Dynamic control of a multi class G/M/1 + M queue with abandonments

Alexandre Salch, Jean-Philippe Gayon, Pierre Lemaire

G-SCOP Grenoble-INP

24 January 2012

{alexandre.salch, jean-philippe.gayon, pierre-lemaire}@grenoble-inp.fr

- 2 Optimal policy
- 3 Equivalence of holding and impatience costs
- 4 Conclusion

OCOQS 2012	Introduction	Optimal policy	Conclusion

Introduction

2 Optimal policy

3 Equivalence of holding and impatience costs

Context

- Jobs arrive randomly
- They wait until the end of service
- If they are not processed, they abandon with a cost (no holding costs)

Examples

- Call centers
- Emergency department

OCOQS 2012	Introduction	Optimal policy	Equivalence of costs	Conclusion
Literatu	re review			
Down et	al. [DKL11]			
 Sing 	le server			
• n =	2 classes of job	S		
• Pois <i>D_j</i> ~	 Poisson arrivals, processing times X_j ~ exp(μ_j), due dates D_j ~ exp(γ_j) 			
• If μ_1	$\mu=\mu_2,\ \gamma_1\leq\gamma_2$	and $w_1\gamma_1 \geq w_2\gamma_2$	$_{2}$ \Rightarrow Give priority to cla	ass 1
Atar et a	ıl. [AGS10]			
• n cla	isses of jobs			
• Poise D _j ~	son arrivals, pro- $\frac{1}{2} exp(\gamma_j)$	ocessing times X_j \sim	$\sim e x p(\mu_j)$, due dates	
Man	y servers fluid s	scaling		
\Rightarrow Give	priority to the	class of highest w	$_{ m j}\mu_{ m j}/\gamma_{ m j}$	

Parameters

- *n* jobs (*n* arrivals)
- Processing times X_j ~ exp(μ_j)
- Due dates $D_j \sim exp(\gamma_j)$
- Arrival times R_j : arbitrary
- Abandonment costs w_j

Settings

- Single server
- Dynamic policy with preemption

Objective function

Minimizing the expected abandonment costs : $C = E[\sum_{i=1}^{n} (w_i U_i)]$ with

$$U_j = \left\{ egin{array}{cc} 1 & ext{if job } j ext{ is late} \ 0 & ext{if job } j ext{ is on time} \end{array}
ight.$$

OCOQS 2012	Optimal policy	Conclusion

- Optimal policy
- 3 Equivalence of holding and impatience costs

Optimal strict priority rule

Theorem

- If jobs can be ordered such that
 - $\mu_1 \geq \mu_2 \cdots \geq \mu_n$,
 - $\gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n$,
 - $w_1\gamma_1 \geq w_2\gamma_2 \geq \cdots \geq w_n\gamma_n$,

then it is optimal to give priority to jobs of smallest index

- Generalizes [DKL11]
- Implies the index-rule of [AGS10]

Sketch of the proof (outline)

Progressive generalization

- Static priority rule
 - from 2 to *n* jobs
- Dynamic priority rule without arrivals and with(out) preemption
- Dynamic priority rule with arrivals and with preemption

Sketch of the proof (static, n = 2 jobs)

Objective: a **pairwise interchange argument** to find a strict priority rule with n = 2 jobs

Property 1

Costs improved if $\mu_1 \ge \mu_2$, $\gamma_1 \le \gamma_2$ and $w_1\gamma_1 \ge w_2\gamma_2$

Sketch of the proof (static, n = 2 jobs)

Objective: a **pairwise interchange argument** to find a strict priority rule with n = 2 jobs

Property 1

Costs improved if $\mu_1 \geq \mu_2$, $\gamma_1 \leq \gamma_2$ and $w_1\gamma_1 \geq w_2\gamma_2$

The issue of abandonments

- Swapping 2 jobs can delay the process of next jobs
- Conditions improving costs and processing time

s	1	2
S'	2	1

Sketch of the proof (static, n = 2 jobs)

Objective: a **pairwise interchange argument** to find a strict priority rule with n = 2 jobs

Property 1 Costs improved if $\mu_1 \ge \mu_2$, $\gamma_1 \le \gamma_2$ and $w_1\gamma_1 \ge w_2\gamma_2$

The issue of abandonments

- Swapping 2 jobs can delay the process of next jobs
- Conditions improving costs and processing time

Property 2 Processing times minimized if $\mu_1 \ge \mu_2$ and $\gamma_1 \le \gamma_2$

Extensions and Blocking points

- **1** Same theorem goes for impatience to the **beginning of service**
- Is From n jobs to an infinite number of jobs
 - From expected cost to average/discounted cost ?
 - Example: Poisson arrival processes, renewal processes ...
 - Is there a method ?
- Song run discounted cost ?
- It as the MDP formulation a chance to work out ?

OCOQS 2012	Optimal policy	Equivalence of costs	Conclusion

- 2 Optimal policy
- 3 Equivalence of holding and impatience costs

Abandonment costs

A cost w_j is payed for each class-*j* job abandonment (with rate γ_j)

Holding costs

A cost h_j is payed per unit of time for each class-j job waiting in the queue

Abandonment costs

A cost w_j is payed for each class-*j* job abandonment (with rate γ_j)

Holding costs A cost h_j is payed per unit of time for each class-j job waiting in the queue

Assumptions

- Arbitrary number of jobs
- Arbitrary arrivals
- Arbitrary processing times
- Exponential due dates $D_j \sim exp(\gamma_j)$
- Objective: minimizing the expected costs

Theorem

If $h_j = w_j \gamma_j$ for all j, the two models are equivalent

SCIENCES POUR LA CONCERTIO

Abandonment costs for job j $w_j \mathbb{P}(Z_j + X_j \ge D_j)$ Holding costs for job j $h_j E(\min(Z_j + X_j, D_j))$

 $egin{aligned} \text{Abandonment costs for job } j \ w_j \mathbb{P}(Z_j + X_j \geq D_j) \ w_j \mathbb{P}(Y \geq D_j) \end{aligned}$

Holding costs for job j $h_j E(\min(Z_j + X_j, D_j))$ $h_j E(\min(Y, D_j))$

Abandonment costs for job jHolding costs for job j $w_j \mathbb{P}(Z_j + X_j \ge D_j)$ $h_j E(\min(Z_j + X_j, D_j))$ $w_j \mathbb{P}(Y \ge D_j)$ $h_j E(\min(Y, D_j))$ $w_j \mathbb{P}(Y \ge D_j)$ $h_j / \gamma_j \mathbb{P}(Y \ge D_j)$

if
$$h_i = w_i \gamma_i$$

OCOQS 2012	Optimal policy	Conclusion

Introduction

2 Optimal policy

3 Equivalence of holding and impatience costs

Conclusion and future research

- Optimal priority rule almost generalizes the results of the literature
 - From expected cost to average/discounted cost ?
 - Numerical study:
 - $\star\,$ Which of the three conditions is the most important ?
 - ★ To be compared with the index policy of [AGS10]
- Equivalence of costs models
 - Impatience to the beginning of service ?
 - What happens with a discount factor ?

- R. Atar, C. Giat, and N. Shimkin, *The* $c\mu/\theta$ *rule for many-server queues with abandonment*, Operations Research **58** (2010), 1427–1439 (English).
- D.G. Down, G. Koole, and M.E. Lewis, *Dynamic control of a single-server system with abandonments*, Queueing Systems 67 (2011), 63–90.

