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Background

Bipartite Matching

(D,S,E ) bipartite graph

D(s) = {d ∈ D : (d , s) ∈ E}
S(d) = {s ∈ S : (d , s) ∈ E}

1 32

2’ 1’3’

D

S

xi number of elements of type i ∈ D ∪ S

Perfect matching: m ∈ NE such that:

xd =
∑

s∈S(d)

mds , ∀d ∈ D, xs =
∑

d∈D(s)

mds , ∀s ∈ S

Hall’s marriage theorem (1935)

∃ perfect matching if and only if:∑
d∈U xc ≤

∑
s∈S(U) xs , ∀U ⊂ D∑

s∈V xs ≤
∑

d∈D(V ) xd , ∀V ⊂ S
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Background

Matching in Health-care

Kidney paired donation

Who can join this program?
For recipients: If you are eligible

for a kidney transplant and are

receiving care at a transplant

center in the United States, you

can join ... You must have a living

donor who is willing and medically

able to donate his or her kidney ...

For donors: You must also be

willing to take part ...

U N I T E D  N E T W O R K  F O R  O R G A N  S H A R I N G

TA L K I N G  A B O U T  T R A N S P L A N TAT I O N

Need for Dynamic Matching Models
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Background

Dynamic Matching Model: FCFS

Another Example

Boston area public housing (some 25 years ago):

Model

Two independent infinite sequences of items.
Demand / supply i.i.d.

FCFS matching policy admits product-form invariant distribution

Caldentey, Kaplan, Weiss 2009
Adan, Weiss 2012
Adan, B., Mairesse, Weiss 2015
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Bipartite matching model

Dynamic Bipartite Matching Model

Multiclass queueing model – Supply/Demand play symmetric roles

Discrete time queueing model with two
types of arrival: “supply” and “demand”.

Discrete time: at each time step there is
one customer and one server that arrive
into the system, independently of the past.

Instantaneous matchings according to a
bipartite matching graph.
Unmatched supply/demand stored in a
buffer.

Given by: a matching graph, a joint probability measure µ for arrivals of
demand/supply and a matching policy.
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Bipartite matching model

Dynamic Matching Model: Stability

For the dynamic model with i.i.d. arrivals, when is the Markovian model stable?
(positive recurrent)

Necessary condition: generalization of Hall’s marriage theorem

Under this condition, certain policies are stabilizing, such as MaxWeight

Under this condition, other policies are not stabilizing

B., Gupta, Mairesse 2013.
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Bipartite matching model

Dynamic Matching Model: Approximate Optimality

Subject of this talk:

How to define ‘heavy traffic’? This requires a formulation of ‘network load’

What is the structure of an optimal policy for the model in heavy traffic?

How do we use this structure for policy design?

B., Meyn 2016
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Bipartite matching model

Necessary stability conditions

Assumption: matching graph (D,S,E ) is connected.

Necessary conditions: If the model is stable then the marginals of µ satisfy

NCond :

{
µD(U) < µS(S(U)), ∀U ( D
µS(V ) < µD(D(V )), ∀V ( S

Sufficient conditions: If NCond holds, then there exists a policy that is stabilizing

Prop. Given [(D,S,E ), µ], there exists an algorithm of time complexity
O((|D|+ |S|)3) to decide if NCond is satisfied.
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Optimization Average Cost Criterion

Optimization

Cost function c on buffer levels.

Average-cost: η = lim sup
N→∞

1

N

N−1∑
t=0

E
[
c(Q(t))

]

Queue dynamics: Q(t + 1) = Q(t)− U(t) + A(t) , t ≥ 0
Input process U represents the sequence of matching activities. Input space:

U� =
{∑
e∈E

neu
e : ne ∈ Z+

}
with ue = 1i + 1j for e = (i , j) ∈ E .

X (t) = Q(t) + A(t) the state process of the MDP model,

X (t + 1) = X (t)− U(t) + A(t + 1)

The state space X� = {x ∈ Z`+ : ξ0 · x = 0} with ξ0 = (1, . . . , 1,−1, . . . ,−1).
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Optimization Workload

Workload

For any D ⊂ D, corresponding workload vector ξD defined so that

ξD · x =
∑
i∈D

xD
i −

∑
j∈S(D)

xS
j

Necessary and sufficient condition for a stabilizing policy:

NCond: δD :=−ξD · α > 0 for each D
α = E[A(t)] arrival rate vector.

Why is this workload? Consistent with routing/scheduling models:

Fluid model,
d

dt
x(t) = −u(t) + α

The minimal time to reach the origin from x(0) = x : T ∗(x) = maxD
ξD ·x
δD

Heavy-traffic: δD ∼ 0 for one or more D
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Optimization Workload

Workload Dynamics

Fix one workload vector ξD ; denote (ξ, δ) for (ξD , δD).

Workload W (t) = ξ · X (t)

can be positive or negative.
Dynamics as in other queueing models,

E[W (t + 1)−W (t) | X (t), U(t)] ≥ −δ

Achieved ⇐⇒ S(D) matches with D only.

Workload relaxation: take this as the model for control.

12 / 19



Optimization Workload

Workload Dynamics

Fix one workload vector ξD ; denote (ξ, δ) for (ξD , δD).

Workload W (t) = ξ · X (t) can be positive or negative.

Dynamics as in other queueing models,

E[W (t + 1)−W (t) | X (t), U(t)] ≥ −δ

Achieved ⇐⇒ S(D) matches with D only.

Workload relaxation: take this as the model for control.

12 / 19



Optimization Workload

Workload Dynamics

Fix one workload vector ξD ; denote (ξ, δ) for (ξD , δD).

Workload W (t) = ξ · X (t) can be positive or negative.
Dynamics as in other queueing models,

E[W (t + 1)−W (t) | X (t), U(t)] ≥ −δ

Achieved ⇐⇒ S(D) matches with D only.

Workload relaxation: take this as the model for control.

12 / 19



Optimization Workload

Workload Dynamics

Fix one workload vector ξD ; denote (ξ, δ) for (ξD , δD).

Workload W (t) = ξ · X (t) can be positive or negative.
Dynamics as in other queueing models,

E[W (t + 1)−W (t) | X (t), U(t)] ≥ −δ

Achieved ⇐⇒ S(D) matches with D only.

Workload relaxation: take this as the model for control.

12 / 19



Optimization Workload

Workload Dynamics

Fix one workload vector ξD ; denote (ξ, δ) for (ξD , δD).

Workload W (t) = ξ · X (t) can be positive or negative.
Dynamics as in other queueing models,

E[W (t + 1)−W (t) | X (t), U(t)] ≥ −δ

Achieved ⇐⇒ S(D) matches with D only.

Workload relaxation: take this as the model for control.

12 / 19



Optimization Workload Relaxation

Relaxations

A workload relaxation takes this as the model for control:
One Dimensional Workload relaxation,

Ŵ (t + 1) = Ŵ (t)− δ + I (t)︸︷︷︸
Idleness ≥ 0

+ ∆(t + 1)︸ ︷︷ ︸
Zero mean

Effective cost c̄ : R→ R+: Given a cost function c for Q,

c̄(w) = min{c(x) : ξ · x = w}

Piecewise linear if c is linear: c(w) = max(c+w ,−c−w).

Conclusions

Control of the relaxation = inventory model of Clark & Scarf (1960)

Hedging policy, with threshold τ∗: Idling is not permitted unless Ŵ (t) < −τ∗

Heavy-traffic: For average-cost optimal control, τ∗ ∼ 1
2

σ2
∆

δ
log(1 + c+/c−)
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Optimization Asymptotic optimality

Asymptotic optimality

Family of arrival processes {Aδ(t)}, parameterized by δ ∈ [0, δ̄•], δ̄• ∈ (0, 1).
Additional assumptions:

(A1) For one set D ( D we have ξD · αδ = −δ, where αδ denotes the mean of
Aδ(t).
Moreover, there is a fixed constant δ > 0 such that ξD

′ · αδ ≤ −δ for any
D ′ ( D, D ′ 6= D, and δ ∈ [0, δ̄•].

(A2) The distributions are continuous at δ = 0, with linear rate: For some
constant b,

E[‖Aδ(t)− A0(t)‖] ≤ bδ.

(A3) Graph structure for arrivals and for feasible matches independent of δ ≥ 0
=⇒ The matching graph is connected even for δ = 0.
Moreover, there exists i0 ∈ S(D), j0 ∈ Dc , and pI > 0 such that

P{Aδi0 (t) ≥ 1 and Aδj0 (t) ≥ 1} ≥ pI , 0 ≤ δ ≤ δ̄•.

14 / 19



Optimization Asymptotic optimality

Asymptotic optimality

h-MWT (h-MaxWeight with threshold) policy:
For a differentiable function h : R` → R+, and a threshold τ ≥ 0,

φ(x) = argmax u · ∇h (x)

subject to u feasible

and I (t) ≤ max(−W (t)− τ, 0), when X (t) = x and U(t) = u.

Thm (Asymptotic Optimality With Bounded Regret) [B., Meyn ’16]

There is an h-MWT policy with finite average cost η, satisfying

η̂∗ ≤ η∗ ≤ η ≤ η̂∗ + O(1)

where η∗ is the optimal average cost for the MDP model, η̂∗ is the optimal
average cost for the workload relaxation, and the term O(1) does not depend
upon δ.
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Optimization Asymptotic optimality

Asymptotic optimality

The average cost for the relaxation satisfies the uniform bound,

η̂∗ = η̂∗∗ + O(1)

where η̂∗∗ is the optimal cost for the diffusion approx. for the relaxation:

η̂∗∗ = τ∗ c̄− = 1
2

σ2
N

δ
c̄− log

(
1 +

c̄+

c̄−

)

h(x) = ĥ(ξ · x) + hc(x)

- hc is introduced to penalize deviations between c(x) and c̄(ξ · x).
- The first term ĥ is a function of workload. For w ≥ −τ∗, it solves the

second-order differential equation,

−δĥ′ (w) + 1
2
σ2

∆ĥ
′′ (w) = −c̄(w) + η̂∗∗, (1)

There is a solution that is convex and increasing on [−τ∗,∞), with
ĥ′(−τ∗) = ĥ′′(−τ∗) = 0. Then extended to get a convex C 2 function on R.
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∆ĥ
′′ (w) = −c̄(w) + η̂∗∗, (1)

There is a solution that is convex and increasing on [−τ∗,∞), with
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Examples

Example

Example

Cost: c(x) = xD
1 + 2xD

2 + 3xD
3 + 3xS

1 + 2xS
2 + xS

3

=⇒ Effective Cost: c̄(w) = 4|w |
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Priority

MaxWeight

Threshold (15)
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x 106

T

W (t) = QD
3 (t)− QS

1 (t)

Matching of Supply 1 and Demand 2
allowed only if W (t) < −τ∗

Workload Relaxation:

QS
1 (t) = QS

2 (t) = 0 if W (t) > 0

QD
2 (t) = QD

3 (t) = 0 if W (t) < 0

Simulation with τ = 14.9
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Final remarks

Final remarks

Performance bounds?

Approximate optimal control for relaxations in higher dimensions?

More general arrival assumptions. Admission control? Abandonnements?

Optimization for non-bipartite matching?

Applications?
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