following theorem.

Theorem 3.7. Let G = (V,E) be a weighted planar graph of complexity n,
cellularly embedded in S2. Let s and t be two vertices of G. The problem
of computing a minimum-weight (s, t)-cut of G can be solved in O(n log n)
time.

To prove Theorem 3.7, we first dualize the problem in the following propo-
sition, which is rather intuitive but not so easy to prove formally. Hence-
forth, let G = (V,E) be a weighted planar graph, and let F be the faces
of G.

Proposition 3.8. X ⊆ E is an (s, t)-cut in G if and only if X∗ contains
the edge set of some circuit of G∗ separating s and t.

Proof. If X∗ contains (the edge set of) a circuit in G∗ separating s and t,
then any (s, t)-path in G must cross an edge in X∗, and thus contain an
edge in X, so X is an (s, t)-cut.

Conversely, let X be an (s, t)-cut; we will prove that X∗ contains the edge
set of a circuit in G∗ separating s and t. Without loss of generality, we
may assume that X is inclusionwise minimal among all (s, t)-cuts.

First, label “S” each face v∗ of G∗ such that there is, in G, an (s, v)-path
avoiding X. Similarly, label “T” each face v∗ of G∗ such that there is, in G,
a (v, t)-path avoiding X. Since X is a cut, no face of G∗ is both labeled
“S” and “T”. Any edge of G∗ incident to faces labeled differently must be
in X∗. Therefore, by minimality of X∗, each face of G∗ is labeled either
“S” or (exclusive) “T”, and X∗ is the set of edges incident to faces with
different labels.

Let S be the subset of the plane made of the faces of G∗ labeled “S”, to-
gether with the open edges of G∗ whose incident faces are both labeled “S”.
Define similarly T . Thus S and T are disjoint, connected subsets of the
plane. Let f∗ be a vertex of G∗; we claim that there cannot be four faces
incident to f∗ that belong respectively, in cyclic order around the vertex,

19

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

to S, T , S, and T . Indeed, if the opposite assertion holds, then by con-
nectivity of S, there is a closed curve in S ∪ {f∗} that goes through f∗

and has faces of T on both sides of it, which contradicts the connectedness
of T by the Jordan curve theorem.

Thus, X∗ is a union of vertex-disjoint circuits in G∗; let γ be one such
circuit. Since each edge of γ is incident to one face labeled “S” and one
face labeled “T”, γ ⊆ X∗ separates s from t.

We now reformulate the problem in terms of curves crossing G. More
precisely, we consider closed curves in general position with respect to G,
which do not meet any vertex of G and intersect the edges of G at finitely
many points, where they cross. The length of such a closed curve is the
sum of the weights of the edges of G crossed by that curve, counted with
multiplicity. Computing shortest paths between two points in this setting
can be done in O(n) time by applying Theorem 3.6 in the dual graph.

Proposition 3.9. Let γ be a simple closed curve in general position with
respect to G; assume that γ has minimum length among all such curves that
separate s from t. Then the set of edges of G crossed by γ is a minimum-
weight (s, t)-cut in G.

Proof. The set of edges of G crossed by γ is an (s, t)-cut, by the Jordan
curve theorem. Conversely, if we have a minimum-weight (s, t)-cut in G,
Proposition 3.8 implies that its dual contains a circuit separating s and t,
which corresponds to a simple closed curve γ separating s and t whose
length is the same as the weight of the cut.

Now, we view G as embedded on the sphere, and we remove two small
disks around s and t. We now have an embedding of G on an annulus A,
and by Proposition 3.9 it suffices to compute a shortest simple closed curve
in general position with respect to G that goes “around” the annulus. The
general idea of the algorithm is depicted in Figure 3.3. Let p be some
shortest path from an arbitrary point on one boundary to an arbitrary
point on the other boundary (again, where the length is measured by the
sum of the weights of G crossed by p). Let D be the disk obtained by
cutting the annulus along p; let p′ and p′′ be the pieces of its boundary
corresponding to p.

3.3.1 Naïve algorithm

The following lemma implies that some shortest simple closed curve sep-
arating the two boundaries of A corresponds, in D, to a shortest path
between a pair of “twin” points of p′ and p′′.

Lemma 3.10. Some shortest closed curve separating the two boundaries
of A is simple and crosses p exactly once.

Proof. Let γ be a shortest closed curve separating the two boundaries.
The image of γ in D (after cutting along p) must contain a simple path q
from p′ to p′′, for otherwise γ would not separate the boundaries of A.

Let γ′ be a closed curve obtained by connecting the endpoints of q with
a shortest path running along p. This closed curve is simple, separates
the boundaries of A, crosses p exactly once, and is no longer than γ, since
γ has at least the length of q plus the length necessary to connect the
endpoints of q.

This allows a naïve O(n2)-time algorithm: Let k ≥ 0 be the number
of edges of G crossed by p; let v0, . . . , vk be points on p, in this order
on p, such that the subpath between vi and vi+1 crosses exactly one edge
of G. Compute all shortest paths between v′i and v′′i (the twin points
corresponding, in D, to vi), and take a shortest such path. The running-
time follows since k = O(n) and since shortest paths can be computed in
linear time in planar graphs (Theorem 3.6).

3.3.2 Divide-and-conquer algorithm

To beat this quadratic bound, we use a “divide-and-conquer” strategy
based on the following lemma, illustrated in Figure 3.4.

Lemma 3.11. Let x, y, and z be points on p, in this order, and (x′, x′′),
(y′, y′′), and (z′, z′′) be the corresponding twin points on D. Let px and pz
be disjoint simple shortest paths in D between the corresponding twin pairs
(x′, x′′) and (z′, z′′). Then some shortest path py between the twin pairs
(y′, y′′) crosses neither px nor pz, and is simple.

20

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

p

Figure 3.3. Overview of the algorithm of Theorem 3.7. The initial annulus is
recursively cut into smaller annuli, until one of the two conditions for stopping
the recursion happens; then computing one or two new shortest paths (not shown
here) concludes.

a b ba
x′ x′′

y′′y′

z′′z′

x′ x′′

y′′y′

z′′z′

Figure 3.4. Illustration of Lemma 3.11.

Proof. Let py be an arbitrary shortest path between y′ and y′′. It crosses px
an even number of times, because y′ and y′′ are not separated by px in D.
If py crosses px at least twice, at points a and b, we may replace the part
of py between a and b by a path running along px, removing two crossings
between px and py; this does not decrease the length of py, since py is a
shortest path; and this does not introduce additional crossings between py
and pz, since py and pz are disjoint.

So by induction, we may assume that py is disjoint from px. Similarly, we
may assume that py is also disjoint from pz. Finally, we may remove the
loops in py to make it simple.

We first describe the two base cases of the recursion, which can be solved
in linear time:

1. If k = O(1) (for example, if k ≤ 1), we may conclude by computing
all shortest paths, in D, between each pair of twin vertices v′i and v

′′
i ,

and taking the shortest of these paths;

2. similarly, if there is a face f of the graph incident with both bound-
aries of A, then the shortest closed curve has to go through this face;
we can conclude by cutting the annulus A into a disk along a path
entirely contained in f and computing a shortest path, in this disk,
between the two copies of the path.

Otherwise, we consider vertex v := vb k2c and compute a shortest path in D
between the points v′ and v′′ corresponding to v on p′ and p′′, respectively;
this is thus a shortest closed curve γ passing through v and crossing p
exactly once. Let A1 and A2 be the two annuli obtained by cutting A
along γ. The previous lemma implies that it suffices to recursively compute
the shortest closed curve separating the two boundaries of A1 and of A2

(using the pieces of p within A1 and A2 as new shortest paths), and to
take the shortest of these closed curves. This concludes the description of
the algorithm.

21

ALGORITHMS FOR EMBEDDED GRAPHS 3. Efficient algorithms for planar graphs

3.3.3 Correctness and complexity analysis

Proof of Theorem 3.7. The execution of the algorithm can be represented
with a binary tree, where each node corresponds to an annulus. The
root corresponds to A; internal nodes always have two children; leaves
correspond to the base case of the recursion.

The algorithm terminates, since the path p crosses at most
⌈
k/2i

⌉
edges

at the ith level in the recursion tree, and by base case (1). In fact, this
proves that there are at most dlog ke = O(log n) levels in the recursion
tree. The correctness follows from Proposition 3.9 and from the above
considerations. There remains to show the O(n log n) complexity.

Consider a given edge e of G. At some level r of the recursion tree, that
edge is cut by some closed curves into a number of subedges e1, . . . , ej
(j ≥ 1), all belonging to distinct annuli at level r. However, only the
subedges e1 and ej can belong to an annulus that is an internal node of
the recursion tree: the other ones end in base case (2). Therefore, e occurs
at most twice in total in the annuli that are internal nodes at level r, and
thus at most four times in total in the annuli at level r + 1. Hence, the
total number of non-boundary edges of the annuli at a given level is at
most 4n.

Furthermore, every boundary edge of an annulus can be charged to an adja-
cent non-boundary edge of that annulus, in a way that every non-boundary
edge is charged at most twice. Thus, the total number of boundary edges
of the annuli at a given level is at most 8n.

Bottom line: the total number of edges of all annuli at a given level is O(n);
by Euler’s formula, this is also a bound on the sum of the complexities of
all annuli at a given level. Since, at each node, all the operations (cutting
and shortest paths computations) take linear time in the complexity of the
annulus, the overall complexity of the algorithm is proportional to the total
complexity of the annuli appearing in the recursion tree, which is made of
O(log n) levels, each containing annuli of total complexity O(n).

3.4 Notes

The minimum spanning tree algorithm described above is based on Matsui [40]
(see also Cheriton and Tarjan [9] for a more complicated, but more general,
algorithm). Actually, the same technique shows that a minimum spanning tree
of a graph cellularly embedded on a surface of genus g can be computed in O(gn)
time. (See Chapter 4 for more on surfaces.) On arbitrary graphs, things are
more complicated: there is a randomized algorithm with linear time [32], and a
deterministic algorithm with almost linear time (where “almost” means up to a
factor involving the inverse Ackermann function) [8].

Proposition 3.5 is due to Franklin [25]. The linear-time 5-coloring algorithm is a
variant of an algorithm sketched by Robertson et al. [44], which seems to have
a subtle flaw. In that paper, a weaker version of Proposition 3.5 is used; the
algorithm still needs to identify two vertices vk and v`, but with that weaker
version, none of these vertices can be assumed to have bounded degree. Thus
updating the vu fields requires linear time. Such vu fields are needed because we
must be able to test whether two vertices are adjacent in constant time, assuming
(only) one of these vertices has bounded degree.

The algorithm for finding a minimum cut in a planar graph was found by Reif [43].
The presentation above differs slightly, by using closed curves in general position
with respect to G; this concept will be refined when we introduce the notion
of cross-metric surface in Chapter 5.1. Frederickson [26] provides a different
method. The proof of Proposition 3.8 is often neglected, and the proof used here
is a variant of the one found in Colin de Verdière and Schrijver [12, Lemma 7.2].

A shortest circuit in a graph separating two given faces translates, in the dual, to a
minimum cut separating the two dual vertices. By the max-flow min-cut theorem,
a maximum flow yields immediately a minimum cut, but not conversely. A very
recent paper shows that both the minimum cut and maximum flow problems can
be solved in O(n log log n) in planar graphs [31].

22

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

Chapter 4

Topology of surfaces

4.1 Definition and examples

A surface is a topological space in which each point has a neighborhood
homeomorphic to the unit open disk

{
(x, y) ∈ R2

∣∣ x2 + y2 < 1
}
. We only

consider compact surfaces in this chapter (and even later, unless specifically
noted).

Examples of surfaces are the sphere, the torus, and the double torus:
these are compact, connected, orientable (to be defined later) surfaces
with zero, one, and two handles, respectively (see Figure 4.1). The clas-
sification of surfaces (Theorem 4.5) asserts that two compact, connected,
and orientable surfaces are homeomorphic if and only if they have the same
number of “handles”.

Despite the figures, note that a surface is “abstract”: the only knowledge
we have of it is the neighborhoods of each point. A surface is not nec-
essarily embedded in R3. Actually, the non-orientable surfaces cannot be

Figure 4.1. A torus and a double-torus.

a1

a9

a10

a1

a11

a12a8

a1

a11

a12

a7 a5

a12

a6

a10

a12

a11a9

a11

a1

a7

a3 a4a2

a8

a7

a7

a8

a8
a10

a10

a9
a9

Figure 4.2. A polygonal schema of a graph embedded on a sphere (the graph
of the cube) is: a2a11ā1ā12, a3a7ā2ā8, a4ā5ā3a6, a1ā9ā4a10, a9ā11ā7a5, and
a12ā10ā6a8.

embedded in R3.

4.2 Surface (de)construction

4.2.1 Surface deconstruction

A graph embedded on a surface is cellularly embedded if all its faces are
topological disks. As in the case of the plane, we may consider the combina-
torial map of a graph cellularly embedded on a surface; the data structures
are identical. The dual graph is defined similarly.

The polygonal schema associated with a cellular graph embedding is de-
fined as follows: assign an arbitrary orientation to each edge; for each face,
record the cyclic list of edges around the face, with a bar if and only if it
appears in reverse orientation around the face. See Figure 4.2.

4.2.2 Surface construction

Conversely, the data of a polygonal schema allows to build up a surface
and the cellular graph embedding. More precisely, let S be a finite set of
symbols and let S̄ = {s̄ | s ∈ S}. Let R be a finite set of relations, each
relation being a non-empty word in the alphabet S ∪ S̄, so that for every

23

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

v

Figure 4.3. The “corners” incident to some vertex v can be ordered cyclically.

s ∈ S, the total number of occurrences of s plus the number of occurrences
of s̄ in R is exactly two.

For each relation of size n, build an n-gon; label its edges by the elements
of R, in order, the presence of a bar indicating the orientation of the edge
(see Figure 4.2). (Polygons with one or two sides are also allowed.) Now,
identify the “twin” edges of the polygons corresponding to the same symbol
in S, taking the orientation into account. (As a consequence, vertices get
identified, too.)

Lemma 4.1. The topological space obtained by the above process is a com-
pact surface.

Proof. Let X be the resulting topological space; X is certainly compact.
We have to show that every point of X has a neighborhood homeomorphic
to the unit disk. The only non-obvious case is that of a vertex v in X, that
is, a point corresponding to a vertex of some polygons. But it is not hard
to prove that a neighborhood of v is an umbrella: the “corners” (vertices)
of the polygons corresponding to v can be arranged into a cyclic order; see
Figure 4.3.

We admit the following converse:

Theorem 4.2 (Kerékjártó-Radó; see Thomassen [49] or Doyle and Moran [15]).
Any compact surface is homeomorphic to a surface obtained by the gluing
process above.

This amounts to saying that, on any compact surface, there exists a cellular
embedding of a graph. Equivalently, every surface can be triangulated.

(a) (b)

Figure 4.4. (a) The orientations of these two faces (triangles) are compatible.
(b) Two non-compatible orientations of the faces. A surface is orientable if there
exist orientations of all faces that are compatible.

4.3 Classification of surfaces

4.3.1 Euler characteristic and orientability character

Let G be a graph cellularly embedded on a compact surface S . The Euler
characteristic of G equals v − e + f , where v is the number of vertices, e
is the number of edges, and f is the number of faces of the graph.

Proposition 4.3. The Euler characteristic is a topological invariant: it
only depends on the surface S , not on the cellular embedding.

Sketch of proof. The Euler characteristic is easily seen to be invariant under
Euler operations. The result is then implied by the following claim: any
two cellular embeddings on a given surface can be transformed one into
the other via a finite sequence of Euler operations. Proving this is not very
difficult but requires some work; a key property is that one can assume both
embeddings to be piecewise linear with respect to a given triangulation of
the surface (using for example the method by Epstein [17, Appendix]).

G is orientable if the boundary of its faces can be oriented so that each
edge gets two opposite orientations by its incident faces (Figure 4.4). The
orientability character is a topological invariant as well; the same proof as
that of Proposition 4.3 works, but it can also be proven directly:

Exercise 4.4. 99 G is orientable if and only if no subset of S is a
Möbius strip.

24

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

4.3.2 Classification theorem

Theorem 4.5. Every compact, connected surface S is homeomorphic to
a surface given by the following polygonal schemata, called canonical (each
made of a single relation):

i. aā (the sphere; Euler characteristic 2, orientable);

ii. a1b1ā1b̄1 . . . agbgāg b̄g, for g ≥ 1 (Euler characteristic 2 − 2g, ori-
entable);

iii. a1a1 . . . agag, for g ≥ 1 (Euler characteristic 2− g, non-orientable).
Furthermore, the surfaces having these polygonal schemata are pairwise
non-homeomorphic. In particular, two connected surfaces are homeomor-
phic if and only if they have the same Euler characteristic and the same
orientability character.

In the above theorem, g is called the genus of the surface; by convention
g = 0 for the sphere. The orientable surface of genus g is obtained from
the sphere by cutting g disks and attaching g “handles” in place of them.
Similarly, the non-orientable surface of genus g is obtained from the sphere
by cutting g disks and attaching g Möbius strips (since a Möbius strip has
exactly one boundary component). See Figure 4.5. See also Figure 4.6 for
a representation of a double-torus in canonical form.

Proof. Let S be a compact, connected surface, and G be a graph em-
bedded on S (by Theorem 4.2). By iteratively removing edges incident
with different faces, we may assume that G has only one face.1 By iter-
atively contracting edges incident with different vertices, we may assume
that G has only one vertex and one face2 (unless this yields a sphere, so
the polygonal schema is aā — actually, we could say that the polygonal
schema made of the empty relation is a degenerate polygonal schema for
the sphere). The surface S cut along G is therefore a topological disk; we
use cut-and-paste operations on this polygonal schema to obtain a stan-
dard form.

1This amounts to removing all primal edges of a spanning tree in the dual graph.
2This amounts to contracting the edges of a spanning tree in the primal graph.

Figure 4.5. Every compact, connected surface is obtained from a sphere by
removing disjoint disks and attaching handles (orientable case) or Möbius strips
(non-orientable case). However, the non-orientable surfaces are not embeddable
in R3.

25

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

(a) (b)

(c) (d)

d

c
b

ac

d b

a

a

a

b

c

c
d

d

b

a

b c

d

Figure 4.6. (a) A canonical polygonal schema of the double torus. (b) The
identification of the edges of the schema. (c) The actual graph embedded on the
double torus. (d) Closeup on the order of the loops around the basepoint of the
surface, as seen from below; it can be derived directly from (a).

Q

a a

P

Q

a a

P

Q

ab b
P

b

Figure 4.7. The classification of surfaces: grouping the twin edges appearing
with the same orientation.

If the polygonal schema has the form aPaQ (where P and Q are possibly
empty sequences of symbols), then we can transform it into bbP̄Q (Fig-
ure 4.7)—Q̄ denotes the symbols of Q in reverse order, inverting also the
presence or absence of a bar above each letter. So inductively, we may
assume that each pair of symbols appearing in the polygonal schema with
the same orientation is made of two consecutive symbols. We still have
one face and one vertex.

Assume some edge appears twice in the polygonal schema with opposite
orientations: aP āQ. Then P and Q must share an edge b, because oth-
erwise the endpoints of a would not be identified on the surface. By the
preceding step, b must appear in opposite orientations in P and Q, so we
may assume that the polygonal schema has the form aPbQāRb̄S. Then, by
further cut-and-paste operations, we may transform the polygonal schema
into dcd̄c̄RQPS (Figure 4.8). We still have one face and one vertex, and
can iterate the process. After this stage, the polygonal schema is the
concatenation of blocks of the form aa and abāb̄.

If there are no blocks of the form aa, or no blocks of the form abāb̄, then we
are in form (ii) or (iii), respectively. Otherwise, onea part of the boundary
of the polygonal schema has the form aabcb̄c̄. We may transform it to
d̄c̄b̄d̄b̄c̄ (Figure 4.9), and, applying the method of Figure 4.7 to b, c, and d
in order, we obtain that we replaced the part of the boundary we considered
into eeffgg; the other part of the boundary is unchanged. So iterating,
we may convert the polygonal schema into form (iii).

The Euler characteristics and orientability characters of the surfaces are
readily computed, since the canonical polygonal schemata have exactly one

26

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

(a) (b) (c)

a a

(d) (e) (f)

P Q

RS

P Q

RS

P

S R

Q

PS RQ

RQPS

a a

b

b

a a

b

c

b

c

d

a
d

a a

c

b

a a

c

c

d

cc

Figure 4.8. The classification of surfaces: grouping pairs of twin edges appearing
with different orientations.

a

a

b c

c

b a

a

b c

b

c d

c b

a

d
b

c

d

Figure 4.9. The classification of surfaces: transforming one form into the other.

vertex and one face. Since two distinct canonical polygonal schemata do
not have the same Euler characteristic and the same orientability charac-
ter, they cannot be homeomorphic, by Proposition 4.3 and Exercise 4.4.

Example 4.6.
� The orientable surface with genus 1 is a torus; the orientable surface
with genus 2 is the double torus; and so on.

� The non-orientable surface with genus 1 is a projective plane; with
genus 2 it is the Klein bottle.

Exercise 4.7. 99 Identify the surfaces with the following schemata:

1. aābb̄;

2. abab;

3. abab̄;

4. a1a2 . . . anā1ā2 . . . ān;

5. a1a2 . . . an−1anā1ā2 . . . ān−1an.

4.4 Surfaces with boundary

A surface (possibly) with boundary S is a topological space in which each
point has a neighborhood homeomorphic to the unit open disk {(x, y) ∈
R2 | x2+y2 < 1} or to the unit half disk {(x, y) ∈ R2 | x2+y2 < 1 and x ≥
0}.
The boundary of S , denoted by ∂S , comprise the points of this surface
that have no neighborhood homeomorphic to the unit disk. The interior
of S is the complementary part of its boundary.

A cellular embedding on a surface with boundary is defined as in the case
of surfaces without boundary. In particular, since each face must be an
open disk, the boundary of the surface must be the union of some edges of
the graph. The classification theorem (Theorem 4.5) can be extended for
surfaces with boundary: Given a surface with boundary S , we may attach
a disk to each of its boundary components, obtaining a surface without

27

ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

boundary S̄ , and apply the previous classification theorem. Furthermore,
the number of boundary components is a topological invariant.

The Euler characteristic and the orientability character of a cellular em-
bedding on a surface with boundary S are defined as in the case of surfaces
without boundary; they are also topological invariants. The Euler charac-
teristic of S equals that of S̄ minus the number of boundary components
of S . So two surfaces with boundary S and S ′ are homeomorphic if and
only if they have the same Euler characteristic, orientability character, and
number of boundary components.

If we have a graph embedding G without isolated vertex on a surface S ,
then cutting S along G is a well-defined operation that yields a surface
with boundary, denoted by S \\G.3 This fact is not trivial, and follows
from the fact that every graph embedding on a surface S can be mapped
by a homeomorphism of S (actually, an isotopy) to a piecewise-linear
embedding with respect to a fixed triangulation of S , using, e.g., the
method by Epstein [17, Appendix].

4.5 Notes

The classification theorem is due to Brahana, Dehn, and Heegaard; the present
proof is inspired from Stillwell [47]. For another, more visual proof, see Francis
and Weeks [24].

The proofs of the classification theorem usually involve two steps, the first one
being topological (Theorem 4.2, Proposition 4.3, Exercise 4.4), the second one
being combinatorial. In the same vein, the Hauptvermutung (“main conjecture”)
says that any two embeddings of a graph on a surface are subdivisions of graph
embeddings that are combinatorially identical. This is true, but some higher-
dimensional analogs do not hold.

Let G and M be simple graphs (that is, without loops or multiple edges). M
is a minor of G if M can be obtained from G by iteratively contracting edges,
deleting edges, and deleting isolated vertices (at each step, the graph should be
made simple by removing loops and identifying multiple edges). Let S be a
fixed surface. Clearly, if G is embeddable on S , then every minor of G is also

3This notation is not standard (yet).

embeddable on S . Let F be the set of minor-minimal graphs not embeddable
on S ; thus G is embeddable on S if and only if no graph in F is a minor of G.
Kuratowski’s theorem asserts that G is planar if and only if it does not have K5

or K3,3 as a minor; in other words, if S is the sphere, the family F is finite. This
actually holds for every surface S ; however, no algorithm is known to enumerate
the family F .
More generally, this property is implied by a deep result by Robertson and Sey-
mour [45] (whose proof needed no less than 20 papers and several hundreds of
pages): In any infinite family of graphs, at least one is a minor of another.

28

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

Chapter 5

Computing shortest graphs
with cut loci

In this chapter, we describe algorithms to compute shortest curves and
graphs that “cut” a given surface into simpler pieces.

5.1 Combinatorial and cross-metric surfaces

We aim at computing “short” graphs and curves on surfaces. For this, we
need to define a metric on a surface that is both accurate in the applications
and simple enough so as to be handled algorithmically. We shall introduce
two ways of doing this, which are dual of each other. Depending on the
context, some results and algorithms are more easily described using one
setting or the other.

In this chapter, all surfaces are compact, connected, and orientable. They
do not have boundaries.

5.1.1 More types of curves

We already defined paths on surfaces; we need to introduce more types of
curves.

An arc on a surface with boundary S is a path p : [0, 1] → S such that
p(t) belongs to ∂S if and only if t ∈ {0, 1}. A loop ` is a path with the
same endpoints; `(0) = `(1) is called the basepoint of the loop. A path is

simple if it is one-to-one. A loop is simple if its restriction to [0, 1) is one-
to-one (of course, due to the identified endpoints, it cannot be one-to-one
on [0, 1]).

The concatenation of p and q, denoted by p · q, is the path defined by:
� (p · q)(t) = p(2t), if 0 ≤ t ≤ 1/2;
� (p · q)(t) = q(2t− 1), if 1/2 ≤ t ≤ 1.

A reparameterization of a path p is a path of the form p ◦ ϕ, where ϕ :
[0, 1] → [0, 1] is bijective and increasing. If the paths are considered up
to reparameterization, the concatenation is associative. The inverse of a
path p, denoted by p̄, is the map t 7→ p(1− t).

5.1.2 Combinatorial surfaces

A combinatorial surface (S ,M) is the data of a surface S (possibly with
boundary), together with a cellular embedding M of a weighted graph.
The weights must be non-negative. In this model, the only allowed curves
are walks inM ; the length of a curve is the sum of the weights of the edges
traversed by the curve, counted with multiplicity.

5.1.3 Cross-metric surfaces

We will, however, use a dual formulation of this model, which allows to
define crossings between curves: this turns out to be helpful both for stat-
ing the results and as intermediate steps. A cross-metric surface (S ,M∗)
is a surface S together with a cellular embedding of a weighted graph
M∗. If S has a boundary, we require in particular that each boundary
of S be the union of some edges in M∗, with infinite crossing weight.
We consider only regular paths on S , which intersect the edges of M∗

only transversely and away from the vertices. The length length(γ) of a
regular curve γ is defined to be the sum of the weights of the dual edges
that γ crosses, counted with multiplicity. The length of a regular arc is
defined similarly, excluding the endpoints of the arc (which belong to an
edge of M∗ with infinite crossing weight). To emphasize this usage, we
sometimes refer to the weight of a dual edge as its crossing weight.

29

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

To any combinatorial surface (S ,M) without boundary, we associate by
duality a cross-metric surface (S ,M∗), whereM∗ is (as notation suggests)
the dual graph of M . To any curve on a combinatorial surface, traversing
edges e1, . . . , ep, we can associate a curve in the corresponding cross-metric
surface, crossing edges e∗1, . . . , e∗p, and conversely. This transformation
preserves the lengths of the curves. So far, the notions of combinatorial
and of cross-metric surfaces (without boundary) are thus essentially the
same, up to duality. We can easily construct shortest paths on a cross-
metric surface by restating the usual algorithms (for example, Dijkstra’s
algorithm) on M in terms of the dual graph M∗.

5.1.4 Curves on cross-metric surfaces, algorithmically

We can represent an arbitrary set of possibly (self-)intersecting curves on a
cross-metric surface (S ,M∗) by maintaining the arrangement of M∗ and
of the curves, i.e., the combinatorial embedding associated with the union
of the curves (assuming this union forms a cellular embedding, which will
always be the case). Contrary to combinatorial surfaces, this data struc-
ture also encodes the crossings between curves. The initial arrangement
is just the graph M∗, without any additional curve. We embed each new
curve regularly : every crossing point of the new curve and the existing
arrangement, and every self-crossing of the new curve, creates a vertex of
degree four.

Whenever we split an edge e∗ of M∗ to insert a new curve, we give both
sub-edges the same crossing weight as e∗. Each segment of the curve
between two intersection points becomes a new edge, which is, unless noted
otherwise, assigned weight zero. However, it is sometimes desirable to
assign a non-zero weight to the edges of a curve. For example, the cross-
metric surface S \\α obtained by cutting S along an embedded curve α
can be represented simply by assigning infinite crossing weights to the
edges that comprise α, indicating that these edges cannot be crossed by
other curves.

5.1.5 Complexity

The complexity of a combinatorial surface (S ,M) is the total number of
vertices, edges, and faces of M ; similarly, the complexity of a cross-metric
surface (S ,M∗) is the total number of vertices, edges, and faces of M∗.
The complexity of a set of curves is the number of times it crosses edges
of M∗.

5.2 Cut loci

Let us fix the notations for the remaining part of this chapter. Unless
otherwise noted, (S ,M∗) is a cross-metric surface (connected, compact,
orientable, without boundary) of genus g and complexity n. Furthermore,
b is a point inside a face of M∗ and is the basepoint of all loops considered
in this chapter (we omit the precision that the basepoint is b in the sequel).

Let T be the shortest path tree from b to a point in each face of M∗.1 The
cut locus C of (S ,M∗) with respect to b is the subgraph ofM∗ obtained by
removing all edges of M∗ crossed by T . It is therefore a graph embedded
on S . See Figure 5.1.

Lemma 5.1. S \\C is a disk.

Proof. At some stage of the growth of the shortest path tree T , consider
the union of all open faces of M∗ visited by T , and of all edges of M∗

crossed by T . This is an open disk; at the end, it contains all faces of M∗,
and its complement is C. In particular, S \\C is a disk.

Intuitively, we are inflating a disk around b progressively, without allowing
self-intersections, until it occupies the whole surface; the cut locus C is the
set of points of the surface where the boundary of the disk touches itself.

1Strictly speaking, the shortest path tree is not always unique: there may be several
shortest paths between two given points. However, uniqueness holds for generic choices
of the weights; in other words, it can be enforced using an arbitrarily small perturbation
of the lengths. By a slight abuse of language, we will therefore use the article “the” in
such cases, since it does not harm (and may help the reader) to think that unique-
ness holds. Nevertheless, no algorithm or result presented here requires uniqueness of
shortest paths.

30

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

b

Figure 5.1. The cut locus C of a double torus (in bold lines) and the remaining
edges of M∗ (in thin lines).

Dijkstra’s algorithm implies that we can compute C in O(n log n) time.

Exercise 5.2 (Complexity of the reduced cut locus). 9 Let C ′ be the
graph obtained from the cut locus C ′ by repeatedly removing every degree-
one vertex, together with its incident edge, and replacing every degree-two
vertex v and its incident edges with an edge connecting the two neighbors
of v. Prove that C ′ has complexity O(g).

Given an edge e ∈ C, the loop σ(e) is defined as a loop with basepoint b
that follows the shortest path tree to go from its root b to a face incident
with e, crosses e, and goes back from the other face incident with e to the
root. This can be done so that all the loops σ(e) are simple and disjoint
(except, of course, at their basepoint b—we shall omit this triviality in the
sequel). See Figure 5.2.

Define the weight of an edge e of C to be the length of the corresponding
loop σ(e) (this is not the same as the crossing weight, defined for every
edge ofM∗!); these weights can be computed with no time overhead during
the cut locus computation.

b

Figure 5.2. The loops σ(e), for three edges e ∈ C.

5.3 Shortest non-contractible loop

A (possibly non-simple) loop is contractible if it can be continuously de-
formed into a point.

Exercise 5.3. 999 Prove that, on a disk or a sphere, every loop is
contractible.

Lemma 5.4. A simple loop is contractible if and only if it bounds a disk.

Proof. If a loop bounds a disk, it is certainly contractible. The proof of
the converse is more difficult, and we admit it.

Our goal now is to give an algorithm to compute the shortest non-contractible
loop.

5.3.1 3-path condition

A set L of loops satisfies the 3-path condition if, for any point a 6= b and
any three paths p, q, and r from b to a, if p · q̄ and q · r̄ belong to L, then
p · r̄ belongs to L.

Lemma 5.5. The set of contractible loops satisfies the 3-path condition.

31

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

r

p

q
a

b

Figure 5.3. Illustration of Lemma 5.6.

Proof. If p · q̄ and q · r̄ are contractible, then so is their concatenation,
(p · q̄) · (q · r̄), which deforms continuously to p · r̄.

Lemma 5.6. Let L be a set of loops satisfying the 3-path condition. Some
shortest loop not in L crosses the cut locus C at most once.

Proof. See Figure 5.3 for an illustration of the proof. Let ` be a shortest
loop not in L; without loss of generality, we can choose ` such that it
crosses C as few times as possible. Assume, for the sake of a contradiction,
that ` crosses C at least twice; let a be a point on ` not on M∗ between
its first and last crossing with C. This point a splits ` into two paths p
and q, both from b to a, and we have ` = p · q̄. Furthermore, let r be the
shortest path from b to a; this path does not cross C.

The 3-path condition applied to p, q, and r implies that p · r̄ or q · r̄ does
not belong to L. Both paths are no longer than ` = p · q̄ and cross C fewer
times than `, implying the desired contradiction.

5.3.2 Structural lemmas

Lemma 5.7. Some shortest non-contractible loop has the form σ(e).

Proof. Let ` be a shortest non-contractible loop. By Lemmas 5.5 and 5.6,
some shortest non-contractible loop crosses the cut locus at most once. On

the other hand, every non-contractible loop has to cross C at least once
(since S \\C is a disk). Hence some shortest non-contractible loop crosses
the cut locus exactly once, at some edge e. This loop deforms continuously
to σ(e), which cannot be longer. The result follows.

Lemma 5.8. Let e be an edge of C. Then σ(e) is contractible if and only
if some component of C − e is a tree.

Proof. Assume first that one component of C − e is a tree. One can
them move σ(e) continuously over the tree to make it disjoint from C; the
resulting loop is contractible.

Conversely, if σ(e) is contractible, it bounds a disk D by Lemma 5.4. We
want to prove that the part of C inside D is a tree. But if it is not the
case, this part contains a circuit, which further bounds a disk D′ ⊂ D,
and therefore C cuts S into at least two pieces, one of which is D′; this
is impossible (Lemma 5.1).

5.3.3 Algorithm

Theorem 5.9. Finding a shortest non-contractible loop can be done in
O(n log n) time. The loop computed is simple.

Proof of Theorem 5.9. We first compute the cut locus C, and assign to
every edge e of C a weight that is the length of σ(e), in O(n log n) time.
We show how to eliminate the edges e such that at least one component
of C − e is a tree. This concludes, since it then suffices to select the
minimum-weight remaining edge of C (by Lemmas 5.7 and 5.8).

This graph pruning can be done in O(n) time: put all edges incident with
a degree-one vertex in a list. Then, while the list is non-empty, remove an
edge e from it; remove it from C (unless it was already removed); if one
or both of its endpoints have now degree one in C, put the corresponding
edge(s) in the list. Clearly, this removes only edges e such that no compo-
nent of C − e is a tree. All them must eventually be removed, because a
tree has a degree-one vertex (a leaf).

Corollary 5.10. Finding a shortest non-contractible loop without specified
basepoint can be done in O(n2 log n) time.

32

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

Proof. For every face of M∗, run the algorithm in Theorem 5.9 with the
basepoint in that face, and return the shortest loop.

5.4 Shortest non-separating loop

5.4.1 Types of simple loops

A simple loop ` is separating if S \\` is not connected. A simple contractible
loop bounds a disk, hence is separating; the converse is false. So there
are (essentially) three kinds of simple loops: contractible, separating but
not contractible, and non-separating. These three types are illustrated in
Figure 5.2.

Exercise 5.11. 9
1. Give an algorithm that determines whether a given simple loop is sep-

arating.

2. Give an algorithm that determines whether a given simple loop is con-
tractible. Indication: use Lemma 5.4.

Our present goal is to compute the shortest non-separating (simple) loop.
We need first to define the notion of homology boundary, which generalizes
the notion of separating loop to possibly non-simple loops. To anticipate,
we introduce a bit more technicalities than those needed for this sole pur-
pose.

5.4.2 Preliminaries on homology

We introduce 1-dimensional homology for graphs embedded on surfaces,
over Z/2Z.
To simplify matters, we assume here (and in Section 5.5) that all curves
considered are drawn on a very dense graph G = (V,E) embedded on S ,
transversely to M∗.2 We consider chains: subsets of E. It is a natural

2This would not be needed if we introduced singular homology, but it seems prefer-

Z/2Z-vector space: the addition of two subsets of E is the symmetric dif-
ference, multiplication by 0 gives the empty subset of E, and multiplication
by 1 is the identity.

A chain E′ ⊆ E is a homology cycle if every vertex of V is incident with
an even number of edges of E′. A chain E′ ⊆ E is a homology boundary if
the faces of G can be colored black and white so that E′ is the set of edges
of E with exactly one black and one white incident face. Equivalently, if
we consider the “dual” graph of (V,E′), which has one vertex inside each
face of (V,E′) and one edge crossing each edge of (V,E′), then E′ is a
homology boundary if and only if this dual graph is bipartite.

Exercise 5.12. 999
1. Prove that the set of homology cycles (resp. homology boundaries)

forms a vector space, and that every homology boundary is a homology
cycle.

2. Assume S is a sphere. Prove that every homology cycle is a homology
boundary.

Lemma 5.13. A simple loop ` in G disconnects S if and only if its edge
set forms a homology boundary.

Proof. Let E′ be the set of edges of `. Either the graph (V,E′) has one
face, in which case the only boundary is the empty set, or it has two faces,
in which case coloring one face in black and the other one in white yields
a non-zero boundary formed by the edge set of `.

So the notion of homology boundary extends the notion of being separat-
ing.

As shown in Exercise 5.12, the set of homology boundaries, B, is included
in the set of homology cycles, Z. The reverse inclusion does not hold in
general. Homology measures the “difference” between Z and B; formally, it

able to avoid doing so. The assumption above is actually not needed: we only require G
to be dense enough so that the loops σ(e) are disjoint walks on G and so that G contains
some shortest non-separating loop (or some shortest system of loops, in Section 5.5).
The existence of such a graph G is clear, and it is never used in the algorithms, only in
proofs, so its complexity does not matter.

33

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

is Z/B, the Z/2Z-vector space that is the quotient of the two Z/2Z-vector
spaces Z and B.

Given a loop ` in G, its mod 2 image is the set of edges of G used an
odd number of times by `. (We sometimes identify a loop with its mod 2
image.)

5.4.3 Algorithm

We prove here:

Theorem 5.14. Finding a shortest loop that is not a homology bound-
ary can be done in O(n log n) time. The loop computed is simple, and is
(therefore) also a shortest simple non-separating loop.

Corollary 5.15. Finding a shortest loop without specified basepoint that
is not a homology boundary (or a shortest simple non-separating closed
curve) can be done in O(n2 log n) time.

Lemma 5.16. A subset A of the edges of C disconnects C if and only if
the set of loops σ(A) disconnects S .

Proof. We may certainly assume A 6= ∅. Let D be the disk S \\C; the
basepoint b belongs to the interior of D. Each loop σ(e) in σ(A) corre-
sponds, in D, to two paths from b to the boundary of D, connecting twins
of e. See Figure 5.4.

Therefore, if we let τ(e) be the intersection of e with σ(e), any path in
S \ σ(A) continuously retracts to a path in C \ τ(A), without moving
the endpoints if they already belong to C. This implies that S \ σ(A) is
connected if and only if C \ τ(A) is connected; this is in turn equivalent
to having C −A connected.

Proof of Theorem 5.14. The general strategy is very similar to the proof
of Theorem 5.9. The set of all loops in G whose mod 2 images are ho-
mology boundaries satisfies the 3-path condition. Hence, by Lemma 5.6,
some shortest loop in G whose mod 2 image is not a homology boundary
crosses the cut locus at most once, hence exactly once, at some edge e, by

b

σ(v)

σ(u)

σ(u)

σ(v)

u

v

w

w

u

v

Figure 5.4. A view of the disk S \\C, whose polygonal schema is uvww̄ūv̄. The
loops σ(u) and σ(v) are cut into two paths connecting the basepoint to twin
points.

Exercise 5.12. A slight extension of that exercise implies that σ(e) is in
the same homology class, and it is no longer. Hence some shortest loop
whose mod 2 image is not a homology boundary has the form σ(e).

In particular, it is simple, and is therefore a non-separating loop (Lemma 5.13).
It must be a shortest non-separating loop in G because every separating
loop is a homology boundary. It is therefore a shortest non-separating
loop, because we can (retroactively) assume that G contains some short-
est non-separating loop.

By Lemma 5.16, we are thus looking for a minimum-weight edge e of C
such that C − e is connected; such edges are called non-bridge edges.
Recall from Lemma 2.2 that we can determine all non-bridge edges in
linear time. Alternately, note that any minimum-weight edge not in a
maximum spanning tree of C is such an edge.

34

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

5.5 Shortest system of loops

In this section, we describe an algorithm to compute a shortest topological
decomposition of the surface. Namely, a system of loops L is a set of simple
loops meeting pairwise only at their common basepoint b, such that S \\L
is a disk (refer to Figure 4.6(c) for an example). We give an algorithm to
compute the shortest system of loops of a given surface.

5.5.1 Algorithm

Define a homology basis of loops to be a set of loops whose homology classes
(of their mod 2 images) form a basis of the homology vector space. There
exist homology bases of loops:

Exercise 5.17. 999 Prove that every homology cycle is the mod 2
image of a loop.

Recall that a system of loops L is a set of simple loops meeting pairwise
only at their common basepoint, such that S \\L is a disk. Denote by [`]
the homology class of a loop `, and by [L] the set of homology classes of a
set of loops L.

Lemma 5.18. Some shortest homology basis is made of loops of the form
σ(e). In particular, the loops in that basis are simple and disjoint.

Proof. Let ` be a loop in the shortest homology basis. Let e1, . . . , ek be
the edges of the cut locus crossed by `. Then it is not too hard, using
Exercise 5.12(2) , to prove that [`] = [σ(e1)] + . . .+ [σ(ek)].

In particular, ` crosses at least one edge of the cut locus. Furthermore,
since [`] is linearly independent from the homology classes of the other
loops in the basis, one of the [σ(ei)] must be linearly independent from
the homology classes of the other loops in the basis. Replacing ` with
σ(ei) still yields a homology basis, which is no longer than the original
one because σ(ei) is a shortest loop with basepoint b among the loops that
cross ei, and ` indeed crosses ei. Iterating, we obtain that some shortest
homology basis is made of loops of the form σ(e).

Exercise 5.19. 999 Let L be a set of simple, disjoint loops in G.
Prove that L disconnects S if and only if the homology classes of the
loops in L are linearly dependent.

Theorem 5.20. We can compute a a shortest homology basis of loops in
O(gn + n log n) time. Furthermore, there are 2g loops, each of the form
σ(e).

Proof. By Lemma 5.18, computing a shortest homology basis of loops
boils down to computing a shortest inclusionwise maximal set of loops
σ(e1), . . . , σ(ek) with linearly independent homology classes, or, equiva-
lently, that does not disconnect S (Exercise 5.19). This is equivalent to
computing an inclusionwise maximal set S of edges of C such that C − S
is connected, with minimal sum of weights (Lemma 5.16). This precisely
means computing the complement of a maximum-weight spanning tree
of C.

Recall that C is cellularly embedded on S with one face (Lemma 5.1).
Therefore, by Euler’s formula, the number of vertices, v, and edges, e, of C
satisfy v− e = 2− 2g− 1 = 1− 2g. A spanning tree always contains v− 1
edges (Lemma 1.7), so the complement of a spanning tree of C has exactly
2g edges; we conclude that there are 2g loops in L.

Computing the cut locus C takes O(n log n) time. A maximum spanning
tree can be computed in O(n log n) time using any textbook algorithm.
The actual loops may each have O(n) size, and there are 2g of these.

Proposition 5.21. The shortest homology basis of loops L computed in
Theorem 5.20 is actually a shortest system of loops.

Proof. Every system of loops is made of 2g loops by Euler’s formula. The
homology classes of a system of loops are linearly independent (Exer-
cise 5.19), and there are 2g of these, so they form a basis. So any system of
loops is a homology basis. It therefore suffices to prove that L is a system
of loops.

L is a set of 2g simple, disjoint loops that does not disconnect S . Cutting
along it yields a (connected) surface of Euler characteristic 1 (because
cutting along the first loop keeps the Euler characteristic unchanged and
cutting along each subsequent loop increases it by one), hence a disk.

35

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

5.6 Extensions

5.6.1 Shortest loops on surfaces with boundary

Let (S ,M∗) be a cross-metric surface with genus g and b ≥ 1 boundary
components, and complexity n. We briefly indicate how the results of
Sections 5.3 and 5.4 generalize to surfaces with boundary.

Let Ŝ be the surface S where a handle is attached to each boundary
component. Thus Ŝ is a surface without boundary. The graph M∗ is not
cellularly embedded in S , but we can make it cellular by adding two edges
per attached handle. We assign infinite weights to these new edges. Let
M̂∗ be the resulting graph.

A loop in S is contractible if and only if it is contractible in Ŝ . There-
fore, to compute the shortest non-contractible loop in (S ,M∗) with a
given basepoint, it suffices to compute the shortest non-contractible loop
in (Ŝ , M̂∗) with that basepoint. Similarly, a loop in the interior of S is
separating if and only if it is separating in Ŝ . So, to compute the short-
est non-separating loop in (S ,M∗), it suffices to compute the shortest
non-separating loop in (Ŝ , M̂∗).3

There is no direct analog of the notion of system of loops for surfaces with
boundary, because no set of disjoint simple loops in the interior of the
surface can cut it into a disk. We shall see a replacement of this notion in
Section 5.6.3.

5.6.2 Shortest paths relatively to a set of points

We now extend the result of Section 5.5 to the case where there are “more
than one basepoint”. Specifically, let (S ,M∗) be a cross-metric surface
without boundary, with a finite set P of k points, each in a different face
ofM∗. Let us call a P -path any path with endpoints in P . A system of P -
paths is a set of simple P -paths that are pairwise disjoint, except possibly
at their endpoints, cutting S into a topological disk, and meeting every

3Here, instead of attaching a handle to every boundary component of S , attaching
a disk would also work.

point in P ; equivalently, it is a graph embedded on S with vertex set
exactly P whose removal leaves a disk. Our goal is to compute a shortest
system of P -paths.

Let F be a shortest path forest in M∗, growing simultaneously from each
point of P , and connecting every face of M∗. The cut locus C of (S ,M∗)
with respect to P is defined as the subgraph of M∗ obtained by removing
all edges of M∗ crossed by F . It cuts S into k topological disks, each
containing exactly one point in P . Given an edge e of the cut locus, the
arc σ(e) is the concatenation of two shortest paths following the shortest
path forest starting on both sides of e until each of them reaches a root.

The 3-path condition generalizes as follows to P -paths: a set S of P -paths
satisfies this condition if and only if, for every point a and any three paths
p, q, and r from points in P to a, if p · q̄ and q · r̄ belong to S, then so does
p · r̄.
Homology is defined almost as in Section 5.4.2: we assume G = (V,E) is a
very dense graph with P ⊆ V . A chain E′ ⊆ E is a homology cycle if every
vertex not in P is incident with an even number of edges of E′. A chain
E′ ⊆ E is a homology boundary if, as usual, the faces of (V,E′) can be
colored in black and white such that every edge of E′ is incident with one
black and one white face. A homology basis of P -paths is a set of P -paths
whose homology classes form a basis of the homology vector space.

Then as in Section 5.4.2, we have:

Theorem 5.22. Let (S ,M∗) be a cross-metric surface with genus g and
without boundary; let n be its complexity. Let P be a set of k points on S .
Finding a shortest homology basis of P -paths can be done in O(n log n +
(g+k)n) time. The basis computed is actually a shortest system of P -paths.
The number of P -paths in every system of P -paths, and every homology
basis of P -paths, is 2g + k − 1.

5.6.3 Shortest arcs on a surface with boundary

We come back to the case of surfaces with boundary: Assume (S ,M∗)
has b ≥ 1 boundary components. A system of arcs on S is a set of disjoint

36

ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

simple arcs cutting S into a disk (this is an appropriate analog of a system
of loops for surfaces with boundary).

Let S̄ be the cross-metric surface without boundary obtained by attach-
ing disks to each boundary component of S . Let M̄∗ be the graph M∗

where all edges on the boundary of S are assigned a fixed large enough
crossing weight W ; thus (S̄ , M̄∗) is a cross-metric surface without bound-
ary. Furthermore, let P be a set of points, one inside every disk glued to
the boundaries of S .

Call a P -path on S̄ admissible if it intersects the boundary of S in ex-
actly two points. Admissible P -paths in S̄ precisely correspond to arcs
in S ; this correspondence preserves the lengths, up to a shift of 2W . Fur-
thermore, a system of admissible P -paths in S̄ corresponds to a system of
arcs in S . Since the algorithm of Theorem 5.22 only computes admissible
P -paths (provided W is chosen large enough), the above considerations
yield:

Theorem 5.23. Let (S ,M∗) be a cross-metric surface with genus g and
b ≥ 1 boundary components, and complexity n. Finding a system of arcs
can be done in O(n log n + (g + b)n) time. Every system of arcs is made
of 2g + b− 1 arcs.

5.7 Notes

5.7.1 Discrete vs. continuous setting

Most of the combinatorial and cross-metric surface model is taken from Colin
de Verdière and Erickson [11]. Several tools of this section were described in
a combinatorial setting for simplicity of exposition, but they have well-studied
continuous counterparts.

In general, the cut locus of a point x in a metric space S is the set of points in S
for which there exist at least two distinct shortest paths to x. It is closely related
to the notion of the medial axis of a compact set K ⊂ S: it is the set of points
of S \ K whose distance to K is realized by at least two points of K. If K is
finite, the medial axis contains in particular the Voronoi diagram of K.

The main topological property of a cut locus we have used (in Lemmas 5.8
and 5.16) can be stated as follows for a surface with boundary: for any sub-
set A of the edges of C, S \ σ(A) deformation retracts to C −A. In particular,
they have the same number of connected components, and one of the components
of S \ σ(A) is a disk if and only if the corresponding component of C − A (is
connected and) contains no non-contractible loop, i.e., is a tree.

As mentioned earlier, homology can be defined in a continuous setting (singular
homology), which vastly generalizes the ad-hoc route we took. Let S be any
topological space. Let ∆n be the n-dimensional simplex. The set of n-chains Cn

is the vector space (say over Z/2Z, but this generalizes to arbitrary fields, and
even rings) generated by all continuous maps ∆n → S. There is a boundary
operator ∂n taking Cn to Cn−1: the boundary of ∆n → S is a sum of n+ 1 maps
∆n−1 → S, one for each face of ∆n. One checks the important property that
∂n−1◦∂n = 0, so Im ∂n ⊆ Ker ∂n−1. The set of homology cycles is Zn := Ker ∂n−1
and the set of homology boundaries is Bn := Im ∂n. These vector spaces have
infinite dimension (except in trivial cases), but their quotient Hn := Zn/Bn,
the homology vector space, is usually of finite dimension; it is non-trivial to prove
that, under reasonable conditions, H1 is isomorphic to the homology vector space
as introduced in Section 5.4.2.

The appropriate machinery for the generalization to the shortest system of B-
paths (and arcs) is relative homology. See any textbook on algebraic topology
for more details on homology [28,29].

5.7.2 Algorithms

Erickson and Har-Peled [20] gave the first algorithms to compute the shortest
non-contractible or non-separating loop, relying on the idea of “wavefront propa-
gation”. The method presented here is different; the idea of considering the edges
of the cut locus is borrowed from Erickson and Whittlesey [21]. The 3-path
condition is a variation on Mohar and Thomassen [41, p. 110].

If the genus is small, then our O(n2 log n) algorithm is not very efficient; af-
ter successive improvements [5, 35], the best algorithm up to date has running-
time O(g3n log n) [4]. In contrast, computing the shortest separating but non-
contractible simple loop (without specified basepoint) is NP-hard [7].

Erickson andWhittlesey [21] described the algorithm of Section 5.5; the algorithm
was further generalized, and the proof was simplified, by Colin de Verdière [10],
which was in turn simplified by Erickson [19].

37

ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

Note that there are systems of loops whose polygonal schema is not in canonical
form (for example abcdāb̄c̄d̄). The shortest system of loops is not necessarily in
canonical form. There is an O(gn) time algorithm to compute a system of loops
in canonical form [36, 50], but computing the shortest such system is likely to
be NP-hard. There are other kinds of topological decompositions of surfaces,
such as pants decompositions: sets of disjoint simple closed curves that cut the
surface into spheres with three boundary components. The status of computing
the shortest pants decomposition is open [42].

Bibliography

[1] Kenneth Appel and Wolfgang Haken. Every planar map is four-colorable.
AMS, Providence, Rhode Island, 1989. [p. 16]

[2] Mark Anthony Armstrong. Basic topology. Undergraduate Texts in Mathe-
matics. Springer-Verlag, 1983. [pp. 3 and 7]

[3] Erik Brisson. Representing geometric structures in d dimensions: topology
and order. Discrete & Computational Geometry, 9:387–426, 1993. [p. 8]

[4] Sergio Cabello and Erin W. Chambers. Multiple source shortest paths in a
genus g graph. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 89–97, 2007. [p. 37]

[5] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-
contractible cycles for topologically embedded graphs. Discrete & Compu-
tational Geometry, 37(2):213–235, 2007. [p. 37]

[6] Luca Castelli-Aleardi, Olivier Devillers, and Éric Fusy. Canonical ordering
for triangulations on the cylinder, with applications to periodic straight-line
drawings. In Proceedings of the 21st International Symposium on Graph
Drawing (GD), 2012. To appear. [p. 14]

[7] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus,
and KimWhittlesey. Splitting (complicated) surfaces is hard. Computational
Geometry: Theory and Applications, 41(1–2):94–110, 2008. [p. 37]

[8] Bernard Chazelle. A minimum spanning tree algorithm with inverse-
Ackermann type complexity. Journal of the ACM, 47(6):1028–1047, 2000.
[p. 22]

[9] David R. Cheriton and Robert Endre Tarjan. Finding minimum spanning
trees. SIAM Journal on Computing, 5(4):724–742, 1976. [p. 22]

[10] Éric Colin de Verdière. Shortest cut graph of a surface with prescribed
vertex set. In Proceedings of the 18th European Symposium on Algorithms
(ESA), part 2, number 6347 in Lecture Notes in Computer Science, pages
100–111, 2010. [p. 37]

[11] Éric Colin de Verdière and Jeff Erickson. Tightening nonsimple paths and
cycles on surfaces. SIAM Journal on Computing, 39(8):3784–3813, 2010.
[p. 37]

38

ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

[12] Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint
two-face paths in planar graphs. ACM Transactions on Algorithms, 7(2):Ar-
ticle 19, 2011. [p. 22]

[13] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41–51, 1990. [p. 14]

[14] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph drawing. Prentice Hall, Upper Saddle River, NJ, 1999. [p. 14]

[15] P. H. Doyle and D. A. Moran. A short proof that compact 2-manifolds can
be triangulated. Inventiones Mathematicae, 5:160–162, 1968. [p. 24]

[16] David Eppstein. Dynamic generators of topologically embedded graphs. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 599–608, 2003. [p. 8]

[17] David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathemat-
ica, 115:83–107, 1966. [pp. 24 and 28]

[18] Jeff Erickson. Computational topology, 2009. Course notes available at
http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/. [p. 3]

[19] Jeff Erickson. Combinatorial optimization of cycles and bases. In Afra
Zomorodian, editor, Computational topology, Proceedings of Symposia in
Applied Mathematics. AMS, 2012. [p. 37]

[20] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk.
Discrete & Computational Geometry, 31(1):37–59, 2004. [p. 37]

[21] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology
generators. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1038–1046, 2005. [p. 37]

[22] István Fáry. On straight line representations of planar graphs. Acta scien-
tiarum mathematicarum (Szeged), 11:229–233, 1948. [p. 14]

[23] Stefan Felsner. Convex drawings of planar graphs and the order dimension
of 3-polytopes. Order, 18(1):19–37, 2001. [p. 14]

[24] George K. Francis and Jeffrey R. Weeks. Conway’s ZIP proof. American
Mathematical Monthly, 106(5):393–399, 1999. [p. 28]

[25] Philip Franklin. The four-color problem. American Journal of Mathematics,
44(3):225–236, 1922. [p. 22]

[26] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004–1022, 1987.
[p. 22]

[27] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simpli-
fied NP-complete graph problems. Theoretical Computer Science, 1(3):237–
267, 1976. [p. 16]

[28] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002. Avail-
able at http://www.math.cornell.edu/~hatcher/. [p. 37]

[29] Michael Henle. A combinatorial introduction to topology. Dover Publications,
1994. [pp. 7 and 37]

[30] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549–568, 1974. [p. 9]

[31] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wulff-Nilsen. Improved algorithms for Min Cut and Max Flow in undi-
rected planar graphs. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC), pages 313–322, 2011. [p. 22]

[32] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm to find minimum spanning trees. Journal of the ACM,
42(2):321–328, 1995. [p. 22]

[33] Lutz Kettner. Using generic programming for designing a data structure for
polyhedral surfaces. Computational Geometry: Theory and Applications,
13:65–90, 1999. [p. 8]

[34] Casimir Kuratowski. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae, 15:271–283, 1930. [p. 8]

[35] Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces
of bounded genus in almost linear time. In Proceedings of the 22nd Annual
Symposium on Computational Geometry (SOCG), pages 430–438. ACM,
2006. [p. 37]

[36] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Com-
puting a canonical polygonal schema of an orientable triangulated surface.
In Proceedings of the 17th Annual Symposium on Computational Geometry
(SOCG), pages 80–89. ACM, 2001. [p. 38]

[37] Bruno Lévy. Topologie algorithmique: combinatoire et plongement. PhD
thesis, Institut National Polytechnique de Lorraine, 1999. [p. 8]

[38] Pascal Lienhardt. N -dimensional generalized combinatorial maps and cel-
lular quasi-manifolds. International Journal of Computational Geometry &
Applications, 4(3):275–324, 1994. [p. 8]

[39] Yuri Makarychev. A short proof of Kuratowski’s graph planarity criterion.
Journal of Graph Theory, 25:129–131, 1997. [p. 8]

39

http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/
http://www.math.cornell.edu/~hatcher/

ALGORITHMS FOR EMBEDDED GRAPHS Contents

[40] Tomomi Matsui. The minimum spanning tree problem on a planar graph.
Discrete Applied Mathematics, 58(1):91–94, 1995. [p. 22]

[41] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, 2001.
[pp. 3, 7, 15, and 37]

[42] Sheung-Hung Poon and Shripad Thite. Pants decomposition of the punc-
tured plane. In Proceedings of the 22nd European Workshop on Computa-
tional Geometry (EWCG), pages 99–102, 2006. [p. 38]

[43] John H. Reif. Minimum s − t cut of a planar undirected network in
O(n log2(n)) time. SIAM Journal on Computing, 12(1):71–81, 1983. [p. 22]

[44] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. Effi-
ciently four-coloring planar graphs. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC), 1996. [p. 22]

[45] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjec-
ture. Journal of Combinatorial Theory, Series B, 92:325–357, 2004. [p. 28]

[46] S. K. Stein. Convex maps. Proceedings of the AMS, 2:464–466, 1951. [p. 14]
[47] John Stillwell. Classical topology and combinatorial group theory. Springer-

Verlag, New York, second edition, 1993. [pp. 3, 7, and 28]
[48] Carsten Thomassen. Kuratowski’s theorem. Journal of Graph Theory,

5(3):225–241, 1981. [p. 8]
[49] Carsten Thomassen. The Jordan-Schönflies theorem and the classification

of surfaces. American Mathematical Monthly, 99(2):116–130, 1992. [pp. 5
and 24]

[50] Gert Vegter and Chee K. Yap. Computational complexity of combinatorial
surfaces. In Proceedings of the 6th Annual Symposium on Computational
Geometry (SOCG), pages 102–111. ACM, 1990. [p. 38]

[51] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 46:26–32, 1936. [p. 14]

Contents

Foreword and introduction 2

1 Basic properties of planar graphs 3

1.1 Topology . 3

1.2 Combinatorics . 5

1.3 Notes . 7

2 Planarity testing and graph drawing 9

2.1 Planarity testing . 9

2.2 Graph drawing . 11

2.3 Notes . 14

3 Efficient algorithms for planar graphs 15

3.1 Minimum spanning tree algorithm 15

3.2 Graph coloring . 16

3.3 Minimum cut algorithm . 19

3.4 Notes . 22

4 Topology of surfaces 23

4.1 Definition and examples . 23

4.2 Surface (de)construction . 23

4.3 Classification of surfaces . 24

4.4 Surfaces with boundary . 27

4.5 Notes . 28

40

ALGORITHMS FOR EMBEDDED GRAPHS Contents

5 Computing shortest graphs with cut loci 29

5.1 Combinatorial and cross-metric surfaces 29

5.2 Cut loci . 30

5.3 Shortest non-contractible loop . 31

5.4 Shortest non-separating loop . 33

5.5 Shortest system of loops . 35

5.6 Extensions . 36

5.7 Notes . 37

References 38

41

	Foreword and introduction
	Basic properties of planar graphs
	Topology
	Preliminaries on topology
	Graphs and embeddings
	Planar graphs and the Jordan curve theorem

	Combinatorics
	Combinatorial maps for planar graph embeddings
	Duality and Euler's formula

	Notes

	Planarity testing and graph drawing
	Planarity testing
	Graph drawing
	Notes

	Efficient algorithms for planar graphs
	Minimum spanning tree algorithm
	Graph coloring
	Minimum cut algorithm
	Naïve algorithm
	Divide-and-conquer algorithm
	Correctness and complexity analysis

	Notes

	Topology of surfaces
	Definition and examples
	Surface (de)construction
	Surface deconstruction
	Surface construction

	Classification of surfaces
	Euler characteristic and orientability character
	Classification theorem

	Surfaces with boundary
	Notes

	Computing shortest graphs with cut loci
	Combinatorial and cross-metric surfaces
	More types of curves
	Combinatorial surfaces
	Cross-metric surfaces
	Curves on cross-metric surfaces, algorithmically
	Complexity

	Cut loci
	Shortest non-contractible loop
	3-path condition
	Structural lemmas
	Algorithm

	Shortest non-separating loop
	Types of simple loops
	Preliminaries on homology
	Algorithm

	Shortest system of loops
	Algorithm

	Extensions
	Shortest loops on surfaces with boundary
	Shortest paths relatively to a set of points
	Shortest arcs on a surface with boundary

	Notes
	Discrete vs. continuous setting
	Algorithms

	References

