
Bounds for point and steady-state availability:an algorithmi approah based on lumpabilityand stohasti orderingA. Bu�si� and J.M. FourneauPRiSM, Universit�e de Versailles-Saint-Quentin, 45, Av. des Etats-Unis 78000Versailles, FraneAbstrat. Markov hains and rewards have been widely used to eval-uate performane, dependability and performability harateristis ofomputer systems and networks. Despite onsiderable works, the nu-merial analysis of Markov hains to obtain transient or steady-statedistribution is still a diÆult problem when the hain is large or theeigenvalues badly distributed. Thus bounding tehniques have been pro-posed for long to analyze steady-state distribution.Here, we show how to bound some dependability harateristis suh assteady-state and point availability using an algorithmi approah. Thebound is based on stohasti omparison of Markov hains but it doesnot use sample-path arguments. The algorithm builds a lumped Markovhain whose steady-state or transient distributions are upper bounds inthe strong stohasti sense of the exat distributions. In this paper, theimplementation of algorithm is detailed and we show some numerialresults. We also show how we an avoid the generation of the state spaeand the transition matrix to model hains with more than 1010 states.This work is supported by ACI S�eurit�e, projet Sure-Paths1 IntrodutionThe use of Markov hains to model omplex system reliability and availabilityis beoming inreasingly ommon. The de�nition and generation of large-saleMarkov models from high level spei�ations is relatively easy and eÆient inboth time and memory requirements. The remaining diÆulty is that of atuallysolving the Markov hain and deriving useful performane harateristis from it.Consider an irreduible �nite ontinuous-timeMarkov hainX whose stohas-ti transition rate matrix is given by Q. Then there exists the steady-state dis-tribution � of the Markov hain X whih is the unique solution to the systemof equations �Q = 0. An availability measure is de�ned by separating the statesinto two lasses, up states and down states. A state is said to be up if the sys-tem is operational for that state; otherwise it is down. Let U denote the set ofup states. The reliability at time t is de�ned as the probability that the systemhas always been in the up states between 0 and t:R(t) = Pr(Xs 2 U;8 s 2 [0; t[):



The point availability is the probability that the system is operational at time t:PAV (t) = Pr(Xt 2 U)and the steady-state availability is the limit, if it exists, of this probability. It analso be de�ned as the expetation of a reward on the steady state distributionof X : A = Piji is up �(i). The usual way to ompute these quantities is basedon the uniformization method. Let Æ be an arbitrary positive value and � =maxif�Q(i; i)g+Æ. Let us build the uniformized version of Q by: P = (Id�Q=�).P is a disrete time Markov hain. Let us denote by PU the blok of P assoiatedto transitions between up states and let �0 be the initial distribution of X . Usinguniformization, we an ompute R(t) by:R(t) = 1Xn=0 e��t (�t)nn! �0PnU1and, beause of the properties of the exponential funtion, the summation anbe trunated. We �rst ompute N(t; �) whih is the minimal value of n suh thatPnn=0 e��t (�t)nn! is larger than 1� �, and we �nally obtain an approximation ofR(t) whih is a lower bound of the exat value:R(t) � N(t;�)Xn=0 e��t (�t)nn! �0PnU1:Let 1U be the indiator funtion of set U . We get PAV (t) after a similar on-strution based on uniformization:PAV (t) � N(t;�)Xn=0 e��t (�t)nn! �0Pn1U :As P and Q have the same steady-state distribution, we an use P to omputeor bound the availability. Thus, we must ompute transient and steady stateprobability distribution for matrix P . But for many problems these matriesare so huge that this is not even possible to build them or to solve the steady-state or the transient distribution. Thus we must use methods whih provide aguarantee on these reliability measures and whih are not limited by the size ofthe state spae. Note that we are interested in bounding ontinuous time CTMC,however, due to the uniformization proess, we onsider disrete time Markovhain (DTMC).Bounding methods have always reeived onsiderable attention in perfor-mane or reliability evaluation. Indeed, the problems we have to solve are oftentoo omplex to be analyzed exatly. For instane, the numerial omputationof the steady-state distribution of Markov hains is diÆult when the hain islarge or the eigenvalues badly distributed. The main approah for boundingsteady-state availability has been proposed by Muntz and his o-authors [11, 9℄.The method has been improved by Carraso [1℄, Rubino and Mahevas [10℄. The



theoretial bakground is based on Courtois's polyhedral results on steady-stateequation [3℄. However this method only works for bounding steady-state rewards.Here we present a new method whih allows to obtain bounds for transientand steady-state rewards. Our approah is based on stohasti omparison ofMarkov hains and lumpability. The stohasti omparison provides the guar-antee for both transient and steady-state measures while lumpability allowsto onsider smaller hains whih are easier to solve. The theory is based onan algorithmi derivation for sample-path omparison of Markov Chains basedon neessary onditions on the transition matrix. This approah restrited onsteady-state distribution and rewards has reently been surveyed [6℄, LIMSUB analgorithm based on lumpability has been proved [8℄ and a tool has been demon-strated [7℄. Here we show how we an extend this theory for transient rewards aspoint availability and reliability. As the theoretial bakground is not based onCourtois's results on steady state, the requirements of our method are distintfrom the assumptions needed by Muntz's algorithm and its generalizations.The omparison of Markov hains requires an order on the state spae beausethe order on random variables is de�ned by means of the set of non-dereasingfuntions. Thus, we order the states suh that the up states have indies thatare smaller than the indies of the down states, then we an de�ne A as: A =Pi �(i)r(i) where the reward r(i) is a non-inreasing funtion whih is equal to1 for the �rst states of the hain (the up states) and 0 for all the other states. Wewish to ompute a lower bound for A. We shall let this lower bound be denotedby B. Notie that we may restate the problem by omputing an upper boundfor 1 � A. This upper bound will be given by 1 � B. In this ase, the rewardfuntion is now a non-dereasing funtion on the state indies already de�ned.This property is an important requirement of the strong stohasti ordering aswe will see in setion 2.Here we onsider the modeling of highly available multiomponent systemssuh as the example studied by Muntz [11℄ and Carraso [1℄. A typial systemonsists of several disks, CPUs and ontrollers. We have two types of failures: softand hard. The failures may our in bathes and all the failed items ompete to berepaired. The system is operational if there is enough CPU, disks and ontrollers.Clearly, if the number of omponents is large, the state spae is huge and the upstates are relatively rare. Furthermore, if the system is highly available, the upstates onentrate most of the probability distribution. For instane, the systemdepited in Fig. 1 has more than 9:0 1010 states and 1012 transitions. This is evennot possible to generate and store the state spae and the transition matrix. Thuswe show how we an operate in two phases: the �rst step onsists in designingan ad-ho algorithm (alled LL, Lumpable and Larger) whih builds from thespei�ation a lumpable matrix whih is larger in the stohasti sense. Of ourse,we store the lumped matrix instead of the original one. Then, during the seondphase, we an apply the new bounding algorithm LMSUB to obtain the �nalmatrix whih an be numerially analyzed. As the hain is huge we must derivevery eÆient algorithms. So we report in setion 4 some details about an eÆientimplementation of our new algorithm LMSUB (Lumpable Monotone Stohasti



Upper Bound). As LMSUB is strongly related to LIMSUB these details an alsobe used to program a more eÆient version of LIMSUB than the desription in[8℄. LMSUB algorithm is devoted to the study of problems with reduible hainswhile LIMSUB has several instrutions to build an irreduible hain. This is themain di�erene between these algorithms. LMSUB has been speially developedto study reliability issues whih imply hains with absorbing states.PA PBC1 C2D1 D2 D3 D4 D5 D6Fig. 1. System studied by Muntz and CarrasoThe paper is organized as follows. In setion 2 we present the basi resultswe need about stohasti bounds, lumpability and algorithmi omparison ofMarkov hains. Setion 3 is devoted to the theoretial aspets of bounding tran-sient rewards. In setion 4 we show how we an improve the algorithms to dealwith extremely huge state spae. Finally, we present some numerial results insetion 5 for some typial problems introdued by Muntz and his olleagues [11℄.2 Stohasti Bounds and LumpabilityWe restrit ourselves to disrete time Markov hains (DTMC) with �nite statespae E = f1; 2; : : : ; ng. The strong stohasti ordering (\st-ordering" for short)has been de�ned by Stoyan[14℄ by means of the set of non-dereasing funtions.For disrete random variables, we use the following algebrai equivalent formu-lation whih is muh more onvenient:De�nition 1. If X and Y are random variables taking values on a �nite statespae f1; 2; : : : ; ng and respetively having p and q as probability distributionvetors, then X is said to be less than Y in the strong stohasti sense, that is,X �st Y i� Pnj=k pj �Pnj=k qj for k = 1; 2; : : : ; n.Bounds on the distribution imply bounds on performane measures that arenon-dereasing funtions of the state indies. Observe that performane measuressuh as average population size, tail probabilities and so on are non-dereasingfuntions. In our ontext, the reward that we wish to bound (i.e., 1 � A) is anon-dereasing funtion one the state spae has been orretly ordered. Let usnow illustrate de�nition 1 by an example:



Example 1. Let � = (0:1; 0:3; 0:4; 0:2) and � = (0:1; 0:1; 0:5; 0:3). It follows thenthat � �st � sine: 240:2 � 0:30:2 + 0:4 � 0:3 + 0:50:2 + 0:4 + 0:3 � 0:3 + 0:5 + 0:1It has been known for some time that monotoniity [6℄ and omparability oftransition probability matries yield suÆient onditions for the stohasti om-parison of Markov hains and their transient and steady-state distributions. Fur-thermore, st-monotoniity and st-omparability of matries may be ompletelyharaterized by linear algebrai onstraints [6℄.De�nition 2 (St-omparison of transition matries). Let P and R be twotransition matries. P is st-smaller than R if and only ifPnk=j Pi;k �Pnk=j Ri;kfor all k and i between 1 and n.De�nition 3 (St-monotoniity of transition matrix). Let P be a transitionmatrix. P is st-monotone if and only if Pnk=j Pi�1;k � Pnk=j Pi;k, for all kbetween 1 and n and for all i between 2 and n.We present now the relevant theorem for the stohasti omparison of Markovhains [14℄. The statement below assumes that P , the original matrix we wantto bound, is not monotone and that we want to obtain an upper bound.Theorem 1. Let X(t) and Y (t) be two DTMC and P and R be their respetivestohasti matries. If� X(0) �st Y (0),� R is st-monotone,� P �st R,then X(t) �st Y (t); for all t > 0. If X and Y have steady-state distributions�X and �Y , then �X �st �Y .Using this theorem and assuming that we want to ompute an upper boundfor P , whih is the transition matrix of the problem we have to solve, we must�nd R suh that: �Pnk=j Pi;k �Pnk=j Ri;k ; 8 i; j;Pnk=j Ri;k �Pnk=j Ri+1;k ; 8 i < n; j: (1)The �rst set of inequalities states that P is stohastially smaller than R whilethe seond set shows that R is st-monotone. But these two sets of onstraintsdo not help for the numerial resolution for transient or steady-state expetedrewards. Thus we also impose additional restritions on the struture of R inorder to failitate the omputation of the bounds. Spei�ally, we shall insisthere that the matrix R be ordinary lumpable.



De�nition 4. (Ordinary lumpability) Let P be the transition probability ma-trix of an irreduible �nite DTMC and let Ck, k = 1; 2; : : : ;M be a partitionde�ned on the states of this Markov hain. Thus, eah state of the Markov hainbelongs to one and only one of the so-alled maro-states Ck. The hain is saidto be ordinary lumpable with respet to the partition Ck if and only if, for allstates e and f belonging to the same arbitrary maro state Ck, we haveXj2Ci pe;j = Xj2Ci pf;j ; for all maro states Ci; i = 1; 2; : : : ;M: (2)Fourneau et al.[8℄ have shown that ordinary lumpability onstraints are on-sistent with the relations spei�ed by equation (1). Furthermore, they have de-signed and implemented an algorithm, alled LIMSUB, whih onstruts a ma-trix R that possesses all these properties. The lumped matrix is muh muhsmaller than the original matrix. This lumped matrix is readily solved and thebounds obtained from it may be applied to the original Markov hain.We will now show how Theorem 1 and a slightly modi�ed version of thisalgorithm establish a ommon methodology for omputing both transient andsteady-state bounds.3 Bounds for Reliability: extending the theoryOur new LMSUB algorithm is based on LIMSUB [8℄ algorithm. Unfolding rela-tions (1), and satis�ng relations (2) for the bounding matrix and a given par-tition, we obtain a lumpable, st-monotone upper bound. The proof of this newalgorithm is almost idential to the proof of LIMSUB algorithm so we refer thereader to [8℄. LMSUB algorithm, hovever, does not are about irreduibility andan be, therefore, used to ompute bounds of reduible matries.We will illustrate this algorithm on the following example. Assume that thehain has 5 states and the state-spae is partitioned into two maro-states: (1; 2)and (3; 4; 5). Clearly, relations (1) allow that we ompute the lumped matrixolumn by olumn. And we must perform some additional omputations at theboundaries of the bloks to insure that the matrix is lumpable. In equations(1) we replae inequalities by equalities during the �rst step. The relations areunrolled and the equalities are arranged in inreasing order for i and in dereasingorder for j. During the seond step, we must modify the �rst olumn of the blokto insure that eah blok has a onstant row sum. The matries below showthe initial matrix (on the left), then the matrix after the omputation of threeolumns using step 1, the modi�ation of these elements due to the seond step,and �nally the lumped matrix (on the right). The values modi�ed during theseond step are boxed.26664 0:2 0:2 0:1 0:3 0:20:1 0:2 0:1 0:5 0:10:0 0:3 0:5 0:1 0:10:1 0:2 0:4 0:3 0:00:0 0:1 0:0 0:9 0:037775 26664 0:1 0:3 0:20:1 0:4 0:20:1 0:4 0:20:1 0:4 0:20:0 0:7 0:237775 266664 0.2 0:3 0:20:1 0:4 0:20.3 0:4 0:20.3 0:4 0:20:0 0:7 0:2377775 �0:3 0:70:1 0:9�



In Fourneau et al.[8℄, only the omparison of steady-state distributions wasonsidered. However, theorem 1 states that the sample-paths are ordered. Thusthe omparison of distributions is also true for transient distributions and re-wards. And it is even not neessary that the hains are irreduible. It is possibleto use this theorem to ompare probability of reahing an absorbing state. Thisis partiularly useful when we want to bound the reliability R(t) beause we onlyonsider the restrition of the initial matrix to the up states and one absorbingdown state.We know that \st"-bounds are assoiated with non-dereasing rewards. Then,if X(t) �st Y (t) at time t and r(i) is a non-dereasing reward funtion, it followsthat Xi r(i)Prob(X(t) = i) �Xi r(i)Prob(Y (t) = i):Now suppose that we use any algorithm whih builds a lumpable upperbound. Let Cp be an arbitrary maro-state of the partition we have used tobuild the bound. Let us now design a new reward funtion s(p) as the maximumof r(i) for states i in Cp. Clearly, we have two important properties:Property 1 s(p) is non-dereasing beause the states are initially ordered a-ording to the maro-state and r(i) is non-dereasing.Property 2 At eah time step t, the probability of being in maro state Cpmultiplied by the reward s(p) is greater than the sum of the individual rewardsmultiplied by the probabilities of all the states in maro state Cp:s(p)Prob(Y (t) 2 Cp) � Xi2Cp r(i)Prob(Y (t) = i):As the stohasti matrix assoiated with Y is lumpable, the left hand-sideof the former inequality an be omputed using the lumped hain Z. Combiningboth inequalities we get, for all t,Xi r(i)Prob(X(t) = i) �Xp s(p)Prob(Z(t) = p):Putting everything together we obtain the following more general result on-erning our algorithms.Theorem 2. Let X be a �nite aperiodi DTMC and let r() be non-dereasingrewards de�ned on the states of X. Consider an arbitrary partition of the statespae suh that states whih belong to the same maro-state are ontiguous.Let Y be the �nite DTMC obtained by LMSUB. Y is lumpable and let Z bethe lumped version of Y . Assume that X0 �st Y0. We de�ne the rewards s() atthe maro-state level as the maximal reward for the individual states. Then:{ For any instant t, the expeted reward at time t EX(r)(t) is upper boundedby the expeted reward EZ(s)(t).



{ The steady-state reward EX (r) is upper bounded by EZ(s).And both omputations EZ(r)(t) and EZ(r) require working on matrix Z whihis muh smaller.Let us now turn bak to the reliability and point availability problem. Clearly,we have two values for the reward: 0 and 1. So we suggest the following for thepartition and the orollary it learly implies:Rule 1 Do not group in the same maro-state up and down states.Corollary 1 Using this rule, it is not even neessary to ompute the maximumand we bound diretly the point availability, the reliability and steady-state avail-ability of X by the same values omputed on lumped matrix Z.3.1 Avoiding the generation of the whole state spaeThe fundamental requirement is the existene of the transition matrix on theMarkov hain on disk. But for some problem of reliability of multiomponentsystems, this is even not possible to generate and store the state spae and thetransition matrix. For instane, the system studied by Muntz [11℄ and Carraso[1℄ has more than 9:0 1010 states and 1012 transitions. Thus the matrix stored insparse format represents more than one terabyte. Clearly, alternative desriptionbased on tensor produt [12℄ or MTMDD [2℄ may be useful for the transitionmatrix. But in our problem even the state spae is too large.So, instead of generating the initial matrix using the visit of reahable statesfrom an initial one with a BFS (Breadth First Searh) algorithm, we design anew algorithm (alled LL for Lumpable, and Larger) to build a matrix whih islarger in the stohasti sense and whih is lumpable. Of ourse, we only buildand store the lumped matrix. We obtain a transition probability matrix as wealso perform the uniformization proess during the generation. It is worthy toremark that this matrix is not monotone in general. This matrix will be theinput of LMSUB algorithm in the next step. So we perform two aggregations ofthe hain before the analysis.A areful inspetion of this state spae shows that most of the states aredown states. So we use the following rules to design the �rst step maro-states:Rule 2 Do not aggregate the up states during the �rst step.Rule 3 During the �rst step aggregate the down states whih have the sametotal number of faults.Now we have to �nd the transition probabilities within this new hain. Here,we assume that the desription of the model is based on events: an event has arate and when we apply an event to a state, we obtain the resulting state. Therate does not depend on the states. These assumptions are used to explain howwe group transitions. They are not neessary and the same work an be done



with other formalisms as well. For the sake of onision, it is not possible to givea proved version of the algorithm here. Algorithm LL is based on the followingideas to obtain a lumpable larger bound:{ Do not hange the transition probabilities between simple states.{ The transition from a simple state x to an aggregated state Cp is the sumof the transition probabilities from x to y, for all y in Cp.{ For transitions leaving an aggregated state Cp to an aggregated state Cq (ifCq is a single state, just modify step 4).1. label all transitions with the events,2. group the transitions and the events aording to the number of failures(for instane, a \+1" transition models a new fault),3. if an event is assoiated to two (or more) numbers of failures, then modifythe transitions as follows: all the transitions labeled with this event mustnow join the largest state reahed by this event from a state in maro-state Cp.For instane, if event u is assoiated to one or two new faults, thenmodify the transitions suh that now event u is always two new faults.4. Then do the summation for all the states in Cq .Finally we perform the uniformization. Clearly, this algorithm is problem depen-dent. However, from this spei�ation, we an learly state that the matrix islarger in the stohasti sense (we move transitions to upper states) and lumpable.Finally, the total omparison proess does not depend of the algorithm usedto obtain a lumpable stohastially larger matrix. And learly the bound ob-tained by LMSUB or LIMSUB of the matrix we obtain is also a bound of theoriginal matrix we are not able to store.4 Improving the algorithmsEven if LIMSUB algorithm desribed in [8℄ and our new algorithm are loselyrelated, there are several points onerning the implementation whih di�er on-siderably. In this setion we present the main modi�ations that speed up thealgorithm, espeially in ase of a transition matrix with relatively few non-zeroelements per state, ompared to the size of the state spae. It also allows theomputation of a bound of a reduible transition matrix whih is neessary inour approah to bound the reliability of repairable systems.4.1 LMSUB, LIMSUB and the irreduibility issueIn [8℄ only the irreduible transition matries with some additional properties(see [8℄, Theorem 3) have been onsidered. To ensure that the irreduibilityproperty is maintained by LIMSUB algorithm the authors in [8℄ avoid deletingtransitions and, if neessary, add small sub-diagonal transitions.When omputing the bounds for transient distributions, we might want toompute the bounds even for the reduible matries. In order to obtain the



reliability bounds using our approah, for instane, we need to ompute an st-monotone upper bound of a matrix having one absorbing state (orrespondingto the down states of the model). In our implementation of this algorithm weleave the hoie to the user if the bound to be omputed needs to be irreduibleor not.4.2 Avoiding ComputationsThe algorithm omputes the bounding matrix olumn per olumn beginningwith the last olumn. It is lear that it is neessary to store only one olumn ofthe matrix P at a time. Only after the �rst step (Algorithm 1) we know how tomodify the �rst olumn of the blok to obtain a onstant row sum. Furthermoredue to st-monotoniity, we know that the maximal row sum is obtained with thelast row of the blok.for blo=M to 1 dostep1: for olumn=last( blok) to first( blok) doomputeCol(olumn);endstep2: endBlok();end Algorithm 1: LIMSUB algorithm [8℄We keep the �rst step as desribed in [8℄. For the seond step, however,there is no need to reompute the �rst olumn of a blok as all the informa-tion needed to ompute the next olumn is only the vetor of partial sumsps(j)Q = (Pnk=j qi;k)ni=1 of the lumpable bound Q for the urrent olumn j. Asthe lumpability imposes that this sum is onstant for all the rows of a blokand, due to the st-monotoniity onstraints, we know that the maximal value isobtained for the last row of a blok, we need only to store one single value perblok. This value is already known at the end of step 1 of the algorithm, so theseond step an be ompletely avoided.4.3 Sparse Matrix ImplementationThe repairable system models have often a huge state spae but relatively fewtransitions per state, whih makes interesting to use the sparse representationof transition matries. Our implementation of LMSUB algorithm exploits thisrepresentation and uses the adapted data strutures to redue further the om-putations. For instane, for the vetor ps(j)Q of partial sums for the urrent ol-umn j of the lumpable bound Q, we store only the index and the value forthe rows this sum stritly inreases (the elements of ps(j)Q are inreasing be-ause of the st-monotoniity onstraints), i.e we store (i; ps(j)Q ) if and only ifPnk=j qi;k �Pnk=j qi�1;k > 0 (with Pnk=j q�1;k = 0). Notie that it is neessaryto use only one suh struture (a list for example) during the whole omputation



proess as the elements of ps(j)Q are omputed in inreasing order, so the old ele-ments, orresponding to the olumn j � 1 with indies smaller than the urrentposition, are no longer needed. This allows us to ompute only the elements ofps(j)Q whose value is di�erent from ps(j+1)Q .Furthermore, we know that those hanges are due to the non-zero elementsin the olumn j of the original matrix P (st-omparison between P and Q).Between the two non-zero elements of P at the positions denoted by i1 et i2, itis only neessary to update the list ontaining the information on ps(j)Q vetor,i.e. to erase some elements if they are smaller or equal to the last omputedelement (at position i1).We illustrate this on the example below. On the left is the initial matrixand on the right the bound obtained by LMSUB algorithm. In the table in themiddle the �rst olumn represents the urrent olumn, the seond the numberof omputations performed for that olumn and the last one the sparse-vetorps(j)Q throughout the omputation proess. One an notie that the number ofomputations performed is sometimes even smaller (olumn 2) than the numberof non-zero elements in the orresponding olumn of the initial matrix. This isthe onsequene of the fat that, one the partial sum of value 1 is enountered,the omputation of the urrent olumn is �nished. Note that the \lump" stepsdo not require omputation following the previous remarks.266666664 0:3 0:6 0 0 0:1 0 00:4 0 0:5 0 0 0:1 00:1 0 0:3 0:4 0 0 0:20 0:7 0 0 0:3 0 00:1 0 0:5 0 0 0:4 00 0 0 0:8 0 0:2 00 0:5 0 0 0:1 0:3 0:1
377777775

ol. omp. sparse vetor ps(j)Q7 2 f(3; 0:2)g6 4 f(2; 0:1); (3; 0:2); (5; 0:4)glump: 0 f(1; 0:1); (3; 0:4)g5 3 f(1; 0:1); (3; 0:4); (7; 0:5)g4 2 f(1; 0:1); (3; 0:6); (6; 1)g3 3 f(1; 0:1); (2; 0:6); (3; 0:9); (6; 1)glump: 0 f(1; 0:6); (3; 0:9); (6; 1)g2 2 f(1; 0:7); (3; 0:9); (4; 1)g1 0 f(1; 1)glump: 0 f(1; 1)g
" 0:4 0:5 0:10:1 0:5 0:40 0:6 0:4#

5 Numerial ResultsIn this setion we give some numerial results for two examples of repairablesystems [1, 11℄. The �rst example is rather small and it is presented here in orderto illustrate the quality of our bounds as it is possible to solve the transient andsteady-state distributions of the original system. We use LMSUB and LIMSUBbut LL us useless. The seond example has more than 9� 1010 states with thenumber of transitions of order of 1012. So we are not even able to generate thewhole transition rate matrix. Yet it is still possible to provide the bounds bothfor transient and steady-state rewards using our approah.In the �rst example we have a system omposed of: a front-end (FE), adatabase (DB), and two proessing subsystems having eah a swith (S), a mem-ory (M) and two proessors (P). The system is operational if it is possible to



P1aP1b M1S1 P2aP2bM2 S2FE
DBFig. 2. First example.aess the database i.e. if front-end, database and at least one proessing subsys-tem are operational. A proessing subsystem is operational if the orrespondingswith, memory and at least one proessor are operational. The failures andreparations of omponents are modeled by exponential distributions. The fail-ure rates are 1=120h�1 for proessors and 1=2400h�1 for other omponents andrepair rates are 1h�1 for all the omponents. A proessor failure ontaminatesthe database with probability 0:01. One the system is down the omponents donot fail. The omponents are repaired by a single repairman with the prioritygiven to front-end and database, followed by swithes and memories, and thenthe proessors. Within the same priority group the omponents are hosen atrandom. We onsider the preemptive poliy.The original model has 142 states from whih 32 are operational. The max-imal number of failed omponents is 7. Notie that for our approah the orderof states is important as all the up states must preede the down states. Fur-thermore, we take into aount the fat that the LMSUB algorithm yields betterbounds for the initial matrix whih is almost st-monotone. The hoie of par-tition is also very important as the lumpability step of the algorithm performsmuh better if the states within the same blok have similar properties.Within the same lass of states (up or down) we ordered the states aordingto the number of failed omponents. We hose the following partition : all thestates of the same lass with the same number of failed omponents form a blok,exept the states with only one failure whih are left as single-state bloks. Thisgives 17 bloks, 9 of them omposed of up states.Solving the original model we obtained steady-state availabilityA = 0:998835.The lower bound obtained by our method is 0:998667. In �gure 3 we present thetransient bounds for point availability and reliability for this example. We annotie that both results are really lose to the exat values.The seond example is presented in �gure 1. The system is operational if atleast one of proessor PA or PB is operational, at least one ontroller of eahtype and at least three out of four disks of eah of the six lusters are operational.Only one proessor of eah type is ative and only the ative proessors an fail.A failure of ative proessor PA is propagated to the ative proessor PB withprobability 0:1. The failures and reparations of omponents are exponentiallydistributed. The failure rates are given in table 1. There are two failure modes(soft and hard) whih our with equal probability. When the system is opera-
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Fig. 3. The exat point availability (left) and reliability (right), and their lower boundsfor the �rst example.tional the repair rates are 0:1h�1 in the soft mode and 0:05h�1 in the hard mode.When the system is down, the rates are 10 times larger as the onsequene ofthe additional preautions to be taken when the system is operational. There isonly one repairman who hooses the omponent to be repaired at random fromthe set of failed omponents.Component PA, PB and C1 C2 D1 D2 D3 D4 D5 D6Failure Rate 1/2000 1/4000 1/6000 1/8000 1/10000 1/12000 1/14000 1/16000Table 1. Failure rates (h�1) for the seond example.The model has only 36 omponents of 10 di�erent types yet the state-spaeis of order of 9:0 1010. We used the tehnique desribed in setion 3.1 to reduethe state spae. All the up states are generated and the down states are ag-gregated aording to the number of failed omponents. This gives a new modelwith 1312235 states (1312200 up and 35 down maro-states) and 25754089transitions.First let us onsider the ordering of the states and the edge between up statesand down states. We have hosen the up state with the maximal number (15)of simultaneous failures for the system to still be operational, in whih all thefailures are hard failures and the only operational proessor is PB, to be the lastup (lastup) state. Let Dk denote the down maro-state with k failures. Thenfor all Dk; k � 3 there is a transition (Dk; Dk�1) and the only transition fromdown maro states to up states is the transition (D2; lastup). Also, there aretransitions (Dk; Dk+1);8k < 36 and (Dk; Dk+2);8k < 35, so the new transitionmatrix is irreduible. It is also aperiodi due to the uniformization onstant� > maxif�Qi;ig, so we an use the optimized version of LIMSUB algorithm.In the seond step the up states are reordered inreasingly in number of failedomponents followed by number of hard failures. The up states are followedby the down states ordered inreasingly in number of failed omponents. Thepartition ontains 172 subsets: all the up states, exept lastup state, with the



same number of failed omponents and the same number of hard failures areaggregated forming 136 bloks followed by lastup state then by 35 one-statebloks orresponding to the down states, already aggregated in the �rst step.The lower bound for steady-state availability of the seond system obtainedby this method is 0:999132158 (upper bound for unavailability is 0:000867842).The lower bounds for point availability are given in �gure 4 (left).In table 2 we give omputational times for all three steps. For the third stepwe also report the time needed by LIMSUB [8℄ algorithm (on the same mahine).We an notie that on this example our algorithm is approximately twie faster.This is a onsequene of the improvement made during the normalization partof the algorithm as well as the better utilization of the matrix sparse struture.When we bound the reliability, we are only interested in up states. We areomputing the lower bound for reliability with the st-monotone upper bound ofthe hain. We obtain this bound by aggregating all the down states into oneabsorbing state. We ordered up states and regrouped them into bloks aordingto the number of failed omponents followed by the number of hard failures. Thisgives us a partition into 137 bloks: 136 orresponding to up states and 1 to theabsorbing down state. The lower bounds for reliability for the seond systemare reported in �gure 4 (right).
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Fig. 4. Lower bounds for point availability and reliability for the seond example.generation reordering LMSUB (ird) LIMSUB [8℄182.0 95.52 56.54 107.3Table 2. CPU times in seonds on a PC (CPU 3.20GHz, 1 GB of RAM) to omputethe point availability for the seond example.6 ConlusionIn this paper we have extended the theory of algorithmi bounds to reliabilityand availability problems. The theory now inlude transient and steady-state



analysis and the Markov hains may be irreduible or have an absorbing state.We have also improved the algorithms to be more eÆient as the hains are verylarge. We have also suggested that high level formalisms may be used to buildlumpable matries whih are larger in the stohasti sense. Of ourse, only thelumped matrix is generated and stored. A version of this algorithm based onStohasti Automata Network is urrently under development.Referenes1. J.A. Carraso, \Bounding steady-state availability models with group repair andphase type repair distributions", Performane Evaluation, V35 (1999), 193{204.2. G. Ciardo and A.S. Miner. \Storage alternatives for larger strutured state spaes."In R. Marie, B. Plateau, M.Calzarossa, and G. Rubino, editors, Pro. 9th Int. Conf.on Modelling Tehniques and Tools for Computer Performane Evaluation, LNCS1245, pages 44-57, St. Malo, Frane, June 1997. Springer-Verlag.3. P.J. Courtois, P. Semal, \Bounds for the positive eigenvetors of nonnegative ma-tries and their approximations", J. ACM, V31 (4) (1984), 804{825.4. T. Dayar, J.M. Fourneau, N. Pekergin, \Transforming stohasti matries forstohasti omparison with the st-order", RAIRO-RO, V37 (2003), 85{97.5. T. Dayar, N. Pekergin: \Stohasti omparison, reorderings, and nearly ompletelydeomposable Markov hains." In: Proeedings of the International Conferene onthe Numerial Solution of Markov Chains (NSMC'99), (Ed. Plateau, B. Stewart,W.), Prensas universitarias de Zaragoza. (1999) 228-246.6. J.M. Fourneau, N. Pekergin. \An algorithmi approah to stohasti bounds",LNCS 2459, Performane evaluation of omplex systems: Tehniques and Tools,pp 64{88, 2002.7. J.M. Fourneau, M. Leoz, N. Pekergin and F. Quessette, \An open tool to omputestohasti bounds on steady-state distributiuon and rewards", IEEE Masots 2003,Orlando, USA.8. J.M. Fourneau, M. Leoz, F. Quessette, \Algorithms for an irreduible andlumpable strong stohasti bound", Numerial Solution of Markov Chains, 2003,USA.9. J.C.S. Lui, R. Muntz, \Computing bounds on steady state availability of repairableomputer systems", J. ACM, V41 (4) (1994), 676{707.10. S. Mahevas, G. Rubino, \Bounding asymptoti dependability and performanemeasures", Seond IEEE International Performane and Dependability Sympo-sium, USA, 1996, 176{186.11. R. Muntz, E. de Souza e Silva, A. Goyal, \Bounding availability of repairableomputer systems", IEEE Trans. on Computers, V38 (12) (1989), 1714{1723.12. B. Plateau, \On the stohasti struture of parallelism and synhronization modelsfor distributed algorithms", Pro. of the SIGMETRICS Conferene, Texas, 1985,147{154.13. W.J. Stewart, \Introdution to the Numerial Solution of Markov Chains", Prine-ton University Press, 1994.14. D. Stoyan, \Comparison Methods for Queues and Other Stohasti Models", Wiley,1983.


