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Abstract This paper describes a new way of thinking
about demand-side resources to provide ancillary ser-
vices to control the grid. It is shown that loads can
be classified based on the frequency bandwidth of an-
cillary service that they can offer. If demand response
from loads respects these frequency limitations, it is pos-
sible to obtain highly reliable ancillary service to the
grid, while maintaining strict bounds on the quality of
service (QoS) delivered by each load. It is argued that
automated demand response is required for reliable con-
trol. Moreover, some intelligence is needed at demand
response loads so that the aggregate will be reliable and
controllable.

1 Introduction

A key engineering challenge in integrating large amounts
of renewable energy into the electric grid is uncertainty
and volatility of renewable sources. Fig. 1 shows evi-
dence of the large intermittency of renewable energy in
the U.S. Pacific Northwest. The grid operators in this
region are currently searching for additional controllable
resources to combat this volatility.

Management of the grid today can be cast as a mas-
sive disturbance rejection problem. Generation and de-
mand of electric power must be balanced at all scales to
ensure stable grid operation. This is achieved by sen-
sor measurements and manipulation of controllable re-
sources such as gas-turbine generators to regulate volt-
age, frequency and phase to constant values. Responsive
generators supply not just power, but ancillary services
— resources to regulate the grid.

As greater renewable penetration brings more volatil-
ity to the grid, this paradigm of controllable generation
matching demand is no longer tenable.

Many BAs employ demand response (DR) programs
that use controllable loads to reduce peak demand and
manage emergency situations [22]. Florida Power and
Light (FPL), for example, has 780,000 residential cus-
tomers enrolled in their OnCall Savings Program which
allows FPL to remotely turn off select equipment - such

as pool pumps - when needed [1]. Today, FPL uses this
service only 3–4 times per year.

Increasingly, loads are providing non-emergency an-
cillary service as well. Alcoa provides 70 MW of
frequency regulation service to the mid-continent ISO
(MISO) by providing control over their aluminum smelt-
ing operation in Indiana [26]. Growth of these resources
in these wholesale markets has helped lower costs per
megawatt-hour from 2009 to 2011 [20].

1.1 Virtual Storage from Flexible Loads

It is often said that renewable energy is expensive be-
cause of the high cost of grid-level energy storage. In the
absence of large, expensive batteries, we may have to in-
crease our inventory of responsive fossil-fuel generators,
negating the environmental benefits of renewable energy.

We counter that storage is everywhere: We do not need
to rely entirely on expensive batteries or fast-responding
fossil fuel generators to track zero-mean regulation sig-
nals or balancing reserves.

There is enormous flexibility in the power consump-
tion of the majority of electric loads. This flexibility can
be exploited to create “virtual batteries”. The best exam-
ple of this is the heating, ventilation, and air condition-
ing (HVAC) system of a building: There is no percep-
tible change to the indoor climate if the airflow rate is
increased by 10% for 20 minutes, and decreased by 10%
for the next 20 minutes. Power consumption deviations
follow the airflow deviations closely, but indoor temper-
ature will be essentially constant.

In this paper capacity is always used in terms of power
rather than energy. We will show that the capacity of an-
cillary service from a class of loads is a function of time-
scale, or equivalently, frequency of ancillary service.

The potential capacity of buildings in the U.S. is enor-
mous since HVAC systems account for greater than 30%
of the electricity consumed in the United States, and
buildings overall account for 74% of overall consump-
tion [28]. Moreover, their collective thermal inertia is
large, so the potential for virtual storage is enormous.
For example, the capacity from fans in commercial build-



0

0.8

-0.8

1

-1

0

0.8

-0.8

1

-1
Sun Mon Tue

October 20-25 October 27 - November 1

Wed Thur FriSun Mon Tue Wed Thur Fri W
in

d 
G

en
er

at
io

n 
G

W

0

2

4

6

0

2

4

6

R
eg

ul
at

io
n 

 G
W

W
in

d 
G

en
er

at
io

n 
G

W

R
eg

ul
at

io
n 

 G
W

Figure 1: Volatility due to renewables is increasing in the Pacific Northwest: Balancing reserves from two typical weeks in the Fall of 2013.

ing HVAC systems in the U.S. is approximately 6 GW
in the time of scale of a few seconds to a few min-
utes [12,13,17]. This flexibility is much greater at lower
frequencies: Capacity is estimated to be 42 GW on time-
scales ranging from ten minutes to an hour [16]. A uni-
fied approach to estimating capacity as a function of fre-
quency is presented in Section 2.2 of the present paper.

The thermal inertia of the building is analogous to a
battery that is charged and discharged to supply ancillary
service to the grid. This analogy is illustrated in Fig. 2,
which shows how the power consumption deviation from
a baseline value can be manipulated exactly as a battery
can be charged and discharged. Both batteries and loads
can provide ancillary service in the form of power trajec-
tories that are zero energy on average, which is a feature
of regulation signals such as those shown in Fig. 1.
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Figure 2: Virtual Storage from Flexible Loads.

To manipulate the power consumption around the
baseline value, while maintaining quality of service
(QoS) to the consumer, the loads must be equipped with
1) local intelligence, and 2) information regarding the
state of the grid.

Local intelligence is already present in modern com-
mercial buildings — only a software add-on is required
to execute additional intelligence for virtual storage.
Consequently, virtual storage can be obtained at very low
cost.

The acronym VSFL that is used throughout the paper
is short-hand for Virtual Storage from Flexible Loads.
This represents a grid level control architecture in which
loads act in parallel with traditional controllable genera-
tion to provide ancillary service according to their capac-
ity and bandwidth constraints. Control design respects
the needs of both the grid and the consumer. In particu-
lar the function served by a load cannot be compromised.

VSFL is not direct load control — there is no central
agent who is selectively interfering with loads.

Fig. 3 illustrates the foundation of the decentralized
control architecture proposed in this work. It is not very
different from today’s architecture in which controllable
generators act as actuators in a grid-level control system.
An example of the signal that generators routinely track
today is the Area Control Error (ACE) that is broadcast
by the BA. In the future, generators will be replaced by
“intelligent loads” that will provide cheaper and more
reliable ancillary service. Intelligence at each load is re-
quired so that it can provide reliable ancillary service to
the grid, while maintaining QoS to consumers.
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Figure 3: Power grid as a feedback control system.

1.2 Classification of resources

A focus of this paper is the actuation block in Fig. 3. The
collection of resources in the actuator block will continue
to grow, and making the best use of them is the control
problem we must solve. These resources are differenti-
ated by several factors, including,

(i) Bandwidth of regulation. Coal generators can ramp
up and down slowly to address low frequency
volatilities, while other resources can take care of
the high frequency component of the control signal.

(ii) Dynamics. BAs have rules on maximal delay and
other grid-level quality of service metrics.

(iii) Costs. These include installation, start-up, running
cost, and pollution.
The wide-band balancing reserves shown in Fig. 1

could be obtained from many resources operating in par-
allel, even if each resource can provide only a limited
portion of the total bandwidth. By restricting the band-
width of service it is possible to deliver reliable ancillary
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service to the grid at reduced cost. In the case of ancil-
lary service obtained from flexible loads, bandwidth con-
straints also help to enforce strict bounds on the quality
of service (QoS) offered by the load to the consumer.

Case studies are provided in Section 3 to show how
this can be accomplished with little additional cost,
through the use of appropriate control architectures and
algorithms.

1.3 Evaluating VSFL

What are the indicators of success for ancillary service
based on flexible loads? We claim that the following is-
sues must be addressed if a demand-based ancillary ser-
vice is to be called “successful”:

(i) Is the service of high quality? Does the deviation
in power consumption accurately track the desired
deviation target?

(ii) Is the service reliable? Does the grid operator have
assurance that ancillary service will be available
each day? Ancillary service capacity may vary with
time, but capacity must be predictable.

(iii) Is it cost effective? This includes installation cost,
communication cost, and maintenance.

(iv) Is the incentive to the consumer reliable? If a con-
sumer receives a $50 payment for one month, and
only $1 the next, will there be an explanation that is
clear to the consumer?

(v) Does the system meet QoS constraints? A pool must
be clean, building climate is subject to strict bounds,
farm irrigation is subject to strict constraints, and
data centers require sufficient power to perform their
tasks.

The first item is a long-standing concern of grid opera-
tors. Ancillary service from some generators can in fact
be harmful to the grid because of significant phase lag
in generation response [11, 14]. In many markets ancil-
lary service providers must pass tests to prove that they
can follow a regulation signal within a specified response
time [24, 25].

There may also be high cost to generators that ramp
up and down to provide ancillary service, as well as op-
portunity cost because the generator cannot run at capac-
ity [3].

These five criteria can be met using the VSFL frame-
work described in this article. Automated demand re-
sponse can be designed to ensure that strict bounds on
QoS are guaranteed. Automation and attention to QoS
constraints also addresses common concerns in applying
demand response: demand rebound, consumer fatigue,
and free-rider behavior [7]. These three potential risks
are eliminated through design.

Literature review The use of flexible loads to pro-
vide ancillary service via demand response that is au-
tomated is considered in many recent papers. Loads
that have been considered include commercial build-
ing HVAC fans in the time-scale of seconds to nearly
one hour [10, 13, 18], thermostatic devices that can pro-
vide ancillary service in the time-scale of a few min-
utes [4, 21, 22] (and refs. therein), electric vehicle charg-
ing that can provide ancillary service in the time scale of
a few hours [9, 19, 21, 27], and pool pumps in the states
of Florida or California can provide ancillary service on
longer time scales [8, 23] (these loads are also used for
peak-shaving [1, 5]).

Two papers presented at the 2013 HICSS meeting con-
sidered frequency domain aspects of demand response.
In [6] the authors point to previous studies on the power
spectral density of wind, arguing that much of the volatil-
ity is concentrated in timescales of an hour or more. The
article [7] focuses on the inherent periodicity of loads,
and how this represents one constraint in obtaining de-
mand response at low frequencies. Both of these papers
focus on real time prices rather than automated demand
response.

The remainder of this paper is organized as follows.
Section 2 provides more details on the needs of the
grid in terms of infrastructure and control. Section 3
concerns harnessing the flexibility of aggregates of de-
ferrable loads, and Section 4 contains conclusions and
topics for future research.

2 Temporal Classification

The frequency-based classification of resources pro-
posed here is a refinement of what is done today: An-
cillary services from online generation are organized to-
day in terms of the time-scale of regulation provided. In
one classification, there is Primary Control, Secondary
Control, and Tertiary Control. In another, they are cat-
egorized as Regulation (seconds to minutes), Load Fol-
lowing (minutes to hours), and Unit Commitment (hours
to days).

The existing taxonomy of ancillary services is inade-
quate in a world with significant volatile generation. The
downward ramps in wind generation seen in Fig. 1 ap-
pear similar to outages of large generators. Hence the
separation between contingency and normal operation
will blur with highly variable generation: Load following
will become renewable following, and automatic gener-
ation control (AGC) will no longer be relevant to gener-
ators alone.

Our proposal is a more fine-grain classification of re-
sources based on the bandwidth of service that they can
offer, and also the reliability of the resource.
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Batteries can provide a large bandwidth of ancillary
service, with a potentially higher cost in terms of bat-
tery life at higher frequency ranges [15]. Heating and
ventilation systems in commercial buildings can provide
service in a high frequency band, corresponding to peri-
ods ranging from a few seconds to one hour [13,16]. The
capacity from commercial buildings is enormous, so that
today more than half of the regulation needs in the U.S.
could be provided from this source alone.

A large collection of on/off loads such as chillers, res-
idential air-conditioners, or pool pumps, can provide an-
cillary service at lower frequencies, on the order of sev-
eral hours to one day. At the lowest frequencies of a
day or more, an important resource will be flexible man-
ufacturing, in which production will ramp up and down
depending on the availability of energy from the sun or
wind.

We propose that the BA decompose a regulation sig-
nal into various components based on frequency, and re-
sources can serve these components. A resource may be
a generator, a battery, or a collection of similar flexible
loads. Each resource may be classified by a pair of power
spectral densities (S,T ) where S is the power spectral
density of ancillary service that can be provided, and T
is the power spectral density of tracking error. Each re-
source may be capable of providing many different val-
ues for S and T . Spectral constraints on ancillary service
are illustrated in the following examples.

2.1 On/off loads

Consider a large number of on/off loads, such as pool
pumps. In the state of Florida there are approximately
one million pools, each using a pool pump that con-
sumes approximately one kW of power when in oper-
ation. These are on/off loads that typically perform just
one cleaning cycle per day, running from 6 to 12 hours
[5].

In the case of pools, QoS constraints include bounds
on the cleaning period each day and each week, and also
the number of times the pump is turned on and off. We
focus on the second constraint because of the interesting
translation to constraints on the power spectral density of
ancillary service.

In a model to approximate potential bandwidth of an-
cillary service we let N denote the number of pools, and
g ≈ 1kW denote the power consumption of one pool
pump.

Consider first this simple case: Suppose that we would
like to track a square wave over a period of 24 hours. We
impose a hard QoS constraint: each pool can switch on
or off exactly once each day. Let M denote the number of
times the square wave changes sign, which is twice the
number of cycles. Hence the frequency in cycles/hour is

F = M/48. To obtain bounds on capacity as a function
of frequency requires additional modeling of constraints
on the loads.

To track a single square wave with magnitude A (kW),
assume initially that half are on and half are off. Divide
the loads into N/M classes, each of which switches ex-
actly once. Assume that the loads in a single class have
the same on/off state. Hence, when the loads in a class
switch, they all do so in the same direction (all off, or
all on). The change in power when one class switches
is ±gN/M, which corresponds to a square wave with
one half this magnitude (taking values ± 1

2 gN/M). This
gives a bound on capacity that decreases linearly with
frequency:

A≤ 1
2

gN
M

=
gN
96F

(kW)

The extension to more general signals can be obtained
via a spectral decomposition, along with another decom-
position of the total collection of N pools into ‘frequency
classes’. Consider a decomposition of the N loads into
m “f-classes”. The size of the kth class is qkN, where
∑qk ≤ 1.

Let {vk(t) : 1≤ k≤m} denote square waves with unit
amplitude, and respective frequencies {Fk}. The previ-
ous bound implies that the kth class can track Akvk pro-
vided |Ak| ≤ qkgN/96Fk. This holds for each k and some
sequence {qk} if and only if

∑
k

Fk|Ak| ≤ gN/96.

Under this condition, the collection of N loads can track
v(t) = ∑Akvk(t).

Any square-integrable function on [0,24] can be rep-
resented as an infinite sum, v(t) = ∑

∞
k=0 Akv∗k(t), 0≤ t ≤

24, where the convergence is in L2. The functions in
this representation form an orthonormal basis: v∗0(t)≡ 1,
and v∗k is the square wave with exactly k cycles on the
time-interval [0,24] when k ≥ 1. In this case Fk = k/24
cycles/hour, which gives the bound,

∞

∑
k=1

k|Ak| ≤ gN/4

These calculations show how a single constraint on
QoS (the number of state changes in one day) can be
translated to a frequency dependent bound on capacity.
The frequency constraint will become less restrictive if
the consumers allow a greater number of state changes
each day.

The `1-norm bound on the Fourier coefficients {Ak}
will impose constraints on the possible power spectral
densities S that can be delivered by this class of loads.
We believe that the tracking error power spectral density
T will be nearly zero with appropriate design [23].
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2.2 Continuously variable thermal loads

Approximately 30% of the U.S. commercial building
floor space is equipped with Variable Air Volume (VAV)
systems in which the HVAC loads can be varied con-
tinuously [2]. Capacity-bandwidth constraints for these
buildings can be derived based on standard linear dy-
namic models. The QoS constraints in this case include
temperature, humidity, and weekly operating cost.

Consider a single building with an air-conditioning
unit whose power consumption can be varied continu-
ously. The dynamics of indoor temperature T in the
building can be modeled by a resistor-capacitor (RC) net-
work model. Here we use a first-order model:

C d
dt T (t) =− 1

R
(T (t)−TA(t))+Qgs(t)−QA/C(t)

in which C (J/K) is the total thermal capacity of the build-
ing, R (K/W) is the effective thermal resistance of the
building’s envelope to heat exchange between the inte-
rior space and the ambient, TA is the ambient tempera-
ture, Qgs (W) is the total rate of heat generated inside the
building plus solar heat gain, and QA/C (W) is the rate of
cooling provided by the A/C (air conditioner).

The electric power consumption P is approximated by
the cooling power provided, QA/C. This is only an ap-
proximation since there is efficiency loss, and phase lag
between power consumed and cooling power provided.
The approximation P = QA/C is taken for granted in the
calculations that follow.

The baseline behavior of the building is taken to be
static. Using an asterix “*” to denote steady-state quanti-
ties, the steady state cooling Q∗ provided by the A/C and
the steady state indoor temperature T ∗ satisfy the linear
equation,

0 =− 1
R
(T ∗−T ∗A )+Q∗gs−Q∗A/C

The deviation about these steady state values satisfy,

d
dt y(t) =−1

τ
y(t)− 1

C
v(t),

in which y(t) = T (t)− T ∗, v(t) = QA/C(t)−Q∗A/C, and
τ = RC is the time constant of this ODE. The transfer
function from cooling power deviation v to indoor tem-
perature deviation y is

H(s) =
R/τ

s+1/τ

Suppose that v is required to track the sinusoid with
magnitude A and frequency ω , while maintaining a strict
bound on indoor temperature, |y(t)| ≤ ∆T for each t. If
this QoS requirement is only imposed in steady-state,

then it can be re-interpreted as a bound on the transfer
function, |H( jω)| ≤ ∆T/A. Equivalently,

ω
2 ≥ (

A
∆TC

)2− 1
τ2 =

1
C2 (

A2

∆2
T
− 1

R2 )

Expressing A as a fraction of steady-state power con-
sumption, A = δQ∗A/C, with 0 < δ < 1, we arrive at a sin-
gle bound on frequency as a function of QoS and build-
ing parameters:

ω
2 ≥ 1

C2
δ 2(Q∗A/C)

2

∆2
T

− 1
R2 =

δ 2

∆2
T

(Q∗A/C)
2

C2 − 1
τ2 (1)

Upper bounds on ω can be obtained based on character-
istics of the building hardware rather than building dy-
namics. In most cases there will be a cost in terms of
wear and tear that increases with frequency.

Extension to more general signals can be obtained via
a spectral decomposition, exactly as in Section 2.1.

Commercial buildings typically have large values of R
and C when compared with residential homes, and hence
a large time-constant τ . This makes them attractive for
VSFL.

There is however tremendous potential value from res-
idential homes because there are so many of them. To un-
derstand the bandwidth of service that can be obtained,
consider a typical home in which Q∗A/C = 7000 W. We
take δ = 0.1, so that this typical home will be asked to
vary its consumption by±700 W. For a city with one mil-
lion residential homes of this size, the grid will receive
700 MW of capacity.

Most homeowners in the U.S. today will accept tem-
perature deviations of one degree Fahrenheit, which is
approximately ∆T = 0.5 degrees Kelvin.

The range of possible values for R and C is large,
depending on climate and age. Consider the follow-
ing range of values: C ∈ [5× 106, 50× 106] (J/K) and
R ∈ [1/104, 1/500] (K/W). The time constant τ then
varies from 0.14 hours to 27 hours.

Given this range of time constants and other param-
eters, the lower bound (1) takes values in the range
[0.671, 6.4]× 10−4 rad/s. That is, under these condi-
tions it is possible to extract the specified flexibility for
time-scales bounded above by 2.5 hours to 25 hours at
700 MW of capacity for a city with one million homes.

Presently, most residential HVAC systems are on/off
rather than continuously variable. Methods to obtain
ancillary service from these loads are described in Sec-
tion 3.2.
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Figure 4: Climate control loop in a VAV HVAC system.

3 Distributed Intelligence for Reliable An-
cillary Services

We now consider how to harness many different sources
of generation and millions of flexible loads to create a
reliable actuator block for control of the grid.

Just as a generator adjusts its power output today
based on a regulation signal such as shown in Fig. 1,
flexible loads will respond to a signal from the BA. In
response, each load will adjust its consumption up and
down – perhaps by just a small percentage of its average
power consumption.

In the hierarchical architecture proposed, intelligence
resides at both the grid-layer and node-layer, while in
centralized or distributed architectures, intelligence at
one layer is absent. Intelligence at each load is required
so that it can can provide ancillary service to the grid,
while maintaining QoS constraints.

The manifestation of “intelligence” will depend on the
physical properties of the load as well as the QoS con-
straints. We illustrate the synthesis of local control al-
gorithms in two examples contained in the next two sub-
sections.

3.1 Continuously variable loads

The approach of [12] summarized here illustrates how to
design VSFL to achieve the criteria for success summa-
rized in Section 1.3.

Consider a large commercial building equipped with
a VAV HVAC system. The building receives a reference
signal ∆PBA from the BA just as a generator does today.
A bandpass filter generates the local reference signal, de-
noted ∆Pref. Each fan in the building will track a scaled
version of this signal.

A fan controller within the building climate control
system varies the fan speed to maintain the airflow rate
at the setpoint commanded by the climate controller (see
Fig. 4). Measurements of the power consumed by the
motor are available to the climate control system.

By adding a command to the baseline airflow rate set-
point d

dt mref
air computed by the building’s climate con-

troller, the fan speed can be increased or decreased
around the baseline. Fig. 5(a) shows a schematic of
the proposed local intelligence at the building for VSFL.

The command uVSFL is suitably designed by the feed-
back controller C so that the power consumption devia-
tion from the baseline tracks the reference ∆Pref in real
time.

The design of the bandpass filter that defines ∆Pref is
based on the physical characteristics of the building, as
well as the building’s climate control system. A high
pass filter is chosen for three distinct reasons:

(i) The large thermal inertia of the building acts as a
low pass filter to fast deviations in the airflow rate.
Hence a high pass filter ensures that indoor climate
hardly changes.

(ii) The existing climate control system in the building
that regulates temperature is also a low-pass filter
(typically PI). This means that the climate control
system will not try to reject the command uVSFL that
enters the fan control loop as a disturbance.

(iii) The baseline power is defined to be the power that
would have been consumed if the VSFL controller
were absent. Based on a separation of time-scales,
baseline power can be estimated using another high-
pass-filter (HPF in Fig. 5(a)).
The method has been experimentally demonstrated in

Pugh Hall in the UF campus [17]. Fig. 5(b) shows track-
ing results from the real-time feedback control experi-
ment. The regulation signal RegD from PJM (an ISO:
www.pjm.com) was used as the BA reference ∆PBA. The
controller CVSFL was a lag compensator, designed based
on the experimentally identified transfer function from
airflow rate to fan power.

Analysis of the tracking error included in [17] shows
that the system meets the criteria set by PJM for a re-
source to take part in its ancillary service market.

The controller providing VSFL does not cause any no-
ticeable change in the indoor climate of the building. See
Fig. 5(b): there is no statistical difference between the
variations in the temperature during the 40 min period in
which the test took place and the rest of the day.

3.2 Ancillary services from on/off loads

Control of on-off loads loads requires very different ap-
proaches compared to the variable speed HVAC systems
treated in the previous section. We focus on residential
pool pumps to simplify discussion, following the discus-
sion in Section 2.1. The range of application of the tech-
niques described here are far broader.

The control architecture proposed here is designed
to address privacy concerns and communication con-
straints. To provide ancillary service in a specified fre-
quency band, we argue that it is essential to introduce
randomization. This avoids synchronization, much like
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randomized congestion avoidance protocols in commu-
nication networks.

In the commercial building application considered
previously, communication was assumed in one direction
only: From grid to building. Here it is assumed that the
BA has real-time estimates of the power consumed by
the collection of pools, denoted {γt}. The BA will send
a common signal denoted {ζt} to each load that will de-
pend on these measurements and the desired reference
signal {rt}. The BA will use actuator control to shape
the power consumption of the aggregate. This will take
the form,

ζt = Gaet (2)

where et = rt − γt , and Ga is the control algorithm (e.g.,
a PI controller).

The construction of a randomized policy for an indi-
vidual pool pump begins with a Markovian model for
the load. We consider a discrete-time, finite state-space
model. The state for an individual pool is denoted X ,
which evolves on the state space

X= {(m, i) : m ∈ {⊕,	}, i ∈ {1, . . . ,T}};

X(t)= (	, i) indicates that the pool-pump is currently off
and has remained off for exactly i time units, and X(t) =
(⊕, i) represents the alternative that the pool-pump has
been operating continuously for exactly i time units.

The randomized algorithm is based on a family of
transition matrices {Pζ : ζ ∈ R}. The pool system will
change its state according to the controlled Markovian
dynamics,

P{X(t +1) = y | X(t) = x}= Pζt (x,y)

where {ζt} denotes the signal broadcast by a BA. In cur-
rent research it is assumed that the BA measures the ag-
gregate power consumption of the collection of pools,
and uses this data (along with other grid measurements)
to generate the signal ζ .

A model of the aggregate power consumption is valu-
able for design of the randomized policy and also the
control algorithm used at the BA that determines ζ . This
model is obtained as an infinite-N limit, with N equal to
the number of pools.

On letting X i(t) denote the state of the ith pool, the
following limit will hold under mild assumptions:

lim
N→∞

1
N

N

∑
i=1

I{X i(t) = x}= µt(x) , x ∈ X.

With µt treated as a row vector, and Pζt as a matrix, the
sequence of probability measures can be regarded as the
state in a controlled nonlinear state space model,

µt+1 = µtPζt (3)

which is linear in the “state” µt , and necessarily nonlin-
ear in the “control” ζt . The output of this model will be
denoted γt , and taken to be equal to the number of pools
that are operating.

There are several questions to answer:
(i) How to choose the family of transition matrices?

(ii) The system behavior is inherently nonlinear – how
can we be sure that this will provide reliable ancil-
lary service?

(iii) Can QoS constraints be guaranteed to each con-
sumer?

The first two topics are treated in [23]. The transition
matrix Pζ was constructed as the optimal solution to a
certain stochastic optimal control problem. Topic (iii) is
addressed in [8].

A linearization about an equilibrium can provide in-
sight into the behavior of the nonlinear model (3). Sup-
pose that the control-free model has a unique equilib-
rium, denoted π . This is simply an invariant probability
measure for P0, which is assumed to be unique. Because
we are assuming that each pool will change its behavior
only slightly, it is reasonable to assume that µt ≈ π for
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Figure 6: State transition diagram for the pool-pump model.

all t, and we also assume that ζt ≈ 0 to obtain a lineariza-
tion.

The state dynamics can be approximated as follows
when π ≈ µt :

µt+1 = µt [Pζt −P0]+µtP0 ≈ π[Pζt −P0]+µtP0

We assume that Pζ is differentiable at ζ = 0 to justify the
Taylor series approximation µt+1 ≈ µtP0 +BTζt , where
BT = d

dζ
πPζ , evaluated at ζ = 0. This leads to the linear

state space model,

Φt+1 = AΦt +Bζt , yt =CΦt (4)

in which Φt approximates the deviation (µt−π)T ∈R2T ,
A = PT

0 , and the row vector C is defined so that,

yt =
T

∑
i=1

Φt(⊕, i)

Hence yt is an approximation of γt .
To show how well the linearization predicts perfor-

mance of the nonlinear stochastic system, we turn to the
numerical example of [23].

A state-transition diagram for the nominal model is
shown in Fig. 6. The time T is an upper bound on the
number of time units the pool pump can stay on or off.
The pool switches from on to off (or off to on) with prob-
ability depending on the time it has been on (or off).

0

0.5

1

0 2412

ζ 
=
-
4

ζ 
=
-2

ζ = 4

ζ =
2

ζ = 0

 

Figure 7: Probability vectors p⊕
ζ

and p	
ζ

define the randomized policy Pζ .

The controlled transition matrix for a load is defined
by the values,

p⊕
ζ
(i) :=P(switch on |off i hours)

p	
ζ
(i) :=P(switch off |on i hours)

(5)

Fig. 7 contains plots of the vectors {p⊕
ζ
} for values ζ =

0,±4,±6 that are used in one set of experiments in [23].

In this example p⊕0 (i) is nearly deterministic (values near
zero or one), which is similar to the usual operation of the
pool with a twelve-hour cleaning cycle.

Results from two experiments are shown in Fig. 8. A
typical regulation signal from the BPA is used (similar to
those shown in Fig. 1). This is scaled and filtered using
a low-pass filter. The signal ζ was obtained using PI
control based on the actuator feedback control (2).

The first plot uses the controlled matrix with entries
plotted in Fig. 7, and the second uses a similar controlled
transition matrix based on an eight-hour nominal clean-
ing cycle. The tracking performance is remarkable in
each case. In particular, it is surprising that a±400 MW
signal can be tracked, given that the average power con-
sumption of the pools is 500 MW in Scenario 1. There is
no reason to believe that a network of one million pools
cannot supply much more ancillary service to the grid.

4 Conclusions

The transformation of the power grid will require dis-
tributed resources and control. This paper has focused
on approaches to harnessing load based resources, and
has left out several important issues. We discuss three
broad avenues for research in the remainder of this sec-
tion.

4.1 Individual risk

Each class of loads has its own QoS constraints and
costs. In the case of aluminum smelting, “... a reduction
in process efficiency and stability, as well as increased
maintenance costs are risks to supplying regulation ser-
vices.” Alcoa has been providing regulation service to
MISO since 2009, which is an indication that these risks
proved to be manageable [26].

The analysis in Section 3.2 has focused on service to
the grid. What is the experience of an individual pool
owner who agrees to participate in this scheme? An anal-
ysis of quality of service for an individual load can be
performed by an extension of the mean field model. It
should not be surprising that with 100,000 or more loads,
it is likely that at least one load will sometimes receive
very bad service with a randomized policy, unless there
is another local layer of control.

One approach is to add an additional counter at each
pool that keeps track of the number of hours of cleaning
over, say, the past 48 hours. During a time period for
which this falls outside of a priori bounds, the pool will
ignore the grid signal. The zero mean regulation signal
is designed so that this is an uncommon event – at any
given time, with very high probability, at most 10% of
pools are out of range.
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Figure 8: Closed loop simulation of 100,000 pools.

In preliminary numerical experiments we have seen a
very small reduction in capacity, while maintaining the
accurate tracking observed in Figure 8, and also guaran-
teeing strict bounds on QoS for each pool [8].

4.2 Standards for grid-friendly loads

A topic of future research is the formulation of standards
for grid friendly appliances. If there is no impact on QoS
and if the value to the grid is sufficiently large, then we
might mandate that some HVAC systems be built with
the communication hardware required to allow VSFL
for ancillary service. Recall that in the experiments sur-
veyed here, this communication was uni-directional, so
the overhead is not large.

A more modest goal is to limit communication to lo-
cal frequency measurements. With this limited informa-
tion and extremely simple control algorithms, grid in-
ertia could be created synthetically. Because these sys-
tems are tunable, the service to the grid can go far be-
yond system inertia [29]. Many residential loads could
be equipped with this modest intelligence.

4.3 Engineering and economics

Section 1.3 contains a summary of the goals for VSFL:
Deliver inexpensive and accurate tracking to the BA, and
reliable service and incentives to the consumer. For res-
idential consumers, these goals can be obtained using
contracts between consumers and the BA or an aggre-
gator.

The formation of contracts involves many factors: The
risk to both parties on short and long time-scales. Short-
term risk has been the focus of this article. Long term
risk for the BA includes the uncertainty of future needs.
New technology may make the cost of ancillary service
very low, so that the BA does not want to be forced into a
rigid contract. This risk can be reduced through two-part
contracts that provide a payment for engagement by the
consumer, and then regular payments based on service to
the grid.
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