Ancillary Service to the Grid Using Intelligent Deferrable Loads

PGMO Days 2015

Ana Bušić

Inria, DI ENS

In collaboration with S. Meyn and P. Barooah

Thanks to PGMO, NSF, and Google

イロト イポト イヨト イヨト

크

Outline

- 1 Challenges of Renewable Energy Integration
- 2 Virtual Energy Storage
- 3 Control of Deferrable Loads: Goals and Architecture
 - Mean Field Model
- 5 Local Control Design
- 6 Conclusions and Future Directions

Challenges

Ducks

28 thousand megawatts

Source: CallSO

MISO, CAISO, and others: seek markets for ramping products

- Oucks
- 2 Ramps
- 8 Regulation

- Ducks
- 2 Ramps
- 8 Regulation

One potential solution:

Large-scale storage with fast charging/discharging rates

- Ducks
- 2 Ramps
- 8 Regulation

One potential solution:

Large-scale storage with fast charging/discharging rates

Let's consider some alternatives

Virtual Energy Storage

Control Architecture

Frequency Decomposition

Today: PJM decomposes regulation signal based on bandwidth, $\frac{R = RegA + RegD}{RegA}$

Proposal: Each class of DR (and other) resources will have its own bandwidth of service, based on QoS constraints and costs.

ISOs need help: ... ramp capability shortages could result in a single, five-minute dispatch interval or multiple consecutive dispatch intervals during which the price of energy can increase significantly due to scarcity pricing, even if the event does not present a significant reliability risk http://tinyurl.com/FERC-ER14-2156-000

イロト イポト イヨト イヨト

4/19

Frequency Decomposition Regulation

Frequency Decomposition Regulation

Frequency Decomposition Regulation

Regulation

5/19

э

イロト イポト イヨト イヨト

Responsive Regulation and desired QoS

Responsive Regulation and desired QoS

Responsive Regulation and desired QoS

Demand Dispatch: Power consumption from loads varies automatically and continuously to provide service to the grid, without impacting QoS to the consumer

Responsive Regulation and desired QoS

- A partial list of the needs of the grid operator, and the consumer

• High quality Ancillary Service? Does the deviation in power consumption accurately track the desired deviation target?

Responsive Regulation and desired QoS

- A partial list of the needs of the grid operator, and the consumer

- High quality Ancillary Service?
- Reliable?

Will AS be available each day?

It may vary with time, but capacity must be predictable.

Responsive Regulation and desired QoS

- A partial list of the needs of the grid operator, and the consumer

- High quality Ancillary Service?
- Reliable?
- Cost effective?

This includes installation cost, communication cost, maintenance, and environmental.

Responsive Regulation and desired QoS

- A partial list of the needs of the grid operator, and the consumer

- High quality Ancillary Service?
- Reliable?
- Cost effective?
- Customer QoS constraints satisfied?

The pool must be clean, fresh fish stays cold, building climate is subject to strict bounds, farm irrigation is subject to strict constraints, data centers require sufficient power to perform their tasks.

Responsive Regulation and desired QoS

- A partial list of the needs of the grid operator, and the consumer

- High quality Ancillary Service?
- Reliable?
- Cost effective?
- Customer QoS constraints satisfied?

Virtual energy storage: achieve these goals simultaneously through distributed control

Control of Deferrable Loads

Control Goals and Architecture

Prefilter and decision rules designed to respect needs of load and grid

Requirements

- Minimal communication: Each load monitors its state and a regulation signal from the grid
- Aggregate must be controllable: Randomized policies required for finite-state loads

Control Goals and Architecture

Prefilter and decision rules designed to respect needs of load and grid

Requirements

- Minimal communication: Each load monitors its state and a regulation signal from the grid
- Aggregate must be controllable: Randomized policies required for finite-state loads

Questions

• How to analyze aggregate of similar loads? • Local control design?

Aggregate of similar deferrable loads

<ロト <四ト <注入 <注下 <注下 <

Control Architecture

Aggregate of similar deferrable loads

Examples: Chillers in HVAC systems, water heaters, residential TCLs, residential pool pumps

Assumptions:

Assumptions:

 $\bullet\,$ Discrete time: $i{\rm th}\,\log\,X^i(t)$ evolves on finite state space X

Assumptions:

- Discrete time: *i*th load $X^i(t)$ evolves on finite state space X
- Each load is subject to common controlled Markovian dynamics.

Signal $\boldsymbol{\zeta} = \{\zeta_t\}$ is broadcast to all loads

Assumptions:

- Discrete time: *i*th load $X^i(t)$ evolves on finite state space X
- Each load is subject to common controlled Markovian dynamics.

Signal $\boldsymbol{\zeta} = \{\zeta_t\}$ is broadcast to all loads

• Controlled transition matrix $\{P_{\zeta} : \zeta \in \mathbb{R}\}$:

$$\mathsf{P}\{X_{t+1}^{i} = x' \mid X_{t}^{i} = x, \, \zeta_{t} = \zeta\} = P_{\zeta}(x, x')$$

Assumptions:

- Discrete time: *i*th load $X^i(t)$ evolves on finite state space X
- Each load is subject to common controlled Markovian dynamics.

Signal $\boldsymbol{\zeta} = \{\zeta_t\}$ is broadcast to all loads

• Controlled transition matrix $\{P_{\zeta} : \zeta \in \mathbb{R}\}$:

$$\mathsf{P}\{X_{t+1}^{i} = x' \mid X_{t}^{i} = x, \, \zeta_{t} = \zeta\} = P_{\zeta}(x, x')$$

 $\bullet \ \mathcal{U} \colon X \to \mathbb{R}$ models the needs of the grid

N loads running independently, each under the command $\pmb{\zeta}.$

N loads running independently, each under the command $\boldsymbol{\zeta}$. Empirical Distributions:

$$\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}$$

$$y_t^N = \frac{1}{N} \sum_{i=1}^N \mathcal{U}(X_t^i) = \sum_x \mu_t^N(x) \mathcal{U}(x)$$

N loads running independently, each under the command ζ . Empirical Distributions:

$$\begin{split} \mu_t^N(x) &= \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X} \\ y_t^N &= \frac{1}{N} \sum_{i=1}^N \mathcal{U}(X_t^i) = \sum_x \mu_t^N(x) \mathcal{U}(x) \end{split}$$

Limiting model:

$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t := \sum_x \mu_t(x) \mathcal{U}(x)$$

via Law of Large Numbers for martingales

N loads running independently, each under the command ζ . Empirical Distributions:

$$\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}$$

$$y_t^N = \frac{1}{N} \sum_{i=1}^N \mathcal{U}(X_t^i) = \sum_x \mu_t^N(x) \mathcal{U}(x)$$

Mean-field model:

$$\mu_{t+1} = \mu_t P_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})$$
 $\zeta_t = f_t(\mu_0, \dots, \mu_t) \quad ext{by design}$

N loads running independently, each under the command $\boldsymbol{\zeta}$. **Empirical Distributions:**

$$\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}$$

$$y_t^N = \frac{1}{N} \sum_{i=1}^N \mathcal{U}(X_t^i) = \sum_x \mu_t^N(x) \mathcal{U}(x)$$

Mean-field model:

The field model:

$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t = \mu_t(\mathcal{U})$$

$$\zeta_t = f_t(\mu_0, \dots, \mu_t) \quad \text{by design}$$
Question:
How to design P_{ζ_t} ?

Local Design

Design: Consider first the finite-horizon control problem:

$$p_{\zeta}(x_1, \dots, x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i, x_{i+1}), x_0 \in \mathsf{X}$$

Design: Consider first the finite-horizon control problem:

$$p_{\zeta}(x_1, \dots, x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i, x_{i+1}), x_0 \in \mathsf{X}$$

Choose distribution p_{ζ} to *maximize*

$$\zeta \mathsf{E}_{p_{\zeta}} \Big[\sum_{t=1}^{T} \mathcal{U}(X_t) \Big] - D(p \| p_0)$$

D denotes relative entropy.

 p_0 denotes nominal Markovian model.

Design: Consider first the finite-horizon control problem:

$$p_{\zeta}(x_1, \dots, x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i, x_{i+1}), x_0 \in \mathsf{X}$$

Choose distribution p_{ζ} to maximize

$$\zeta \mathsf{E}_{p_{\zeta}} \Big[\sum_{t=1}^{T} \mathcal{U}(X_t) \Big] - D(p \| p_0)$$

D denotes relative entropy.

 p_0 denotes nominal Markovian model.

Explicit solution for finite T:

$$p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \sum_{t=0}^T \mathcal{U}(x_t)\right) p_0(x_0^T)$$

12/19

$$p_{\zeta}(x_1, \dots, x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i, x_{i+1}), x_0 \in \mathsf{X}$$

Explicit solution for finite T:

$$p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \sum_{t=0}^T \mathcal{U}(x_t)\right) p_0(x_0^T)$$

Markovian, but not time-homogeneous.

$$p_{\zeta}(x_1, \dots, x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i, x_{i+1}), x_0 \in \mathsf{X}$$

Explicit solution for finite T:

$$p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \sum_{t=0}^T \mathcal{U}(x_t)\right) p_0(x_0^T)$$

As $T
ightarrow \infty$, we obtain transition matrix P_{ζ}

$$p_{\zeta}(x_1,\ldots,x_T) = \prod_{i=0}^{T-1} P_{\zeta}(x_i,x_{i+1}), x_0 \in \mathsf{X}$$

Explicit solution for finite T:

$$p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \sum_{t=0}^T \mathcal{U}(x_t)\right) p_0(x_0^T)$$

As $T \to \infty$, we obtain transition matrix P_{ζ} Explicit construction via eigenvector problem:

$$P_{\zeta}(x,y) = \frac{1}{\lambda} \frac{v(y)}{v(x)} \hat{P}_{\zeta}(x,y), \qquad x, y \in \mathsf{X},$$

where $\hat{P}_{\zeta} \boldsymbol{v} = \lambda \boldsymbol{v}, \qquad \hat{P}_{\zeta}(x, y) = \exp(\zeta \mathcal{U}(x)) P_0(x, y)$

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & M $200X_{19}^{\circ}$

Linearized Dynamics

Mean Field Model

Linearized Dynamics

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$

$$\gamma_t = C\Phi_t$$

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$
$$\gamma_t = C\Phi_t$$

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$
$$\gamma_t = C\Phi_t$$

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for P_0 . • $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$. a column vector with

 $\Phi_t(x) \approx \mu_t(x) - \pi(x), \ x \in \mathsf{X}$

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$
$$\gamma_t = C\Phi_t$$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) \pi(x)$, $x \in \mathsf{X}$
- $\gamma_t \approx y_t y^0$; deviation from nominal steady-state

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \quad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$
$$\gamma_t = C\Phi_t$$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) \pi(x)$, $x \in \mathsf{X}$
- $\gamma_t \approx y_t y^0$; deviation from nominal steady-state
- $A = P_0^{\tau}$, $C_i = \mathcal{U}(x^i)$, and input dynamics linearized:

Mean-field model:
$$\mu_{t+1} = \mu_t P_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})$$

Linear state space model:

$$\Phi_{t+1} = A\Phi_t + B\zeta_t$$
$$\gamma_t = C\Phi_t$$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) \pi(x)$, $x \in \mathsf{X}$
- $\gamma_t \approx y_t y^0$; deviation from nominal steady-state
- $A = P_0^{\tau}$, $C_i = \mathcal{U}(x^i)$, and input dynamics linearized:

$$B^{\tau} = \frac{d}{d\zeta} \pi P_{\zeta} \Big|_{\zeta=0}$$

Example: One Million Pools in Florida

How Pools Can Help Regulate The Grid

14/19

Needs of a single pool

- Filtration system circulates and cleans: Average pool pump uses 1.3kW and runs 6-12 hours per day, 7 days per week
- ▷ Pool owners are oblivious, until they see frogs and algae
- Pool owners do not trust anyone: Privacy is a big concern

Pools in Florida Supply G_2 – BPA regulation signal^{*}

Stochastic simulation using $N = 10^5$ pools

PI control: $\zeta_t = 19e_t + 1.4e_t^I$, $e_t = r_t - y_t$ and $e_t^I = \sum_{k=0}^t e_k$ Each pool pump turns on/off with probability depending on 1) its internal state, and 2) the BPA reg signal

 $`transmission.bpa.gov/Business/Operations/Wind/reserves_aspx_{
m o}$

Conclusions and Future Directions

Conclusions and Future Directions

Challenges: intermittence and volatility of renewable generation In the absence of grid-level efficient storage, increased need for responsive fossil-fuel generators, negating the environmental benefits of renewables

Approach: creating Virtual Energy Storage through direct control of flexible loads - helping the grid while respecting user QoS (MDP on the local level and mean-field analysis of the aggregate)

Conclusions and Future Directions

Challenges: intermittence and volatility of renewable generation In the absence of grid-level efficient storage, increased need for responsive fossil-fuel generators, negating the environmental benefits of renewables

Approach: creating Virtual Energy Storage through direct control of flexible loads - helping the grid while respecting user QoS (MDP on the local level and mean-field analysis of the aggregate)

Current and future research directions

- Extending local control design to include disturbance from the nature
- Investigating needs for communication and forecast (minimizing communication and computation costs while providing reliable service to the grid)
- Integrating VES with traditional generation and batteries (resource allocation optimization problems involving different time scales)

<ロ> (日) (日) (日) (日) (日)

Conclusions

Thank You!

References: Demand Response

- S. Meyn, P. Barooah, A. Bušić, and J. Ehren. Ancillary service to the grid from deferrable loads: the case for intelligent pool pumps in Florida (Invited). In *Proceedings of the 52nd IEEE Conf. on Decision and Control*, 2013. Journal version to appear, Trans. Auto. Control.

A. Bušić and S. Meyn. Passive dynamics in mean field control. ArXiv e-prints: arXiv:1402.4618. 53rd IEEE Conf. on Decision and Control (Invited), 2014.

- S. Meyn, Y. Chen, and A. Bušić. Individual risk in mean-field control models for decentralized control, with application to automated demand response. *53rd IEEE Conf. on Decision and Control (Invited)*, 2014.
- J. L. Mathieu. Modeling, Analysis, and Control of Demand Response Resources. PhD thesis, Berkeley, 2012.
- D. Callaway and I. Hiskens, Achieving controllability of electric loads. *Proceedings of the IEEE*, 99(1):184–199, 2011.
- S. Koch, J. Mathieu, and D. Callaway, Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services, in *Proc. PSCC*, 2011, 1–7.

H. Hao, A. Kowli, Y. Lin, P. Barooah, and S. Meyn Ancillary Service for the Grid Via Control of Commercial Building HVAC Systems. ACC 2013

References: Markov Models

I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov processes. *Ann. Appl. Probab.*, 13:304–362, 2003.

I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. *Electron. J. Probab.*, 10(3):61–123 (electronic), 2005.

- E. Todorov. Linearly-solvable Markov decision problems. In B. Schölkopf, J. Platt, and T. Hoffman, editors, *Advances in Neural Information Processing Systems*, (19) 1369–1376. MIT Press, Cambridge, MA, 2007.
- M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. *IEEE Trans. Automat. Control*, 52(9):1560–1571, 2007.
- H. Yin, P. Mehta, S. Meyn, and U. Shanbhag. Synchronization of coupled oscillators is a game. *IEEE Transactions on Automatic Control*, 57(4):920–935, 2012.
- P. Guan, M. Raginsky, and R. Willett. Online Markov decision processes with Kullback-Leibler control cost. In American Control Conference (ACC), 2012, 1388–1393, 2012.

V.S.Borkar and R.Sundaresan Asympotics of the invariant measure in mean field models with jumps. *Stochastic Systems*, 2(2):322-380, 2012.