
Example. Toy example of a PCA on the alphabet {0, 1} and the set of cells Z/2Z. The state space is
X = {x1 = 00, x2 = 01, x3 = 10, x4 = 11}. On this sample, the algorithm returns x2.
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Envelope PCA
New alphabet B = {0, 1, ?} (unknown letters replaced by “?”). Can be seen as a subset of the power
set of A :

• 0 is the singleton {0},
• 1 is the singleton {1},
• ? is A = {0, 1}.

The envelope PCA of P , is the PCA env(P ) of alphabet B, defined on the set of cells E, with the same
neighborhood V as for P , and a local function env(f ) : BV →M(B), defined for each y ∈ BV by

env(f )(y)(0) = min
x∈AV , x∈y

f (x)(0)

env(f )(y)(1) = min
x∈AV , x∈y

f (x)(1)

env(f )(y)(?) = 1− min
x∈AV , x∈y

f (x)(0)− min
x∈AV ,x∈y

f (x)(1).

Construction of an update function for the envelope PCA: φ̃ : BE × [0, 1]E → BE

φ̃(y, r)k =

 0 if 0 ≤ rk < env(f )((yi)i∈k+V )(0)
1 if 1− env(f )((yi)i∈k+V )(1) ≤ rk ≤ 1
? otherwise.
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minx∈AV , x∈(yi)i∈k+V
f (x)(0) minx∈AV , x∈(yi)i∈k+V

f (x)(1)

0

Data: the pre-computed function φ̃, and
a sequence (r

−j
i )(i,−j)∈E×N of

i.i.d. uniform in [0, 1].
begin

c = ?E;
t = 1;
while c 6∈ {0, 1}E do

c = ?E;
for j = −t to −1 do

c = φ̃(c, (r
−j
i )i∈E)

t = 2t
return c;

end

Properties:

1. For any x ∈ AE and y ∈ BE such that x ∈ y:
∀r ∈ [0, 1]E, φ(x, r) ∈ φ̃(y, r).

2. If the algorithm stops almost surely, then the PCA P
is ergodic and the output of the algorithm is distributed
according to the stationary measure of P .

3. The algorithm stops almost surely if and only if
env(f )(?V )(?) < 1, i.e.

min
x∈AV

f (x)(0) + min
x∈AV

f (x)(1) > 0.

Extensions

• Alphabet A with more than two elements.
• Non-homogeneous finite PCA.

Infinite case
Assumptions: E = Z, A = {0, 1}, ergodic PCA P with stationary distribution π.

A perfect sampling procedure is a random algorithm taking as input a finite subset K of E and return-
ing a cylinder xK ∈ C(K) with probability π(xK).
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Theorem. There exists a critical value 0 < α∗ < 1, de-
pending only on |V |, such that env(P ) is ergodic if

max
x∈BV

env(f )(x)(?) = env(f )(?V )(?) < α∗

and non-ergodic if

min
x∈BV \{0,1}V

env(f )(x)(?) > α∗.

Alternative approach: restriction to finite windows & boundary conditions.

Open questions and further directions

• Coupling times PCA vs. envelope PCA?
• Open problem:

For a PCA on E = Zd, d ≥ 1, does the uniqueness of the stationary measure imply ergodicity?
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Cellular automata

Cellular automata (CA), introduced in the 50’s by S. Ulam and
J. von Neumann, are dynamical systems in which space and
time are discrete.
• E : a set of cells (ex. Zd or Z\nZ).
• Each cell contains a letter from a finite alphabet A.
• The contents of all the cells evolve synchronously: the con-

tent of each cell evolving as a function of the contents of
the cells in its finite neighborhood and according to a local
rule.

Example 1. E = Z, A = {0, 1}, and F : AE → AE defined by
(F (x))k = xk + xk+1 mod 2.
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Space-time diagram (the initial con-
figuration is at the bottom).

Probabilistic cellular automata (PCA)
Motivations:

• Fault-tolerant computational models [8, 5].
• PCA appear in combinatorial problems related to the enumeration of directed animals [3, 1].
• In classification of deterministic CA (Wolfram’s program): robustness to random errors [4].

Assumption: E = Zd or Z/nZ.

Definitions and notations:

• X = AE, equipped with the product topology (generated by cylinders).
A cylinder is a subset of X having the form yK = {x ∈ X ; ∀k ∈ K, xk = yk} for a given finite
subset K of E and a given sequence (yk)k∈K ∈ AK . C(K) is the set of all cylinders of base K.
• M(A) andM(X) are resp. the sets of probability measures on A and X .

Def. Given a finite neighborhood V ⊂ E, a (local) transition
function of neighborhood V is a function f : AV →M(A).

Def. The probabilistic cellular automaton (PCA) P of transi-
tion function f is the applicationM(X) → M(X), µ 7→ µP
defined on cylinders by:

µP (yK) =
∑

xV (K)∈C(V (K))

µ(xV (K))
∏
k∈K

f ((xi)i∈k+V )(yk),

where V (K) = ∪k∈Kk + V .

Interpretation: A PCA P is a Markov chain on the state space
AE. If E is finite, the transition probabilities are given by

P (x, y) =
∏
k∈E

f ((xi)i∈k+V )(yk), x, y ∈ AE.
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Example 2. A = {0, 1}, V = (0, 1), and
f (x, y) = p δx + (1− p) δy, p ∈ [0, 1].

Ergodic PCA
Def. π ∈M(X) is a stationary measure of the PCA P if πP = π.

A PCA has at least one stationary measure.

Example 3. ACP from Example 2 has δ0Z et δ1Z as stationary measures.

Def. The PCA P is ergodic if it has exactly one stationary measure π, and if for any measure µ ∈
M(X), the sequence µPn converges weakly to π (i.e. µPn(C) conv. to π(C) for any cylinder C).

Ergodicity of a PCA is undecidable [8].

Sufficient conditions [8, Chap. 3]. There exists a constant ηn depending only on the size n of the
neighborhood, such that[∑

b∈A
min

(ai)i∈V∈AV
f ((ai)i∈V )(b) > ηn

]
=⇒ P ergodic .

The value of ηn is not known exactly, but satisfies ηn < 1− 1/n.

How to sample the stationary measure of an ergodic ACP?

Perfect simulation of PCA
Assumptions: E = Z/nZ and A = {0, 1}.

Let P be an ergodic PCA and π its stationary measure on X = AE.

Perfect sampling: a random algorithm which returns a state x ∈ X with probability π(x).

Coupling from the past (Propp and Wilson, 1996) :

• φ : X × [0, 1]E → X an update function. Example:

φ(x, r)k =

{
0 if 0 ≤ rk < f ((xi)i∈k+V )(0)
1 otherwise

• (rj)j∈N a sequence of i.i.d. r.v’s, with each rj uniform on [0, 1]E.
• Compute the sets {φ(x, r1), x ∈ X}, {φ(φ(x, r2), r1), x ∈ X}, {φ(φ(φ(x, r3), r2), r1), x ∈ X},. . .

Stop when the computed set is a singleton and return its value.

Prop. [7] If the procedure stops a.s., then it returns state x with probability π(x).
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