
Bounds for point and steady-state availability:an algorithmi
 approa
h based on lumpabilityand sto
hasti
 orderingA. Bu�si�
 and J.M. FourneauPRiSM, Universit�e de Versailles-Saint-Quentin, 45, Av. des Etats-Unis 78000Versailles, Fran
eAbstra
t. Markov 
hains and rewards have been widely used to eval-uate performan
e, dependability and performability 
hara
teristi
s of
omputer systems and networks. Despite 
onsiderable works, the nu-meri
al analysis of Markov 
hains to obtain transient or steady-statedistribution is still a diÆ
ult problem when the 
hain is large or theeigenvalues badly distributed. Thus bounding te
hniques have been pro-posed for long to analyze steady-state distribution.Here, we show how to bound some dependability 
hara
teristi
s su
h assteady-state and point availability using an algorithmi
 approa
h. Thebound is based on sto
hasti
 
omparison of Markov 
hains but it doesnot use sample-path arguments. The algorithm builds a lumped Markov
hain whose steady-state or transient distributions are upper bounds inthe strong sto
hasti
 sense of the exa
t distributions. In this paper, theimplementation of algorithm is detailed and we show some numeri
alresults. We also show how we 
an avoid the generation of the state spa
eand the transition matrix to model 
hains with more than 1010 states.This work is supported by ACI S�e
urit�e, proje
t Sure-Paths1 Introdu
tionThe use of Markov 
hains to model 
omplex system reliability and availabilityis be
oming in
reasingly 
ommon. The de�nition and generation of large-s
aleMarkov models from high level spe
i�
ations is relatively easy and eÆ
ient inboth time and memory requirements. The remaining diÆ
ulty is that of a
tuallysolving the Markov 
hain and deriving useful performan
e 
hara
teristi
s from it.Consider an irredu
ible �nite 
ontinuous-timeMarkov 
hainX whose sto
has-ti
 transition rate matrix is given by Q. Then there exists the steady-state dis-tribution � of the Markov 
hain X whi
h is the unique solution to the systemof equations �Q = 0. An availability measure is de�ned by separating the statesinto two 
lasses, up states and down states. A state is said to be up if the sys-tem is operational for that state; otherwise it is down. Let U denote the set ofup states. The reliability at time t is de�ned as the probability that the systemhas always been in the up states between 0 and t:R(t) = Pr(Xs 2 U;8 s 2 [0; t[):



The point availability is the probability that the system is operational at time t:PAV (t) = Pr(Xt 2 U)and the steady-state availability is the limit, if it exists, of this probability. It 
analso be de�ned as the expe
tation of a reward on the steady state distributionof X : A = Piji is up �(i). The usual way to 
ompute these quantities is basedon the uniformization method. Let Æ be an arbitrary positive value and � =maxif�Q(i; i)g+Æ. Let us build the uniformized version of Q by: P = (Id�Q=�).P is a dis
rete time Markov 
hain. Let us denote by PU the blo
k of P asso
iatedto transitions between up states and let �0 be the initial distribution of X . Usinguniformization, we 
an 
ompute R(t) by:R(t) = 1Xn=0 e��t (�t)nn! �0PnU1and, be
ause of the properties of the exponential fun
tion, the summation 
anbe trun
ated. We �rst 
ompute N(t; �) whi
h is the minimal value of n su
h thatPnn=0 e��t (�t)nn! is larger than 1� �, and we �nally obtain an approximation ofR(t) whi
h is a lower bound of the exa
t value:R(t) � N(t;�)Xn=0 e��t (�t)nn! �0PnU1:Let 1U be the indi
ator fun
tion of set U . We get PAV (t) after a similar 
on-stru
tion based on uniformization:PAV (t) � N(t;�)Xn=0 e��t (�t)nn! �0Pn1U :As P and Q have the same steady-state distribution, we 
an use P to 
omputeor bound the availability. Thus, we must 
ompute transient and steady stateprobability distribution for matrix P . But for many problems these matri
esare so huge that this is not even possible to build them or to solve the steady-state or the transient distribution. Thus we must use methods whi
h provide aguarantee on these reliability measures and whi
h are not limited by the size ofthe state spa
e. Note that we are interested in bounding 
ontinuous time CTMC,however, due to the uniformization pro
ess, we 
onsider dis
rete time Markov
hain (DTMC).Bounding methods have always re
eived 
onsiderable attention in perfor-man
e or reliability evaluation. Indeed, the problems we have to solve are oftentoo 
omplex to be analyzed exa
tly. For instan
e, the numeri
al 
omputationof the steady-state distribution of Markov 
hains is diÆ
ult when the 
hain islarge or the eigenvalues badly distributed. The main approa
h for boundingsteady-state availability has been proposed by Muntz and his 
o-authors [11, 9℄.The method has been improved by Carras
o [1℄, Rubino and Mahevas [10℄. The



theoreti
al ba
kground is based on Courtois's polyhedral results on steady-stateequation [3℄. However this method only works for bounding steady-state rewards.Here we present a new method whi
h allows to obtain bounds for transientand steady-state rewards. Our approa
h is based on sto
hasti
 
omparison ofMarkov 
hains and lumpability. The sto
hasti
 
omparison provides the guar-antee for both transient and steady-state measures while lumpability allowsto 
onsider smaller 
hains whi
h are easier to solve. The theory is based onan algorithmi
 derivation for sample-path 
omparison of Markov Chains basedon ne
essary 
onditions on the transition matrix. This approa
h restri
ted onsteady-state distribution and rewards has re
ently been surveyed [6℄, LIMSUB analgorithm based on lumpability has been proved [8℄ and a tool has been demon-strated [7℄. Here we show how we 
an extend this theory for transient rewards aspoint availability and reliability. As the theoreti
al ba
kground is not based onCourtois's results on steady state, the requirements of our method are distin
tfrom the assumptions needed by Muntz's algorithm and its generalizations.The 
omparison of Markov 
hains requires an order on the state spa
e be
ausethe order on random variables is de�ned by means of the set of non-de
reasingfun
tions. Thus, we order the states su
h that the up states have indi
es thatare smaller than the indi
es of the down states, then we 
an de�ne A as: A =Pi �(i)r(i) where the reward r(i) is a non-in
reasing fun
tion whi
h is equal to1 for the �rst states of the 
hain (the up states) and 0 for all the other states. Wewish to 
ompute a lower bound for A. We shall let this lower bound be denotedby B. Noti
e that we may restate the problem by 
omputing an upper boundfor 1 � A. This upper bound will be given by 1 � B. In this 
ase, the rewardfun
tion is now a non-de
reasing fun
tion on the state indi
es already de�ned.This property is an important requirement of the strong sto
hasti
 ordering aswe will see in se
tion 2.Here we 
onsider the modeling of highly available multi
omponent systemssu
h as the example studied by Muntz [11℄ and Carras
o [1℄. A typi
al system
onsists of several disks, CPUs and 
ontrollers. We have two types of failures: softand hard. The failures may o

ur in bat
hes and all the failed items 
ompete to berepaired. The system is operational if there is enough CPU, disks and 
ontrollers.Clearly, if the number of 
omponents is large, the state spa
e is huge and the upstates are relatively rare. Furthermore, if the system is highly available, the upstates 
on
entrate most of the probability distribution. For instan
e, the systemdepi
ted in Fig. 1 has more than 9:0 1010 states and 1012 transitions. This is evennot possible to generate and store the state spa
e and the transition matrix. Thuswe show how we 
an operate in two phases: the �rst step 
onsists in designingan ad-ho
 algorithm (
alled LL, Lumpable and Larger) whi
h builds from thespe
i�
ation a lumpable matrix whi
h is larger in the sto
hasti
 sense. Of 
ourse,we store the lumped matrix instead of the original one. Then, during the se
ondphase, we 
an apply the new bounding algorithm LMSUB to obtain the �nalmatrix whi
h 
an be numeri
ally analyzed. As the 
hain is huge we must derivevery eÆ
ient algorithms. So we report in se
tion 4 some details about an eÆ
ientimplementation of our new algorithm LMSUB (Lumpable Monotone Sto
hasti




Upper Bound). As LMSUB is strongly related to LIMSUB these details 
an alsobe used to program a more eÆ
ient version of LIMSUB than the des
ription in[8℄. LMSUB algorithm is devoted to the study of problems with redu
ible 
hainswhile LIMSUB has several instru
tions to build an irredu
ible 
hain. This is themain di�eren
e between these algorithms. LMSUB has been spe
ially developedto study reliability issues whi
h imply 
hains with absorbing states.PA PBC1 C2D1 D2 D3 D4 D5 D6Fig. 1. System studied by Muntz and Carras
oThe paper is organized as follows. In se
tion 2 we present the basi
 resultswe need about sto
hasti
 bounds, lumpability and algorithmi
 
omparison ofMarkov 
hains. Se
tion 3 is devoted to the theoreti
al aspe
ts of bounding tran-sient rewards. In se
tion 4 we show how we 
an improve the algorithms to dealwith extremely huge state spa
e. Finally, we present some numeri
al results inse
tion 5 for some typi
al problems introdu
ed by Muntz and his 
olleagues [11℄.2 Sto
hasti
 Bounds and LumpabilityWe restri
t ourselves to dis
rete time Markov 
hains (DTMC) with �nite statespa
e E = f1; 2; : : : ; ng. The strong sto
hasti
 ordering (\st-ordering" for short)has been de�ned by Stoyan[14℄ by means of the set of non-de
reasing fun
tions.For dis
rete random variables, we use the following algebrai
 equivalent formu-lation whi
h is mu
h more 
onvenient:De�nition 1. If X and Y are random variables taking values on a �nite statespa
e f1; 2; : : : ; ng and respe
tively having p and q as probability distributionve
tors, then X is said to be less than Y in the strong sto
hasti
 sense, that is,X �st Y i� Pnj=k pj �Pnj=k qj for k = 1; 2; : : : ; n.Bounds on the distribution imply bounds on performan
e measures that arenon-de
reasing fun
tions of the state indi
es. Observe that performan
e measuressu
h as average population size, tail probabilities and so on are non-de
reasingfun
tions. In our 
ontext, the reward that we wish to bound (i.e., 1 � A) is anon-de
reasing fun
tion on
e the state spa
e has been 
orre
tly ordered. Let usnow illustrate de�nition 1 by an example:



Example 1. Let � = (0:1; 0:3; 0:4; 0:2) and � = (0:1; 0:1; 0:5; 0:3). It follows thenthat � �st � sin
e: 240:2 � 0:30:2 + 0:4 � 0:3 + 0:50:2 + 0:4 + 0:3 � 0:3 + 0:5 + 0:1It has been known for some time that monotoni
ity [6℄ and 
omparability oftransition probability matri
es yield suÆ
ient 
onditions for the sto
hasti
 
om-parison of Markov 
hains and their transient and steady-state distributions. Fur-thermore, st-monotoni
ity and st-
omparability of matri
es may be 
ompletely
hara
terized by linear algebrai
 
onstraints [6℄.De�nition 2 (St-
omparison of transition matri
es). Let P and R be twotransition matri
es. P is st-smaller than R if and only ifPnk=j Pi;k �Pnk=j Ri;kfor all k and i between 1 and n.De�nition 3 (St-monotoni
ity of transition matrix). Let P be a transitionmatrix. P is st-monotone if and only if Pnk=j Pi�1;k � Pnk=j Pi;k, for all kbetween 1 and n and for all i between 2 and n.We present now the relevant theorem for the sto
hasti
 
omparison of Markov
hains [14℄. The statement below assumes that P , the original matrix we wantto bound, is not monotone and that we want to obtain an upper bound.Theorem 1. Let X(t) and Y (t) be two DTMC and P and R be their respe
tivesto
hasti
 matri
es. If� X(0) �st Y (0),� R is st-monotone,� P �st R,then X(t) �st Y (t); for all t > 0. If X and Y have steady-state distributions�X and �Y , then �X �st �Y .Using this theorem and assuming that we want to 
ompute an upper boundfor P , whi
h is the transition matrix of the problem we have to solve, we must�nd R su
h that: �Pnk=j Pi;k �Pnk=j Ri;k ; 8 i; j;Pnk=j Ri;k �Pnk=j Ri+1;k ; 8 i < n; j: (1)The �rst set of inequalities states that P is sto
hasti
ally smaller than R whilethe se
ond set shows that R is st-monotone. But these two sets of 
onstraintsdo not help for the numeri
al resolution for transient or steady-state expe
tedrewards. Thus we also impose additional restri
tions on the stru
ture of R inorder to fa
ilitate the 
omputation of the bounds. Spe
i�
ally, we shall insisthere that the matrix R be ordinary lumpable.



De�nition 4. (Ordinary lumpability) Let P be the transition probability ma-trix of an irredu
ible �nite DTMC and let Ck, k = 1; 2; : : : ;M be a partitionde�ned on the states of this Markov 
hain. Thus, ea
h state of the Markov 
hainbelongs to one and only one of the so-
alled ma
ro-states Ck. The 
hain is saidto be ordinary lumpable with respe
t to the partition Ck if and only if, for allstates e and f belonging to the same arbitrary ma
ro state Ck, we haveXj2Ci pe;j = Xj2Ci pf;j ; for all ma
ro states Ci; i = 1; 2; : : : ;M: (2)Fourneau et al.[8℄ have shown that ordinary lumpability 
onstraints are 
on-sistent with the relations spe
i�ed by equation (1). Furthermore, they have de-signed and implemented an algorithm, 
alled LIMSUB, whi
h 
onstru
ts a ma-trix R that possesses all these properties. The lumped matrix is mu
h mu
hsmaller than the original matrix. This lumped matrix is readily solved and thebounds obtained from it may be applied to the original Markov 
hain.We will now show how Theorem 1 and a slightly modi�ed version of thisalgorithm establish a 
ommon methodology for 
omputing both transient andsteady-state bounds.3 Bounds for Reliability: extending the theoryOur new LMSUB algorithm is based on LIMSUB [8℄ algorithm. Unfolding rela-tions (1), and satis�ng relations (2) for the bounding matrix and a given par-tition, we obtain a lumpable, st-monotone upper bound. The proof of this newalgorithm is almost identi
al to the proof of LIMSUB algorithm so we refer thereader to [8℄. LMSUB algorithm, hovever, does not 
are about irredu
ibility and
an be, therefore, used to 
ompute bounds of redu
ible matri
es.We will illustrate this algorithm on the following example. Assume that the
hain has 5 states and the state-spa
e is partitioned into two ma
ro-states: (1; 2)and (3; 4; 5). Clearly, relations (1) allow that we 
ompute the lumped matrix
olumn by 
olumn. And we must perform some additional 
omputations at theboundaries of the blo
ks to insure that the matrix is lumpable. In equations(1) we repla
e inequalities by equalities during the �rst step. The relations areunrolled and the equalities are arranged in in
reasing order for i and in de
reasingorder for j. During the se
ond step, we must modify the �rst 
olumn of the blo
kto insure that ea
h blo
k has a 
onstant row sum. The matri
es below showthe initial matrix (on the left), then the matrix after the 
omputation of three
olumns using step 1, the modi�
ation of these elements due to the se
ond step,and �nally the lumped matrix (on the right). The values modi�ed during these
ond step are boxed.26664 0:2 0:2 0:1 0:3 0:20:1 0:2 0:1 0:5 0:10:0 0:3 0:5 0:1 0:10:1 0:2 0:4 0:3 0:00:0 0:1 0:0 0:9 0:037775 26664 0:1 0:3 0:20:1 0:4 0:20:1 0:4 0:20:1 0:4 0:20:0 0:7 0:237775 266664 0.2 0:3 0:20:1 0:4 0:20.3 0:4 0:20.3 0:4 0:20:0 0:7 0:2377775 �0:3 0:70:1 0:9�



In Fourneau et al.[8℄, only the 
omparison of steady-state distributions was
onsidered. However, theorem 1 states that the sample-paths are ordered. Thusthe 
omparison of distributions is also true for transient distributions and re-wards. And it is even not ne
essary that the 
hains are irredu
ible. It is possibleto use this theorem to 
ompare probability of rea
hing an absorbing state. Thisis parti
ularly useful when we want to bound the reliability R(t) be
ause we only
onsider the restri
tion of the initial matrix to the up states and one absorbingdown state.We know that \st"-bounds are asso
iated with non-de
reasing rewards. Then,if X(t) �st Y (t) at time t and r(i) is a non-de
reasing reward fun
tion, it followsthat Xi r(i)Prob(X(t) = i) �Xi r(i)Prob(Y (t) = i):Now suppose that we use any algorithm whi
h builds a lumpable upperbound. Let Cp be an arbitrary ma
ro-state of the partition we have used tobuild the bound. Let us now design a new reward fun
tion s(p) as the maximumof r(i) for states i in Cp. Clearly, we have two important properties:Property 1 s(p) is non-de
reasing be
ause the states are initially ordered a
-
ording to the ma
ro-state and r(i) is non-de
reasing.Property 2 At ea
h time step t, the probability of being in ma
ro state Cpmultiplied by the reward s(p) is greater than the sum of the individual rewardsmultiplied by the probabilities of all the states in ma
ro state Cp:s(p)Prob(Y (t) 2 Cp) � Xi2Cp r(i)Prob(Y (t) = i):As the sto
hasti
 matrix asso
iated with Y is lumpable, the left hand-sideof the former inequality 
an be 
omputed using the lumped 
hain Z. Combiningboth inequalities we get, for all t,Xi r(i)Prob(X(t) = i) �Xp s(p)Prob(Z(t) = p):Putting everything together we obtain the following more general result 
on-
erning our algorithms.Theorem 2. Let X be a �nite aperiodi
 DTMC and let r() be non-de
reasingrewards de�ned on the states of X. Consider an arbitrary partition of the statespa
e su
h that states whi
h belong to the same ma
ro-state are 
ontiguous.Let Y be the �nite DTMC obtained by LMSUB. Y is lumpable and let Z bethe lumped version of Y . Assume that X0 �st Y0. We de�ne the rewards s() atthe ma
ro-state level as the maximal reward for the individual states. Then:{ For any instant t, the expe
ted reward at time t EX(r)(t) is upper boundedby the expe
ted reward EZ(s)(t).



{ The steady-state reward EX (r) is upper bounded by EZ(s).And both 
omputations EZ(r)(t) and EZ(r) require working on matrix Z whi
his mu
h smaller.Let us now turn ba
k to the reliability and point availability problem. Clearly,we have two values for the reward: 0 and 1. So we suggest the following for thepartition and the 
orollary it 
learly implies:Rule 1 Do not group in the same ma
ro-state up and down states.Corollary 1 Using this rule, it is not even ne
essary to 
ompute the maximumand we bound dire
tly the point availability, the reliability and steady-state avail-ability of X by the same values 
omputed on lumped matrix Z.3.1 Avoiding the generation of the whole state spa
eThe fundamental requirement is the existen
e of the transition matrix on theMarkov 
hain on disk. But for some problem of reliability of multi
omponentsystems, this is even not possible to generate and store the state spa
e and thetransition matrix. For instan
e, the system studied by Muntz [11℄ and Carras
o[1℄ has more than 9:0 1010 states and 1012 transitions. Thus the matrix stored insparse format represents more than one terabyte. Clearly, alternative des
riptionbased on tensor produ
t [12℄ or MTMDD [2℄ may be useful for the transitionmatrix. But in our problem even the state spa
e is too large.So, instead of generating the initial matrix using the visit of rea
hable statesfrom an initial one with a BFS (Breadth First Sear
h) algorithm, we design anew algorithm (
alled LL for Lumpable, and Larger) to build a matrix whi
h islarger in the sto
hasti
 sense and whi
h is lumpable. Of 
ourse, we only buildand store the lumped matrix. We obtain a transition probability matrix as wealso perform the uniformization pro
ess during the generation. It is worthy toremark that this matrix is not monotone in general. This matrix will be theinput of LMSUB algorithm in the next step. So we perform two aggregations ofthe 
hain before the analysis.A 
areful inspe
tion of this state spa
e shows that most of the states aredown states. So we use the following rules to design the �rst step ma
ro-states:Rule 2 Do not aggregate the up states during the �rst step.Rule 3 During the �rst step aggregate the down states whi
h have the sametotal number of faults.Now we have to �nd the transition probabilities within this new 
hain. Here,we assume that the des
ription of the model is based on events: an event has arate and when we apply an event to a state, we obtain the resulting state. Therate does not depend on the states. These assumptions are used to explain howwe group transitions. They are not ne
essary and the same work 
an be done



with other formalisms as well. For the sake of 
on
ision, it is not possible to givea proved version of the algorithm here. Algorithm LL is based on the followingideas to obtain a lumpable larger bound:{ Do not 
hange the transition probabilities between simple states.{ The transition from a simple state x to an aggregated state Cp is the sumof the transition probabilities from x to y, for all y in Cp.{ For transitions leaving an aggregated state Cp to an aggregated state Cq (ifCq is a single state, just modify step 4).1. label all transitions with the events,2. group the transitions and the events a

ording to the number of failures(for instan
e, a \+1" transition models a new fault),3. if an event is asso
iated to two (or more) numbers of failures, then modifythe transitions as follows: all the transitions labeled with this event mustnow join the largest state rea
hed by this event from a state in ma
ro-state Cp.For instan
e, if event u is asso
iated to one or two new faults, thenmodify the transitions su
h that now event u is always two new faults.4. Then do the summation for all the states in Cq .Finally we perform the uniformization. Clearly, this algorithm is problem depen-dent. However, from this spe
i�
ation, we 
an 
learly state that the matrix islarger in the sto
hasti
 sense (we move transitions to upper states) and lumpable.Finally, the total 
omparison pro
ess does not depend of the algorithm usedto obtain a lumpable sto
hasti
ally larger matrix. And 
learly the bound ob-tained by LMSUB or LIMSUB of the matrix we obtain is also a bound of theoriginal matrix we are not able to store.4 Improving the algorithmsEven if LIMSUB algorithm des
ribed in [8℄ and our new algorithm are 
loselyrelated, there are several points 
on
erning the implementation whi
h di�er 
on-siderably. In this se
tion we present the main modi�
ations that speed up thealgorithm, espe
ially in 
ase of a transition matrix with relatively few non-zeroelements per state, 
ompared to the size of the state spa
e. It also allows the
omputation of a bound of a redu
ible transition matrix whi
h is ne
essary inour approa
h to bound the reliability of repairable systems.4.1 LMSUB, LIMSUB and the irredu
ibility issueIn [8℄ only the irredu
ible transition matri
es with some additional properties(see [8℄, Theorem 3) have been 
onsidered. To ensure that the irredu
ibilityproperty is maintained by LIMSUB algorithm the authors in [8℄ avoid deletingtransitions and, if ne
essary, add small sub-diagonal transitions.When 
omputing the bounds for transient distributions, we might want to
ompute the bounds even for the redu
ible matri
es. In order to obtain the



reliability bounds using our approa
h, for instan
e, we need to 
ompute an st-monotone upper bound of a matrix having one absorbing state (
orrespondingto the down states of the model). In our implementation of this algorithm weleave the 
hoi
e to the user if the bound to be 
omputed needs to be irredu
ibleor not.4.2 Avoiding ComputationsThe algorithm 
omputes the bounding matrix 
olumn per 
olumn beginningwith the last 
olumn. It is 
lear that it is ne
essary to store only one 
olumn ofthe matrix P at a time. Only after the �rst step (Algorithm 1) we know how tomodify the �rst 
olumn of the blo
k to obtain a 
onstant row sum. Furthermoredue to st-monotoni
ity, we know that the maximal row sum is obtained with thelast row of the blo
k.for blo
=M to 1 dostep1: for 
olumn=last( blo
k) to first( blo
k) do
omputeCol(
olumn);endstep2: endBlo
k();end Algorithm 1: LIMSUB algorithm [8℄We keep the �rst step as des
ribed in [8℄. For the se
ond step, however,there is no need to re
ompute the �rst 
olumn of a blo
k as all the informa-tion needed to 
ompute the next 
olumn is only the ve
tor of partial sumsps(j)Q = (Pnk=j qi;k)ni=1 of the lumpable bound Q for the 
urrent 
olumn j. Asthe lumpability imposes that this sum is 
onstant for all the rows of a blo
kand, due to the st-monotoni
ity 
onstraints, we know that the maximal value isobtained for the last row of a blo
k, we need only to store one single value perblo
k. This value is already known at the end of step 1 of the algorithm, so these
ond step 
an be 
ompletely avoided.4.3 Sparse Matrix ImplementationThe repairable system models have often a huge state spa
e but relatively fewtransitions per state, whi
h makes interesting to use the sparse representationof transition matri
es. Our implementation of LMSUB algorithm exploits thisrepresentation and uses the adapted data stru
tures to redu
e further the 
om-putations. For instan
e, for the ve
tor ps(j)Q of partial sums for the 
urrent 
ol-umn j of the lumpable bound Q, we store only the index and the value forthe rows this sum stri
tly in
reases (the elements of ps(j)Q are in
reasing be-
ause of the st-monotoni
ity 
onstraints), i.e we store (i; ps(j)Q ) if and only ifPnk=j qi;k �Pnk=j qi�1;k > 0 (with Pnk=j q�1;k = 0). Noti
e that it is ne
essaryto use only one su
h stru
ture (a list for example) during the whole 
omputation



pro
ess as the elements of ps(j)Q are 
omputed in in
reasing order, so the old ele-ments, 
orresponding to the 
olumn j � 1 with indi
es smaller than the 
urrentposition, are no longer needed. This allows us to 
ompute only the elements ofps(j)Q whose value is di�erent from ps(j+1)Q .Furthermore, we know that those 
hanges are due to the non-zero elementsin the 
olumn j of the original matrix P (st-
omparison between P and Q).Between the two non-zero elements of P at the positions denoted by i1 et i2, itis only ne
essary to update the list 
ontaining the information on ps(j)Q ve
tor,i.e. to erase some elements if they are smaller or equal to the last 
omputedelement (at position i1).We illustrate this on the example below. On the left is the initial matrixand on the right the bound obtained by LMSUB algorithm. In the table in themiddle the �rst 
olumn represents the 
urrent 
olumn, the se
ond the numberof 
omputations performed for that 
olumn and the last one the sparse-ve
torps(j)Q throughout the 
omputation pro
ess. One 
an noti
e that the number of
omputations performed is sometimes even smaller (
olumn 2) than the numberof non-zero elements in the 
orresponding 
olumn of the initial matrix. This isthe 
onsequen
e of the fa
t that, on
e the partial sum of value 1 is en
ountered,the 
omputation of the 
urrent 
olumn is �nished. Note that the \lump" stepsdo not require 
omputation following the previous remarks.266666664 0:3 0:6 0 0 0:1 0 00:4 0 0:5 0 0 0:1 00:1 0 0:3 0:4 0 0 0:20 0:7 0 0 0:3 0 00:1 0 0:5 0 0 0:4 00 0 0 0:8 0 0:2 00 0:5 0 0 0:1 0:3 0:1
377777775


ol. 
omp. sparse ve
tor ps(j)Q7 2 f(3; 0:2)g6 4 f(2; 0:1); (3; 0:2); (5; 0:4)glump: 0 f(1; 0:1); (3; 0:4)g5 3 f(1; 0:1); (3; 0:4); (7; 0:5)g4 2 f(1; 0:1); (3; 0:6); (6; 1)g3 3 f(1; 0:1); (2; 0:6); (3; 0:9); (6; 1)glump: 0 f(1; 0:6); (3; 0:9); (6; 1)g2 2 f(1; 0:7); (3; 0:9); (4; 1)g1 0 f(1; 1)glump: 0 f(1; 1)g
" 0:4 0:5 0:10:1 0:5 0:40 0:6 0:4#

5 Numeri
al ResultsIn this se
tion we give some numeri
al results for two examples of repairablesystems [1, 11℄. The �rst example is rather small and it is presented here in orderto illustrate the quality of our bounds as it is possible to solve the transient andsteady-state distributions of the original system. We use LMSUB and LIMSUBbut LL us useless. The se
ond example has more than 9� 1010 states with thenumber of transitions of order of 1012. So we are not even able to generate thewhole transition rate matrix. Yet it is still possible to provide the bounds bothfor transient and steady-state rewards using our approa
h.In the �rst example we have a system 
omposed of: a front-end (FE), adatabase (DB), and two pro
essing subsystems having ea
h a swit
h (S), a mem-ory (M) and two pro
essors (P). The system is operational if it is possible to



P1aP1b M1S1 P2aP2bM2 S2FE
DBFig. 2. First example.a

ess the database i.e. if front-end, database and at least one pro
essing subsys-tem are operational. A pro
essing subsystem is operational if the 
orrespondingswit
h, memory and at least one pro
essor are operational. The failures andreparations of 
omponents are modeled by exponential distributions. The fail-ure rates are 1=120h�1 for pro
essors and 1=2400h�1 for other 
omponents andrepair rates are 1h�1 for all the 
omponents. A pro
essor failure 
ontaminatesthe database with probability 0:01. On
e the system is down the 
omponents donot fail. The 
omponents are repaired by a single repairman with the prioritygiven to front-end and database, followed by swit
hes and memories, and thenthe pro
essors. Within the same priority group the 
omponents are 
hosen atrandom. We 
onsider the preemptive poli
y.The original model has 142 states from whi
h 32 are operational. The max-imal number of failed 
omponents is 7. Noti
e that for our approa
h the orderof states is important as all the up states must pre
ede the down states. Fur-thermore, we take into a

ount the fa
t that the LMSUB algorithm yields betterbounds for the initial matrix whi
h is almost st-monotone. The 
hoi
e of par-tition is also very important as the lumpability step of the algorithm performsmu
h better if the states within the same blo
k have similar properties.Within the same 
lass of states (up or down) we ordered the states a

ordingto the number of failed 
omponents. We 
hose the following partition : all thestates of the same 
lass with the same number of failed 
omponents form a blo
k,ex
ept the states with only one failure whi
h are left as single-state blo
ks. Thisgives 17 blo
ks, 9 of them 
omposed of up states.Solving the original model we obtained steady-state availabilityA = 0:998835.The lower bound obtained by our method is 0:998667. In �gure 3 we present thetransient bounds for point availability and reliability for this example. We 
annoti
e that both results are really 
lose to the exa
t values.The se
ond example is presented in �gure 1. The system is operational if atleast one of pro
essor PA or PB is operational, at least one 
ontroller of ea
htype and at least three out of four disks of ea
h of the six 
lusters are operational.Only one pro
essor of ea
h type is a
tive and only the a
tive pro
essors 
an fail.A failure of a
tive pro
essor PA is propagated to the a
tive pro
essor PB withprobability 0:1. The failures and reparations of 
omponents are exponentiallydistributed. The failure rates are given in table 1. There are two failure modes(soft and hard) whi
h o

ur with equal probability. When the system is opera-
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Fig. 3. The exa
t point availability (left) and reliability (right), and their lower boundsfor the �rst example.tional the repair rates are 0:1h�1 in the soft mode and 0:05h�1 in the hard mode.When the system is down, the rates are 10 times larger as the 
onsequen
e ofthe additional pre
autions to be taken when the system is operational. There isonly one repairman who 
hooses the 
omponent to be repaired at random fromthe set of failed 
omponents.Component PA, PB and C1 C2 D1 D2 D3 D4 D5 D6Failure Rate 1/2000 1/4000 1/6000 1/8000 1/10000 1/12000 1/14000 1/16000Table 1. Failure rates (h�1) for the se
ond example.The model has only 36 
omponents of 10 di�erent types yet the state-spa
eis of order of 9:0 1010. We used the te
hnique des
ribed in se
tion 3.1 to redu
ethe state spa
e. All the up states are generated and the down states are ag-gregated a

ording to the number of failed 
omponents. This gives a new modelwith 1312235 states (1312200 up and 35 down ma
ro-states) and 25754089transitions.First let us 
onsider the ordering of the states and the edge between up statesand down states. We have 
hosen the up state with the maximal number (15)of simultaneous failures for the system to still be operational, in whi
h all thefailures are hard failures and the only operational pro
essor is PB, to be the lastup (lastup) state. Let Dk denote the down ma
ro-state with k failures. Thenfor all Dk; k � 3 there is a transition (Dk; Dk�1) and the only transition fromdown ma
ro states to up states is the transition (D2; lastup). Also, there aretransitions (Dk; Dk+1);8k < 36 and (Dk; Dk+2);8k < 35, so the new transitionmatrix is irredu
ible. It is also aperiodi
 due to the uniformization 
onstant� > maxif�Qi;ig, so we 
an use the optimized version of LIMSUB algorithm.In the se
ond step the up states are reordered in
reasingly in number of failed
omponents followed by number of hard failures. The up states are followedby the down states ordered in
reasingly in number of failed 
omponents. Thepartition 
ontains 172 subsets: all the up states, ex
ept lastup state, with the



same number of failed 
omponents and the same number of hard failures areaggregated forming 136 blo
ks followed by lastup state then by 35 one-stateblo
ks 
orresponding to the down states, already aggregated in the �rst step.The lower bound for steady-state availability of the se
ond system obtainedby this method is 0:999132158 (upper bound for unavailability is 0:000867842).The lower bounds for point availability are given in �gure 4 (left).In table 2 we give 
omputational times for all three steps. For the third stepwe also report the time needed by LIMSUB [8℄ algorithm (on the same ma
hine).We 
an noti
e that on this example our algorithm is approximately twi
e faster.This is a 
onsequen
e of the improvement made during the normalization partof the algorithm as well as the better utilization of the matrix sparse stru
ture.When we bound the reliability, we are only interested in up states. We are
omputing the lower bound for reliability with the st-monotone upper bound ofthe 
hain. We obtain this bound by aggregating all the down states into oneabsorbing state. We ordered up states and regrouped them into blo
ks a

ordingto the number of failed 
omponents followed by the number of hard failures. Thisgives us a partition into 137 blo
ks: 136 
orresponding to up states and 1 to theabsorbing down state. The lower bounds for reliability for the se
ond systemare reported in �gure 4 (right).
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Fig. 4. Lower bounds for point availability and reliability for the se
ond example.generation reordering LMSUB (ird) LIMSUB [8℄182.0 95.52 56.54 107.3Table 2. CPU times in se
onds on a PC (CPU 3.20GHz, 1 GB of RAM) to 
omputethe point availability for the se
ond example.6 Con
lusionIn this paper we have extended the theory of algorithmi
 bounds to reliabilityand availability problems. The theory now in
lude transient and steady-state



analysis and the Markov 
hains may be irredu
ible or have an absorbing state.We have also improved the algorithms to be more eÆ
ient as the 
hains are verylarge. We have also suggested that high level formalisms may be used to buildlumpable matri
es whi
h are larger in the sto
hasti
 sense. Of 
ourse, only thelumped matrix is generated and stored. A version of this algorithm based onSto
hasti
 Automata Network is 
urrently under development.Referen
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