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Abstract. Markov chains and rewards have been widely used to eval-
uate performance, dependability and performability characteristics of
computer systems and networks. Despite considerable works, the nu-
merical analysis of Markov chains to obtain transient or steady-state
distribution is still a difficult problem when the chain is large or the
eigenvalues badly distributed. Thus bounding techniques have been pro-
posed for long to analyze steady-state distribution.

Here, we show how to bound some dependability characteristics such as
steady-state and point availability using an algorithmic approach. The
bound is based on stochastic comparison of Markov chains but it does
not use sample-path arguments. The algorithm builds a lumped Markov
chain whose steady-state or transient distributions are upper bounds in
the strong stochastic sense of the exact distributions. In this paper, the
implementation of algorithm is detailed and we show some numerical
results. We also show how we can avoid the generation of the state space
and the transition matrix to model chains with more than 10'° states.
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1 Introduction

The use of Markov chains to model complex system reliability and availability
is becoming increasingly common. The definition and generation of large-scale
Markov models from high level specifications is relatively easy and efficient in
both time and memory requirements. The remaining difficulty is that of actually
solving the Markov chain and deriving useful performance characteristics from it.

Consider an irreducible finite continuous-time Markov chain X whose stochas-
tic transition rate matrix is given by (). Then there exists the steady-state dis-
tribution 7 of the Markov chain X which is the unique solution to the system
of equations 7@) = 0. An availability measure is defined by separating the states
into two classes, UP states and DOWN states. A state is said to be UP if the sys-
tem is operational for that state; otherwise it is DOWN. Let U denote the set of
UP states. The reliability at time ¢ is defined as the probability that the system
has always been in the UP states between 0 and ¢:

R(t) = Pr(Xs € UY s € [0,¢]).



The point availability is the probability that the system is operational at time ¢:
PAV(t) = Pr(X; € U)

and the steady-state availability is the limit, if it exists, of this probability. It can
also be defined as the expectation of a reward on the steady state distribution
of X: A =3, i 4p7(i). The usual way to compute these quantities is based
on the uniformization method. Let § be an arbitrary positive value and \ =
max;{—Q(i,7)}+9. Let us build the uniformized version of @ by: P = (Id—Q/\).
P is a discrete time Markov chain. Let us denote by Py the block of P associated
to transitions between UP states and let my be the initial distribution of X. Using
uniformization, we can compute R(t) by:

oo
_ — At (At)n n
R(t) = Z (& TWQPUl
n=0
and, because of the properties of the exponential function, the summation can

be truncated. We first compute N (¢, €) which is the minimal value of n such that
Zzzo e"\t% is larger than 1 — ¢, and we finally obtain an approximation of
R(t) which is a lower bound of the exact value:

N (t,e)
A AD",
R(t) ~ ZO e /\tTTF(]PU]..
n=

Let 1y be the indicator function of set U. We get PAV (t) after a similar con-
struction based on uniformization:

N (t,e) ()\t)n
PAV(t) ~ Z 6_)\tT7TOPn].U
n=0 ’

As P and () have the same steady-state distribution, we can use P to compute
or bound the availability. Thus, we must compute transient and steady state
probability distribution for matrix P. But for many problems these matrices
are so huge that this is not even possible to build them or to solve the steady-
state or the transient distribution. Thus we must use methods which provide a
guarantee on these reliability measures and which are not limited by the size of
the state space. Note that we are interested in bounding continuous time CTMC,
however, due to the uniformization process, we consider discrete time Markov
chain (DTMC).

Bounding methods have always received considerable attention in perfor-
mance or reliability evaluation. Indeed, the problems we have to solve are often
too complex to be analyzed exactly. For instance, the numerical computation
of the steady-state distribution of Markov chains is difficult when the chain is
large or the eigenvalues badly distributed. The main approach for bounding
steady-state availability has been proposed by Muntz and his co-authors [11,9].
The method has been improved by Carrasco [1], Rubino and Mahevas [10]. The



theoretical background is based on Courtois’s polyhedral results on steady-state
equation [3]. However this method only works for bounding steady-state rewards.

Here we present a new method which allows to obtain bounds for transient
and steady-state rewards. Our approach is based on stochastic comparison of
Markov chains and lumpability. The stochastic comparison provides the guar-
antee for both transient and steady-state measures while lumpability allows
to consider smaller chains which are easier to solve. The theory is based on
an algorithmic derivation for sample-path comparison of Markov Chains based
on necessary conditions on the transition matrix. This approach restricted on
steady-state distribution and rewards has recently been surveyed [6], LIMSUB an
algorithm based on lumpability has been proved [8] and a tool has been demon-
strated [7]. Here we show how we can extend this theory for transient rewards as
point availability and reliability. As the theoretical background is not based on
Courtois’s results on steady state, the requirements of our method are distinct
from the assumptions needed by Muntz’s algorithm and its generalizations.

The comparison of Markov chains requires an order on the state space because
the order on random variables is defined by means of the set of non-decreasing
functions. Thus, we order the states such that the UP states have indices that
are smaller than the indices of the DOWN states, then we can define A as: A =
>, m(i)r(i) where the reward r(i) is a non-increasing function which is equal to
1 for the first states of the chain (the UP states) and 0 for all the other states. We
wish to compute a lower bound for A. We shall let this lower bound be denoted
by B. Notice that we may restate the problem by computing an upper bound
for 1 — A. This upper bound will be given by 1 — B. In this case, the reward
function is now a non-decreasing function on the state indices already defined.
This property is an important requirement of the strong stochastic ordering as
we will see in section 2.

Here we consider the modeling of highly available multicomponent systems
such as the example studied by Muntz [11] and Carrasco [1]. A typical system
consists of several disks, CPUs and controllers. We have two types of failures: soft
and hard. The failures may occur in batches and all the failed items compete to be
repaired. The system is operational if there is enough CPU, disks and controllers.
Clearly, if the number of components is large, the state space is huge and the UP
states are relatively rare. Furthermore, if the system is highly available, the UP
states concentrate most of the probability distribution. For instance, the system
depicted in Fig. 1 has more than 9.0 10'° states and 10'? transitions. This is even
not possible to generate and store the state space and the transition matrix. Thus
we show how we can operate in two phases: the first step consists in designing
an ad-hoc algorithm (called LL, Lumpable and Larger) which builds from the
specification a lumpable matrix which is larger in the stochastic sense. Of course,
we store the lumped matrix instead of the original one. Then, during the second
phase, we can apply the new bounding algorithm LMSUB to obtain the final
matrix which can be numerically analyzed. As the chain is huge we must derive
very efficient algorithms. So we report in section 4 some details about an efficient
implementation of our new algorithm LMSUB (Lumpable Monotone Stochastic



Upper Bound). As LMSUB is strongly related to LIMSUB these details can also
be used to program a more efficient version of LIMSUB than the description in
[8]. LMSUB algorithm is devoted to the study of problems with reducible chains
while LIMSUB has several instructions to build an irreducible chain. This is the
main difference between these algorithms. LMSUB has been specially developed
to study reliability issues which imply chains with absorbing states.

Fig. 1. System studied by Muntz and Carrasco

The paper is organized as follows. In section 2 we present the basic results
we need about stochastic bounds, lumpability and algorithmic comparison of
Markov chains. Section 3 is devoted to the theoretical aspects of bounding tran-
sient rewards. In section 4 we show how we can improve the algorithms to deal
with extremely huge state space. Finally, we present some numerical results in
section 5 for some typical problems introduced by Muntz and his colleagues [11].

2 Stochastic Bounds and Lumpability

We restrict ourselves to discrete time Markov chains (DTMC) with finite state
space E = {1,2,...,n}. The strong stochastic ordering (“st-ordering” for short)
has been defined by Stoyan[14] by means of the set of non-decreasing functions.
For discrete random variables, we use the following algebraic equivalent formu-
lation which is much more convenient:

Definition 1. If X and Y are random variables taking values on a finite state
space {1,2,..., n} and respectively having p and q as probability distribution

vectors, then X is said to be less than Y in the strong stochastic sense, that is,

Bounds on the distribution imply bounds on performance measures that are
non-decreasing functions of the state indices. Observe that performance measures
such as average population size, tail probabilities and so on are non-decreasing
functions. In our context, the reward that we wish to bound (i.e., 1 — A) is a
non-decreasing function once the state space has been correctly ordered. Let us
now illustrate definition 1 by an example:



Ezample 1. Let a = (0.1,0.3,0.4,0.2) and 8 = (0.1,0.1,0.5,0.3). It follows then
that a <4 [ since:

0.2 <03
0.2+ 0.4 <03+05
0.2+04+0.3<03+0.5+0.1

It has been known for some time that monotonicity [6] and comparability of
transition probability matrices yield sufficient conditions for the stochastic com-
parison of Markov chains and their transient and steady-state distributions. Fur-
thermore, st-monotonicity and st-comparability of matrices may be completely
characterized by linear algebraic constraints [6].

Definition 2 (St-comparison of transition matrices). Let P and R be two
transition matrices. P is st-smaller than R if and only if Zzzj P < Zzzj R
for all k and i between 1 and n.

Definition 3 (St-monotonicity of transition matrix). Let P be a transition
matriz. P is st-monotone if and only if Y2 Py < Yi_; Pig, for all k
between 1 and n and for all i between 2 and n.

We present now the relevant theorem for the stochastic comparison of Markov
chains [14]. The statement below assumes that P, the original matrix we want
to bound, is not monotone and that we want to obtain an upper bound.

Theorem 1. Let X (t) and Y (t) be two DTMC and P and R be their respective
stochastic matrices. If

o X(O) jst Y(O)’
e R is st-monotone,
o P jst R}

then X (t) =5 Y(t), for all t > 0. If X and Y have steady-state distributions
mx and wy, then mx =g Ty.

Using this theorem and assuming that we want to compute an upper bound
for P, which is the transition matrix of the problem we have to solve, we must
find R such that:

Dohej Pk <z Rig, Vg, 1)
Zk:j Riy < Zk:j Rivik, Yi<mn,j.

The first set of inequalities states that P is stochastically smaller than R while
the second set shows that R is st-monotone. But these two sets of constraints
do not help for the numerical resolution for transient or steady-state expected
rewards. Thus we also impose additional restrictions on the structure of R in
order to facilitate the computation of the bounds. Specifically, we shall insist
here that the matrix R be ordinary lumpable.



Definition 4. (Ordinary lumpability) Let P be the transition probability ma-
triz of an irreducible finite DTMC and let Cy, k = 1,2,..., M be a partition
defined on the states of this Markov chain. Thus, each state of the Markov chain
belongs to one and only one of the so-called macro-states Cy. The chain is said
to be ordinary lumpable with respect to the partition Cy if and only if, for all
states e and f belonging to the same arbitrary macro state C}, we have

JEC; J€C;

Fourneau et al.[8] have shown that ordinary lumpability constraints are con-
sistent with the relations specified by equation (1). Furthermore, they have de-
signed and implemented an algorithm, called LIMSUB, which constructs a ma-
trix R that possesses all these properties. The lumped matrix is much much
smaller than the original matrix. This lumped matrix is readily solved and the
bounds obtained from it may be applied to the original Markov chain.

We will now show how Theorem 1 and a slightly modified version of this
algorithm establish a common methodology for computing both transient and
steady-state bounds.

3 Bounds for Reliability: extending the theory

Our new LMSUB algorithm is based on LIMSUB [8] algorithm. Unfolding rela-
tions (1), and satisfing relations (2) for the bounding matrix and a given par-
tition, we obtain a lumpable, st-monotone upper bound. The proof of this new
algorithm is almost identical to the proof of LIMSUB algorithm so we refer the
reader to [8]. LMSUB algorithm, hovever, does not care about irreducibility and
can be, therefore, used to compute bounds of reducible matrices.

We will illustrate this algorithm on the following example. Assume that the
chain has 5 states and the state-space is partitioned into two macro-states: (1, 2)
and (3,4,5). Clearly, relations (1) allow that we compute the lumped matrix
column by column. And we must perform some additional computations at the
boundaries of the blocks to insure that the matrix is lumpable. In equations
(1) we replace inequalities by equalities during the first step. The relations are
unrolled and the equalities are arranged in increasing order for 7 and in decreasing
order for j. During the second step, we must modify the first column of the block
to insure that each block has a constant row sum. The matrices below show
the initial matrix (on the left), then the matrix after the computation of three
columns using step 1, the modification of these elements due to the second step,
and finally the lumped matrix (on the right). The values modified during the
second step are boxed.

0.20.20.10.30.2 0.1 0.3 0.2 0.3 0.2
0.10.20.10.50.1 ‘0.1 0.4 0.2 01 0.4 02 0.3 0.7
0.0 0.30.50.10.1 01 0.4 02 03] 0.4 0.2 [0'1 0'9}
0.10.20.40.30.0 0.1 0.4 0.2 03] 04 02 o
0.0 0.1 0.0 0.9 0.0 0.0 0.7 0.2 00 0.7 0.2




In Fourneau et al.[8], only the comparison of steady-state distributions was
considered. However, theorem 1 states that the sample-paths are ordered. Thus
the comparison of distributions is also true for transient distributions and re-
wards. And it is even not necessary that the chains are irreducible. It is possible
to use this theorem to compare probability of reaching an absorbing state. This
is particularly useful when we want to bound the reliability R(t) because we only
consider the restriction of the initial matrix to the UP states and one absorbing
DOWN state.

We know that “st”-bounds are associated with non-decreasing rewards. Then,
if X(t) <5 Y(¢) at time ¢ and r(4) is a non-decreasing reward function, it follows

that
Z (i) Prob(X ) < Z i)Prob(Y (t) = 1).
K3
Now suppose that we use any algorlthm which builds a lumpable upper
bound. Let C}, be an arbitrary macro-state of the partition we have used to
build the bound. Let us now design a new reward function s(p) as the maximum
of r(i) for states i in C,. Clearly, we have two important properties:

Property 1 s(p) is non-decreasing because the states are initially ordered ac-
cording to the macro-state and r(i) is non-decreasing.

Property 2 At each time step t, the probability of being in macro state C,
multiplied by the reward s(p) is greater than the sum of the individual rewards
multiplied by the probabilities of all the states in macro state Cp:

s(p)Prob(Y (t) € Cp) > Z r(i) Prob(Y (t) = 1).

i€C,

As the stochastic matrix associated with Y is lumpable, the left hand-side
of the former inequality can be computed using the lumped chain Z. Combining
both inequalities we get, for all ¢,

Z (i)Prob(X ) < Z )Prob(Z(t) = p).

i

Putting everything together we obtain the following more general result con-
cerning our algorithms.

Theorem 2. Let X be a finite aperiodic DTMC and let r() be non-decreasing
rewards defined on the states of X. Consider an arbitrary partition of the state
space such that states which belong to the same macro-state are contiguous.

Let Y be the finite DTMC obtained by LMSUB. Y is lumpable and let Z be
the lumped version of Y. Assume that Xo <g Y. We define the rewards s() at
the macro-state level as the maximal reward for the individual states. Then:

— For any instant t, the expected reward at time t Ex(r)(t) is upper bounded
by the expected reward Ez(s)(t).



— The steady-state reward Ex (r) is upper bounded by Ez(s).

And both computations Ez(r)(t) and Ez(r) require working on matrixz Z which
s much smaller.

Let us now turn back to the reliability and point availability problem. Clearly,
we have two values for the reward: 0 and 1. So we suggest the following for the
partition and the corollary it clearly implies:

Rule 1 Do not group in the same macro-state UP and DOWN states.

Corollary 1 Using this rule, it is not even necessary to compute the mazimum
and we bound directly the point availability, the reliability and steady-state avail-
ability of X by the same values computed on lumped matriz Z.

3.1 Avoiding the generation of the whole state space

The fundamental requirement is the existence of the transition matrix on the
Markov chain on disk. But for some problem of reliability of multicomponent
systems, this is even not possible to generate and store the state space and the
transition matrix. For instance, the system studied by Muntz [11] and Carrasco
[1] has more than 9.0 10 states and 102 transitions. Thus the matrix stored in
sparse format represents more than one terabyte. Clearly, alternative description
based on tensor product [12] or MTMDD [2] may be useful for the transition
matrix. But in our problem even the state space is too large.

So, instead of generating the initial matrix using the visit of reachable states
from an initial one with a BFS (Breadth First Search) algorithm, we design a
new algorithm (called LL for Lumpable, and Larger) to build a matrix which is
larger in the stochastic sense and which is lumpable. Of course, we only build
and store the lumped matrix. We obtain a transition probability matrix as we
also perform the uniformization process during the generation. It is worthy to
remark that this matrix is not monotone in general. This matrix will be the
input of LMSUB algorithm in the next step. So we perform two aggregations of
the chain before the analysis.

A careful inspection of this state space shows that most of the states are
DOWN states. So we use the following rules to design the first step macro-states:

Rule 2 Do not aggregate the UP states during the first step.

Rule 3 During the first step aggregate the DOWN states which have the same
total number of faults.

Now we have to find the transition probabilities within this new chain. Here,
we assume that the description of the model is based on events: an event has a
rate and when we apply an event to a state, we obtain the resulting state. The
rate does not depend on the states. These assumptions are used to explain how
we group transitions. They are not necessary and the same work can be done



with other formalisms as well. For the sake of concision, it is not possible to give
a proved version of the algorithm here. Algorithm LL is based on the following
ideas to obtain a lumpable larger bound:

— Do not change the transition probabilities between simple states.

— The transition from a simple state  to an aggregated state C), is the sum
of the transition probabilities from z to y, for all y in C,,.

— For transitions leaving an aggregated state C), to an aggregated state C; (if
C, is a single state, just modify step 4).

1. label all transitions with the events,

2. group the transitions and the events according to the number of failures
(for instance, a “41” transition models a new fault),

3. if an event is associated to two (or more) numbers of failures, then modify
the transitions as follows: all the transitions labeled with this event must
now join the largest state reached by this event from a state in macro-
state C).

For instance, if event u is associated to one or two new faults, then
modify the transitions such that now event u is always two new faults.

4. Then do the summation for all the states in C,.

Finally we perform the uniformization. Clearly, this algorithm is problem depen-
dent. However, from this specification, we can clearly state that the matrix is
larger in the stochastic sense (we move transitions to upper states) and lumpable.

Finally, the total comparison process does not depend of the algorithm used
to obtain a lumpable stochastically larger matrix. And clearly the bound ob-
tained by LMSUB or LIMSUB of the matrix we obtain is also a bound of the
original matrix we are not able to store.

4 Improving the algorithms

Even if LIMSUB algorithm described in [8] and our new algorithm are closely
related, there are several points concerning the implementation which differ con-
siderably. In this section we present the main modifications that speed up the
algorithm, especially in case of a transition matrix with relatively few non-zero
elements per state, compared to the size of the state space. It also allows the
computation of a bound of a reducible transition matrix which is necessary in
our approach to bound the reliability of repairable systems.

4.1 LMSUB, LIMSUB and the irreducibility issue

In [8] only the irreducible transition matrices with some additional properties
(see [8], Theorem 3) have been considered. To ensure that the irreducibility
property is maintained by LIMSUB algorithm the authors in [8] avoid deleting
transitions and, if necessary, add small sub-diagonal transitions.

When computing the bounds for transient distributions, we might want to
compute the bounds even for the reducible matrices. In order to obtain the



reliability bounds using our approach, for instance, we need to compute an st-
monotone upper bound of a matrix having one absorbing state (corresponding
to the DOWN states of the model). In our implementation of this algorithm we
leave the choice to the user if the bound to be computed needs to be irreducible
or not.

4.2 Avoiding Computations

The algorithm computes the bounding matrix column per column beginning
with the last column. It is clear that it is necessary to store only one column of
the matrix P at a time. Only after the first step (Algorithm 1) we know how to
modify the first column of the block to obtain a constant row sum. Furthermore
due to st-monotonicity, we know that the maximal row sum is obtained with the
last row of the block.

for bloc=M to 1 do
stepl: for column=1tlast (block) to first(block) do
computeCol (column);
end

step2: endBlock();
end

Algorithm 1: LIMSUB algorithm [8]

We keep the first step as described in [8]. For the second step, however,
there is no need to recompute the first column of a block as all the informa-
tion needed to compute the next column is only the vector of partial sums
psg) = (ZZ:j gik)" of the lumpable bound @ for the current column j. As
the lumpability imposes that this sum is constant for all the rows of a block
and, due to the st-monotonicity constraints, we know that the maximal value is
obtained for the last row of a block, we need only to store one single value per
block. This value is already known at the end of step 1 of the algorithm, so the

second step can be completely avoided.

4.3 Sparse Matrix Implementation

The repairable system models have often a huge state space but relatively few
transitions per state, which makes interesting to use the sparse representation
of transition matrices. Our implementation of LMSUB algorithm exploits this

representation and uses the adapted data structures to reduce further the com-

putations. For instance, for the vector psg) of partial sums for the current col-

umn j of the lumpable bound @, we store only the index and the value for

the rows this sum strictly increases (the elements of psg) are increasing be-

cause of the st-monotonicity constraints), i.e we store (i,psg)) if and only if

ZZ:]‘ Qik — Zzzj ¢i—1,1 > 0 (with ZZ:]‘ q—1,x = 0). Notice that it is necessary
to use only one such structure (a list for example) during the whole computation



process as the elements of ps(j) are computed in increasing order, so the old ele-
ments, corresponding to the column 7 — 1 with indices smaller than the current
position, are no longer needed. This allows us to compute only the elements of
psg) whose value is different from psgﬂ).

Furthermore, we know that those changes are due to the non-zero elements
in the column j of the original matrix P (st-comparison between P and Q).
Between the two non-zero elements of P at the positions denoted by iq et is, it
is only necessary to update the list containing the information on psg) vector,
i.e. to erase some elements if they are smaller or equal to the last computed
element (at position 41).

We illustrate this on the example below. On the left is the initial matrix
and on the right the bound obtained by LMSUB algorithm. In the table in the
middle the first column represents the current column, the second the number
of computations performed for that column and the last one the sparse-vector
psg) throughout the computation process. One can notice that the number of
computations performed is sometimes even smaller (column 2) than the number
of non-zero elements in the corresponding column of the initial matrix. This is
the consequence of the fact that, once the partial sum of value 1 is encountered,
the computation of the current column is finished. Note that the “lump” steps

do not require computation following the previous remarks.

col. |comp. sparse vector psg)
7 2 {(3,0.2)}
(0.3 06/0 0 01/0 0 ] 6 4 {(2,0.1),(3,0.2), (5,0.4)}
04 0050 0101 0 | Tump:] 0 {(1,0.1),(3,0.4)}
0.1 0[0304 0[0 0.2 5 3 {(1,0.1), (3,0.4), (7,0.5)} 0.4 0.50.1
0 07/0 0030 0 4 2 {(1,0.1), (3,0.6), (6, 1)} lo.l 0.5 0.4
0.1 005 0 0104 0 3 3 {(1,0.1),(2,0.6),(3,0.9),(6,1)} L 0 0.60.4
0 0[0 080020 | Tump:| 0 {(1,0.6), (3,0.9), (6, 1)}
Lo 0.5/ 0 0 0.1/0.30.1 | 2 2 {(1,0.7),(3,0.9), (4, 1)}
1|0 {1, 1)}
lump:| 0 {(1,1)}

5 Numerical Results

In this section we give some numerical results for two examples of repairable
systems [1, 11]. The first example is rather small and it is presented here in order
to illustrate the quality of our bounds as it is possible to solve the transient and
steady-state distributions of the original system. We use LMSUB and LIMSUB
but LL us useless. The second example has more than 9 x 10'° states with the
number of transitions of order of 10'2. So we are not even able to generate the
whole transition rate matrix. Yet it is still possible to provide the bounds both
for transient and steady-state rewards using our approach.

In the first example we have a system composed of: a front-end (FE), a
database (DB), and two processing subsystems having each a switch (S), a mem-
ory (M) and two processors (P). The system is operational if it is possible to

|
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Fig. 2. First example.

access the database i.e. if front-end, database and at least one processing subsys-
tem are operational. A processing subsystem is operational if the corresponding
switch, memory and at least one processor are operational. The failures and
reparations of components are modeled by exponential distributions. The fail-
ure rates are 1/120h~! for processors and 1/2400h ! for other components and
repair rates are 1h~! for all the components. A processor failure contaminates
the database with probability 0.01. Once the system is down the components do
not fail. The components are repaired by a single repairman with the priority
given to front-end and database, followed by switches and memories, and then
the processors. Within the same priority group the components are chosen at
random. We consider the preemptive policy.

The original model has 142 states from which 32 are operational. The max-
imal number of failed components is 7. Notice that for our approach the order
of states is important as all the UP states must precede the DOWN states. Fur-
thermore, we take into account the fact that the LMSUB algorithm yields better
bounds for the initial matrix which is almost st-monotone. The choice of par-
tition is also very important as the lumpability step of the algorithm performs
much better if the states within the same block have similar properties.

Within the same class of states (UP or DOWN) we ordered the states according
to the number of failed components. We chose the following partition : all the
states of the same class with the same number of failed components form a block,
except the states with only one failure which are left as single-state blocks. This
gives 17 blocks, 9 of them composed of UP states.

Solving the original model we obtained steady-state availability A = 0.998835.
The lower bound obtained by our method is 0.998667. In figure 3 we present the
transient bounds for point availability and reliability for this example. We can
notice that both results are really close to the exact values.

The second example is presented in figure 1. The system is operational if at
least one of processor PA or PB is operational, at least one controller of each
type and at least three out of four disks of each of the six clusters are operational.
Only one processor of each type is active and only the active processors can fail.
A failure of active processor PA is propagated to the active processor PB with
probability 0.1. The failures and reparations of components are exponentially
distributed. The failure rates are given in table 1. There are two failure modes
(soft and hard) which occur with equal probability. When the system is opera-
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Fig. 3. The exact point availability (left) and reliability (right), and their lower bounds
for the first example.

tional the repair rates are 0.12~! in the soft mode and 0.05h~! in the hard mode.
When the system is down, the rates are 10 times larger as the consequence of
the additional precautions to be taken when the system is operational. There is
only one repairman who chooses the component to be repaired at random from
the set of failed components.

Component |[PA, PBandC1| C2 | DI | D2 | D3 | D4 | D5 | D6

Failure Rate] ~ 1/2000  |1/4000]1/6000]1/8000|1/10000]1/12000|1/14000[1/16000

Table 1. Failure rates (h™") for the second example.

The model has only 36 components of 10 different types yet the state-space
is of order of 9.0 10'°. We used the technique described in section 3.1 to reduce
the state space. All the UP states are generated and the DOWN states are ag-
gregated according to the number of failed components. This gives a new model
with 1312235 states (1312200 UP and 35 DOWN macro-states) and 25754089
transitions.

First let us consider the ordering of the states and the edge between UP states
and DOWN states. We have chosen the UP state with the maximal number (15)
of simultaneous failures for the system to still be operational, in which all the
failures are hard failures and the only operational processor is PB, to be the last
UP (last,,) state. Let Dy, denote the DOWN macro-state with & failures. Then
for all Dy, k > 3 there is a transition (Dy, Dy_1) and the only transition from
DOWN macro states to UP states is the transition (Da,last,,). Also, there are
transitions (Dy, Dyy1),Vk < 36 and (Dy, Dg1s),Vk < 35, so the new transition
matrix is irreducible. It is also aperiodic due to the uniformization constant
A > max;{—Q;,;}, so we can use the optimized version of LIMSUB algorithm.

In the second step the UP states are reordered increasingly in number of failed
components followed by number of hard failures. The UP states are followed
by the DOWN states ordered increasingly in number of failed components. The
partition contains 172 subsets: all the UP states, except last,, state, with the



same number of failed components and the same number of hard failures are
aggregated forming 136 blocks followed by last,, state then by 35 one-state
blocks corresponding to the DOWN states, already aggregated in the first step.

The lower bound for steady-state availability of the second system obtained
by this method is 0.999132158 (upper bound for unavailability is 0.000867842).
The lower bounds for point availability are given in figure 4 (left).

In table 2 we give computational times for all three steps. For the third step
we also report the time needed by LIMSUB [8] algorithm (on the same machine).
We can notice that on this example our algorithm is approximately twice faster.
This is a consequence of the improvement made during the normalization part
of the algorithm as well as the better utilization of the matrix sparse structure.

When we bound the reliability, we are only interested in UP states. We are
computing the lower bound for reliability with the st-monotone upper bound of
the chain. We obtain this bound by aggregating all the DOWN states into one
absorbing state. We ordered UP states and regrouped them into blocks according
to the number of failed components followed by the number of hard failures. This
gives us a partition into 137 blocks: 136 corresponding to UP states and 1 to the
absorbing DOWN state. The lower bounds for reliability for the second system
are reported in figure 4 (right).

Point availability Reliability
1 T T 1 T T
lower bound lower bound
0.9999 - 1 0.995
> 0.9998 0.90 |
= 0.9997 - 5 0.985 |
= 0.999 | =
g S 098t
© 0.9995 - 3
£ 09004 = 0975y
Q
0.9993 | 1 0.97 ¢
0.9992 1 0.965
0.9991 - - - - 0.96 . . : .
0 200 400 600 800 1000 0 200 400 600 800 1000
time (hours) time (hours)

Fig. 4. Lower bounds for point availability and reliability for the second example.

generation|reordering| LMSUB (ird)|LIMSUB |[8]
1820 | 9552 | 5654 | 107.3

Table 2. CPU times in seconds on a PC (CPU 3.20GHz, 1 GB of RAM) to compute
the point availability for the second example.

6 Conclusion

In this paper we have extended the theory of algorithmic bounds to reliability
and availability problems. The theory now include transient and steady-state



analysis and the Markov chains may be irreducible or have an absorbing state.
We have also improved the algorithms to be more efficient as the chains are very
large. We have also suggested that high level formalisms may be used to build
lumpable matrices which are larger in the stochastic sense. Of course, only the
lumped matrix is generated and stored. A version of this algorithm based on
Stochastic Automata Network is currently under development.
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