# Approximate Optimality with Bounded Regret in Dynamic Matching Models

Ana Bušić

Inria Paris CS Department of École normale supérieure

> Joint work with Sean Meyn University of Florida

and Ivo Adan, Varun Gupta, Jean Mairesse, and Gideon Weiss

Real-Time Decision Making Simons Institute, Berkeley, Jun. 27 - Jul. 1, 2016

### Outline

#### Background

#### 2 Bipartite matching model

#### Optimization

- Average Cost Criterion
- Workload
- Workload Relaxation
- Asymptotic optimality

#### Final remarks

#### Background

#### **Bipartite Matching**

 $\begin{aligned} (\mathcal{D}, \mathcal{S}, E) \text{ bipartite graph} \\ \mathcal{D}(s) &= \{ d \in \mathcal{D} : (d, s) \in E \} \\ \mathcal{S}(d) &= \{ s \in \mathcal{S} : (d, s) \in E \} \end{aligned}$ 

 $x_i$  number of elements of type  $i \in \mathcal{D} \cup \mathcal{S}$ Perfect matching:  $m \in \mathbb{N}^E$  such that:

$$x_d = \sum_{s \in \mathcal{S}(d)} m_{ds}, \; \forall d \in \mathcal{D}, \quad x_s = \sum_{d \in \mathcal{D}(s)} m_{ds}, \; \forall s \in \mathcal{S}$$

Hall's marriage theorem (1935)

 $\exists$  perfect matching if and only if:

$$\sum_{d \in U} x_c \leq \sum_{s \in \mathcal{S}(U)} x_s, \quad \forall U \subset \mathcal{D} \\ \sum_{s \in V} x_s \leq \sum_{d \in \mathcal{D}(V)} x_d, \quad \forall V \subset \mathcal{S}$$



### Matching in Health-care

#### Kidney paired donation

Who can join this program? For recipients: If you are eligible for a kidney transplant and are receiving care at a transplant center in the United States, you can join ... You must have a living donor who is willing and medically able to donate his or her kidney ...

*For donors:* You must also be willing to take part ...

#### OPTN Kidney Paired Donation Pilot Program

TALKING ABOUT TRANSPLANTATION

A transplant option for patients with an incompatible living donor



### Matching in Health-care

#### Kidney paired donation

Who can join this program? For recipients: If you are eligible for a kidney transplant and are receiving care at a transplant center in the United States, you can join ... You must have a living donor who is willing and medically able to donate his or her kidney ...

*For donors:* You must also be willing to take part ...

#### OPTN Kidney Paired Donation Pilot Program

TALKING ABOUT TRANSPLANTATION

A transplant option for patients with an incompatible living donor



#### Need for Dynamic Matching Models

### Dynamic Matching Model: FCFS

#### Another Example

Boston area public housing (some 25 years ago):

Households applying for public housing are allowed to specify those housing projects in which they are willing to live; when a public housing unit becomes newly available, of those households willing to live in the associated housing project, the one that has been waiting the longest is offered the unit.

#### Model

Two independent infinite sequences of items. Demand / supply i.i.d.

FCFS matching policy admits product-form invariant distribution

Caldentey, Kaplan, Weiss 2009 Adan, Weiss 2012 Adan, B., Mairesse, Weiss 2015

(日) (部) (注) (注) (言)

#### Multiclass queueing model – Supply/Demand play symmetric roles



- Discrete time queueing model with two types of arrival: "supply" and "demand".
- Discrete time: at each time step there is one customer and one server that arrive into the system, independently of the past.
- Instantaneous matchings according to a bipartite matching graph. Unmatched supply/demand stored in a buffer.

#### Multiclass queueing model – Supply/Demand play symmetric roles



- Discrete time queueing model with two types of arrival: "supply" and "demand".
- Discrete time: at each time step there is one customer and one server that arrive into the system, independently of the past.
- Instantaneous matchings according to a bipartite matching graph. Unmatched supply/demand stored in a buffer.

#### Multiclass queueing model – Supply/Demand play symmetric roles



- Discrete time queueing model with two types of arrival: "supply" and "demand".
- Discrete time: at each time step there is one customer and one server that arrive into the system, independently of the past.
- Instantaneous matchings according to a bipartite matching graph. Unmatched supply/demand stored in a buffer.

・ロン ・回 と ・ ヨ と ・ ヨ と

Multiclass queueing model – Supply/Demand play symmetric roles



- Discrete time queueing model with two types of arrival: "supply" and "demand".
- Discrete time: at each time step there is one customer and one server that arrive into the system, independently of the past.
- Instantaneous matchings according to a bipartite matching graph. Unmatched supply/demand stored in a buffer.

Given by: a matching graph, a joint probability measure  $\mu$  for arrivals of demand/supply and a matching policy.

# Dynamic Matching Model: Stability

For the dynamic model with i.i.d. arrivals, when is the Markovian model stable? (positive recurrent)

- Necessary condition: generalization of Hall's marriage theorem
- Under this condition, certain policies are stabilizing, such as MaxWeight
- Under this condition, other policies are not stabilizing

B., Gupta, Mairesse 2013.

# Dynamic Matching Model: Approximate Optimality

#### Subject of this talk:

- How to define 'heavy traffic'? This requires a formulation of 'network load'
- What is the structure of an optimal policy for the model in heavy traffic?
- How do we use this structure for policy design?

B., Meyn 2016

#### Necessary stability conditions

Assumption: matching graph  $(\mathcal{D}, \mathcal{S}, E)$  is connected.

Necessary conditions: If the model is stable then the marginals of  $\mu$  satisfy

NCOND: 
$$\begin{cases} \mu_{\mathcal{D}}(U) < \mu_{\mathcal{S}}(\mathcal{S}(U)), & \forall U \subsetneq \mathcal{D} \\ \mu_{\mathcal{S}}(V) < \mu_{\mathcal{D}}(\mathcal{D}(V)), & \forall V \subsetneq \mathcal{S} \end{cases}$$

9/19

#### Necessary stability conditions

Assumption: matching graph  $(\mathcal{D}, \mathcal{S}, E)$  is connected.

Necessary conditions: If the model is stable then the marginals of  $\mu$  satisfy

NCOND: 
$$\begin{cases} \mu_{\mathcal{D}}(U) < \mu_{\mathcal{S}}(\mathcal{S}(U)), & \forall U \subsetneq \mathcal{D} \\ \mu_{\mathcal{S}}(V) < \mu_{\mathcal{D}}(\mathcal{D}(V)), & \forall V \subsetneq \mathcal{S} \end{cases}$$

Sufficient conditions: If NCOND holds, then there exists a policy that is stabilizing

#### Necessary stability conditions

Assumption: matching graph  $(\mathcal{D}, \mathcal{S}, E)$  is connected.

Necessary conditions: If the model is stable then the marginals of  $\mu$  satisfy

NCOND: 
$$\begin{cases} \mu_{\mathcal{D}}(U) < \mu_{\mathcal{S}}(\mathcal{S}(U)), & \forall U \subsetneq \mathcal{D} \\ \mu_{\mathcal{S}}(V) < \mu_{\mathcal{D}}(\mathcal{D}(V)), & \forall V \subsetneq \mathcal{S} \end{cases}$$

Sufficient conditions: If NCOND holds, then there exists a policy that is stabilizing

**Prop.** Given  $[(\mathcal{D}, \mathcal{S}, E), \mu]$ , there exists an algorithm of time complexity  $O((|\mathcal{D}| + |\mathcal{S}|)^3)$  to decide if NCOND is satisfied.

### Optimization

Cost function *c* on buffer levels.

Average-cost: 
$$\eta = \limsup_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} E[c(Q(t))]$$

< □ > < 部 > < 言 > < 言 > 三 の < で 10/19

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

10/19

### Optimization

Cost function *c* on buffer levels.

$$\begin{array}{ll} \text{Average-cost:} & \eta = \limsup_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} \mathsf{E} \big[ c(Q(t)) \big] \\ \\ \text{Queue dynamics:} & Q(t+1) = Q(t) - U(t) + A(t) \,, \qquad t \geq 0 \end{array}$$

### Optimization

Cost function *c* on buffer levels.

Average-cost: 
$$\eta = \limsup_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} \mathsf{E}[c(Q(t))]$$

Queue dynamics: Q(t+1) = Q(t) - U(t) + A(t),  $t \ge 0$ Input process **U** represents the sequence of matching activities. Input space:

$$\mathbb{U}_{\diamond} = \left\{ \sum_{e \in E} n_e u^e : n_e \in \mathbb{Z}_+ \right\}$$
 with  $u^e = \mathbf{1}^i + \mathbf{1}^j$  for  $e = (i, j) \in \mathcal{E}$ .

### Optimization

Cost function c on buffer levels.

Average-cost: 
$$\eta = \limsup_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} \mathsf{E}[c(Q(t))]$$

Queue dynamics: Q(t+1) = Q(t) - U(t) + A(t),  $t \ge 0$ Input process **U** represents the sequence of matching activities. Input space:

$$\mathbb{U}_{\diamond} = \left\{ \sum_{e \in E} n_e u^e : n_e \in \mathbb{Z}_+ 
ight\} \quad \text{with } u^e = \mathbf{1}^i + \mathbf{1}^j \text{ for } e = (i, j) \in \mathcal{E}.$$

X(t) = Q(t) + A(t) the state process of the MDP model,

$$X(t+1) = X(t) - U(t) + A(t+1)$$

The state space  $X_\diamond = \{x \in \mathbb{Z}^\ell_+ : \xi^0 \cdot x = 0\}$  with  $\xi^0 = (1, \dots, 1, -1, \dots, -1)$ .

<ロ > < 部 > < 差 > < 差 > 差 う Q () 10/19

#### Workload

For any  $D \subset \mathcal{D}$ , corresponding workload vector  $\xi^D$  defined so that

$$\xi^{D} \cdot x = \sum_{i \in D} x_{i}^{\mathcal{D}} - \sum_{j \in \mathcal{S}(D)} x_{j}^{\mathcal{S}}$$

For any  $D \subset \mathcal{D}$ , corresponding workload vector  $\xi^D$  defined so that

$$\xi^D \cdot x = \sum_{i \in D} x_i^D - \sum_{j \in \mathcal{S}(D)} x_j^S$$

Necessary and sufficient condition for a stabilizing policy: NCond:  $\delta_D := -\xi^D \cdot \alpha > 0$  for each D

 $\alpha = \mathsf{E}[\mathsf{A}(t)]$  arrival rate vector.

For any  $D \subset \mathcal{D}$ , corresponding workload vector  $\xi^D$  defined so that

$$\xi^D \cdot x = \sum_{i \in D} x_i^D - \sum_{j \in \mathcal{S}(D)} x_j^S$$

Necessary and sufficient condition for a stabilizing policy: NCond:  $\delta_D := -\xi^D \cdot \alpha > 0$  for each D $\alpha = E[A(t)]$  arrival rate vector.

Why is this workload? Consistent with routing/scheduling models:

Fluid model, 
$$\frac{d}{dt}x(t) = -u(t) + \alpha$$

The minimal time to reach the origin from x(0) = x:  $T^*(x) = \max_D \frac{\xi^{D} \cdot x}{\delta_D}$ 

For any  $D \subset \mathcal{D}$ , corresponding workload vector  $\xi^D$  defined so that

$$\xi^D \cdot x = \sum_{i \in D} x_i^D - \sum_{j \in \mathcal{S}(D)} x_j^S$$

Necessary and sufficient condition for a stabilizing policy: NCond:  $\delta_D := -\xi^D \cdot \alpha > 0$  for each D $\alpha = E[A(t)]$  arrival rate vector.

Why is this workload? Consistent with routing/scheduling models:

Fluid model, 
$$\frac{d}{dt}x(t) = -u(t) + \alpha$$

The minimal time to reach the origin from x(0) = x:  $T^*(x) = \max_D \frac{\xi^{D} \cdot x}{\delta_D}$ Heavy-traffic:  $\delta_D \sim 0$  for one or more D

11/19

Fix one workload vector  $\xi^D$ ; denote  $(\xi, \delta)$  for  $(\xi^D, \delta_D)$ .

Workload  $W(t) = \xi \cdot X(t)$ 

Fix one workload vector  $\xi^D$ ; denote  $(\xi, \delta)$  for  $(\xi^D, \delta_D)$ .

Workload  $W(t) = \xi \cdot X(t)$  can be positive or negative.

Fix one workload vector  $\xi^D$ ; denote  $(\xi, \delta)$  for  $(\xi^D, \delta_D)$ .

Workload  $W(t) = \xi \cdot X(t)$  can be positive or negative. Dynamics as in other queueing models,

 $\mathsf{E}[W(t+1) - W(t) \mid X(t), \ U(t)] \geq -\delta$ 

Fix one workload vector  $\xi^D$ ; denote  $(\xi, \delta)$  for  $(\xi^D, \delta_D)$ .

Workload  $W(t) = \xi \cdot X(t)$  can be positive or negative. Dynamics as in other queueing models,

 $\mathsf{E}[W(t+1) - W(t) \mid X(t), \ U(t)] \geq -\delta$ 

Achieved  $\iff \mathcal{S}(D)$  matches with D only.

Fix one workload vector  $\xi^D$ ; denote  $(\xi, \delta)$  for  $(\xi^D, \delta_D)$ .

Workload  $W(t) = \xi \cdot X(t)$  can be positive or negative. Dynamics as in other queueing models,

 $\mathsf{E}[W(t+1) - W(t) \mid X(t), \ U(t)] \ge -\delta$ 

Achieved  $\iff \mathcal{S}(D)$  matches with D only.

(ロ) (部) (E) (E) (E) (000)

Workload relaxation: take this as the model for control.

A workload relaxation takes this as the model for control: One Dimensional Workload relaxation,

$$\widehat{W}(t+1) = \widehat{W}(t) - \delta + \underbrace{I(t)}_{i} + \underbrace{\Delta(t+1)}_{i}$$

Idleness  $\geq 0$  Zero mean

A workload relaxation takes this as the model for control: One Dimensional Workload relaxation,

$$\widehat{W}(t+1) = \widehat{W}(t) - \delta + \underbrace{I(t)}_{|\mathsf{dleness}| \geq 0} + \underbrace{\Delta(t+1)}_{\mathsf{Zero mean}}$$

Effective cost  $\bar{c} \colon \mathbb{R} \to \mathbb{R}_+$ : Given a cost function c for Q,

$$\bar{c}(w) = \min\{c(x) : \xi \cdot x = w\}$$

A workload relaxation takes this as the model for control: One Dimensional Workload relaxation,

$$\widehat{W}(t+1) = \widehat{W}(t) - \delta + \underbrace{I(t)}_{\mathsf{Idleness} > 0} + \underbrace{\Delta(t+1)}_{\mathsf{Zero mean}}$$

Effective cost  $\bar{c} \colon \mathbb{R} \to \mathbb{R}_+$ : Given a cost function c for Q,

$$\bar{c}(w) = \min\{c(x) : \xi \cdot x = w\}$$

(ロ) (部) (目) (日) (日) (の)

Piecewise linear if c is linear:  $\overline{c}(w) = \max(\overline{c}_+w, -\overline{c}_-w).$ 

A workload relaxation takes this as the model for control: One Dimensional Workload relaxation,

$$\widehat{W}(t+1) = \widehat{W}(t) - \delta + \underbrace{I(t)}_{\mathsf{Idleness} > 0} + \underbrace{\Delta(t+1)}_{\mathsf{Zero mean}}$$

Effective cost  $\bar{c} \colon \mathbb{R} \to \mathbb{R}_+$ : Given a cost function c for Q,

$$\bar{c}(w) = \min\{c(x) : \xi \cdot x = w\}$$

Piecewise linear if c is linear:  $\overline{c}(w) = \max(\overline{c}_+w, -\overline{c}_-w).$ 

#### Conclusions

Control of the relaxation = inventory model of Clark & Scarf (1960) Hedging policy, with threshold  $\tau^*$ : *Idling is not permitted unless*  $\widehat{W}(t) < -\tau^*$ 

A workload relaxation takes this as the model for control: One Dimensional Workload relaxation,

$$\widehat{W}(t+1) = \widehat{W}(t) - \delta + \underbrace{I(t)}_{\mathsf{Idleness} > 0} + \underbrace{\Delta(t+1)}_{\mathsf{Zero mean}}$$

Effective cost  $\bar{c} \colon \mathbb{R} \to \mathbb{R}_+$ : Given a cost function c for Q,

$$\bar{c}(w) = \min\{c(x) : \xi \cdot x = w\}$$

Piecewise linear if c is linear:  $\overline{c}(w) = \max(\overline{c}_+w, -\overline{c}_-w).$ 

#### Conclusions

Control of the relaxation = inventory model of Clark & Scarf (1960) Hedging policy, with threshold  $\tau^*$ : *Idling is not permitted unless*  $\widehat{W}(t) < -\tau^*$ 

Heavy-traffic: For average-cost optimal control,  $\tau^* \sim \frac{1}{2} \frac{\sigma_{\Delta}^2}{\delta} \log(1 + \overline{c}_+ / \overline{c}_-)$ 

Family of arrival processes  $\{A^{\delta}(t)\}$ , parameterized by  $\delta \in [0, \overline{\delta}^{\bullet}]$ ,  $\overline{\delta}^{\bullet} \in (0, 1)$ . Additional assumptions:

(A1) For one set  $D \subsetneq D$  we have  $\xi^D \cdot \alpha^{\delta} = -\delta$ , where  $\alpha^{\delta}$  denotes the mean of  $A^{\delta}(t)$ . Moreover, there is a fixed constant  $\underline{\delta} > 0$  such that  $\xi^{D'} \cdot \alpha^{\delta} \leq -\underline{\delta}$  for any  $D' \subsetneq D$ ,  $D' \neq D$ , and  $\delta \in [0, \overline{\delta}^{\bullet}]$ .

(A2) The distributions are continuous at  $\delta = 0$ , with linear rate: For some constant *b*,

$$\mathsf{E}[\|A^{\delta}(t) - A^{\mathsf{0}}(t)\|] \leq b\delta.$$

(A3) Graph structure for arrivals and for feasible matches independent of  $\delta \ge 0$   $\implies$  The matching graph is connected even for  $\delta = 0$ . Moreover, there exists  $i_0 \in S(D)$ ,  $j_0 \in D^c$ , and  $p_l > 0$  such that

$$P\{A^{\delta}_{i_0}(t)\geq 1 \text{ and } A^{\delta}_{j_0}(t)\geq 1\}\geq p_I, \qquad 0\leq \delta\leq \overline{\delta}^{ullet}.$$

*h*-MWT (*h*-MaxWeight with threshold) policy:
 For a differentiable function *h*: ℝ<sup>ℓ</sup> → ℝ<sub>+</sub>, and a threshold τ ≥ 0,

$$\begin{split} \phi(x) &= \arg \max \quad u \cdot \nabla h\left(x\right) \\ &\text{subject to} \quad u \text{ feasible} \\ &\text{ and } \quad I(t) \leq \max(-W(t) - \tau, 0), \text{ when } X(t) = x \text{ and } U(t) = u. \end{split}$$

*h*-MWT (*h*-MaxWeight with threshold) policy:
 For a differentiable function *h*: ℝ<sup>ℓ</sup> → ℝ<sub>+</sub>, and a threshold τ ≥ 0,

$$\begin{split} \phi(x) &= \arg \max \quad u \cdot \nabla h(x) \\ \text{subject to} \quad u \text{ feasible} \\ & \text{and} \quad I(t) \leq \max(-W(t) - \tau, 0), \text{ when } X(t) = x \text{ and } U(t) = u. \end{split}$$

 Thm (Asymptotic Optimality With Bounded Regret) [B., Meyn '16] There is an *h*-MWT policy with finite average cost η, satisfying

$$\hat{\eta}^* \leq \eta^* \leq \eta \leq \hat{\eta}^* + O(1)$$

where  $\eta^*$  is the optimal average cost for the MDP model,  $\hat{\eta}^*$  is the optimal average cost for the workload relaxation, and the term O(1) does not depend upon  $\delta$ .

• The average cost for the relaxation satisfies the uniform bound,

$$\hat{\eta}^* = \hat{\eta}^{**} + O(1)$$

where  $\hat{\eta}^{**}$  is the optimal cost for the diffusion approx. for the relaxation:

$$\hat{\eta}^{**} = au^* \, ar{c}_- = rac{1}{2} rac{\sigma_N^2}{\delta} \, ar{c}_- \log \Bigl(1 + rac{ar{c}_+}{ar{c}_-}\Bigr)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

16/19

• The average cost for the relaxation satisfies the uniform bound,

$$\hat{\eta}^* = \hat{\eta}^{**} + O(1)$$

where  $\hat{\eta}^{**}$  is the optimal cost for the diffusion approx. for the relaxation:

$$\hat{\eta}^{**} = \tau^* \ \bar{c}_- = \tfrac{1}{2} \frac{\sigma_N^2}{\delta} \ \bar{c}_- \log\Bigl(1 + \frac{\bar{c}_+}{\bar{c}_-}\Bigr)$$

•  $h(x) = \hat{h}(\xi \cdot x) + h_c(x)$ 

- $h_c$  is introduced to penalize deviations between c(x) and  $\bar{c}(\xi \cdot x)$ .
- The first term  $\hat{h}$  is a function of workload. For  $w \ge -\tau^*$ , it solves the second-order differential equation,

$$-\delta\hat{h}'(w) + \frac{1}{2}\sigma_{\Delta}^{2}\hat{h}''(w) = -\bar{c}(w) + \hat{\eta}^{**}, \qquad (1)$$

There is a solution that is convex and increasing on  $[-\tau^*, \infty)$ , with  $\hat{h}'(-\tau^*) = \hat{h}''(-\tau^*) = 0$ . Then extended to get a convex  $C^2$  function on  $\mathbb{R}$ .

#### Examples

#### Example

# Example Cost: $c(x) = x_1^{\mathcal{D}} + 2x_2^{\mathcal{D}} + 3x_3^{\mathcal{D}} + 3x_1^{\mathcal{S}} + 2x_2^{\mathcal{S}} + x_3^{\mathcal{S}}$ $\implies$ Effective Cost: $\bar{c}(w) = 4|w|$



 $W(t) = Q_3^{\mathcal{D}}(t) - Q_1^{\mathcal{S}}(t)$ 

Matching of Supply 1 and Demand 2 allowed only if  $W(t) < -\tau^*$ 

Workload Relaxation:

$$Q_1^s(t) = Q_2^s(t) = 0 \qquad \text{if } W(t) > 0$$

 $Q_2^{\scriptscriptstyle \mathcal{D}}(t) = Q_3^{\scriptscriptstyle \mathcal{D}}(t) = 0 \qquad ext{if } W(t) < 0$ 

#### Examples

#### Example

# Example Cost: $c(x) = x_1^{\mathcal{D}} + 2x_2^{\mathcal{D}} + 3x_3^{\mathcal{D}} + 3x_1^{\mathcal{S}} + 2x_2^{\mathcal{S}} + x_3^{\mathcal{S}}$ $\implies$ Effective Cost: $\bar{c}(w) = 4|w|$



Average Cost Estimated in Simulation:



 $W(t) = Q_3^{\scriptscriptstyle \mathcal{D}}(t) - Q_1^{\scriptscriptstyle \mathcal{S}}(t)$ 

Matching of Supply 1 and Demand 2 allowed only if  $W(t) < -\tau^*$ 

Workload Relaxation:

$$Q_1^{\scriptscriptstyle S}(t) = Q_2^{\scriptscriptstyle S}(t) = 0 \qquad ext{if $W(t) > 0$}$$

 $Q_2^{\scriptscriptstyle \mathcal{D}}(t) = Q_3^{\scriptscriptstyle \mathcal{D}}(t) = 0 \qquad ext{if } \mathcal{W}(t) < 0$ 

#### Examples

#### Example

# Example Cost: $c(x) = x_1^{\mathcal{D}} + 2x_2^{\mathcal{D}} + 3x_3^{\mathcal{D}} + 3x_1^{\mathcal{S}} + 2x_2^{\mathcal{S}} + x_3^{\mathcal{S}}$ $\implies$ Effective Cost: $\bar{c}(w) = 4|w|$





Simulation with  $\tau = 14.9$ 

 $W(t) = Q_3^{\scriptscriptstyle \mathcal{D}}(t) - Q_1^{\scriptscriptstyle \mathcal{S}}(t)$ 

Matching of Supply 1 and Demand 2 allowed only if  $W(t) < -\tau^*$ 

Workload Relaxation:

$$Q_1^{\scriptscriptstyle S}(t) = Q_2^{\scriptscriptstyle S}(t) = 0 \qquad ext{if $W(t) > 0$}$$

 $Q_2^{\scriptscriptstyle \mathcal{D}}(t) = Q_3^{\scriptscriptstyle \mathcal{D}}(t) = 0 \qquad ext{if $W(t) < 0$}$ 

イロト イポト イヨト

Э

17/19

#### Final remarks

- Performance bounds?
- Approximate optimal control for relaxations in higher dimensions?
- More general arrival assumptions. Admission control? Abandonnements?
- Optimization for non-bipartite matching?
- Applications?



#### References

#### Dynamic bipartite matching models

- Caldentey, Kaplan, Weiss, *FCFS infinite bipartite matching of servers and customers*. Adv. Appl. Probab. 2009.
- Adan & Weiss, Exact FCFS matching rates for two infinite multi-type sequences. Operations Research, 2012.
- Bušić, Gupta, Mairesse, *Stability of the bipartite matching model*. Adv. Appl. Probab. 2013.
- Mairesse, Moyal, Stability of the stochastic matching model. ArXiv. 2014.
- Adan, Bušić, Mairesse, Weiss, Reversibility and further properties of FCFS infinite bipartite matching. ArXiv. 2015.
- Bušić, Meyn, Approximate optimality with bounded regret in dynamic matching models. ArXiv. 2016.

#### Workload relaxations

- Meyn, Control Techniques for Complex Networks. Cambridge Uni. Press, 2007.
- Meyn, Stability and asymptotic optimality of generalized MaxWeight policies. SIAM J. Control Optim., 2009.
- Gurvich, Ward, On the dynamic control of matching queues, Stoch. Systems, 2014.