Critical Level Policies in Lost Sales Inventory Systems with Different Demand Classes

Aleksander Wieczorek^{1,4} Ana Bušić¹ Emmanuel Hyon^{2,3}

¹INRIA/ENS, Paris, France

²Université Paris Ouest Nanterre, Nanterre, France

³LIP6, UPMC, Paris, France

⁴Institute of Computing Science, Poznan University of Technology, Poznan, Poland

EPEW, Borrowdale, UK, October 13, 2011

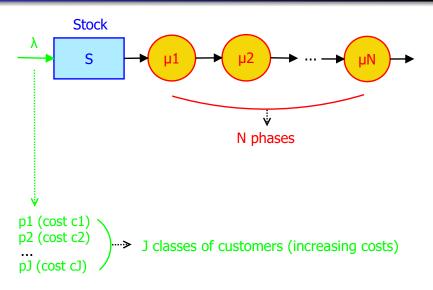
Table of Contents

- Definition
- Optimal control

2 Model description

- Admission control
- Policies
- Results

Model presentation



Model description

Definition Optimal contro

Plan

Optimal control

2 Model description

- Admission control
- Policies
- Results

3 Extensions

Definition Optimal control

Markov Decision Process

Formalism and notation [3]

A collection of objects $(\mathcal{X}, \mathcal{A}, p(y|x, a), c(x, a))$ where:

$$\begin{split} \mathcal{X} & = \{1, \dots, S\} \times \{1, \dots, N\} \cup \{(0, 1)\}, \\ \forall (x, k) \in \mathcal{X} \ x - \text{replenishment}, \ k - \text{phase}, \\ \mathcal{A} - \text{set of actions}, \\ \mathcal{A} &= \{0, 1\}, \\ 1 - \text{acceptance}, 0 - \text{rejection}, \\ p(y|x, a) - \text{probability of moving to state } y \text{ from state } x \\ & \text{when action } a \text{ is triggered}, \end{split}$$

c(x, a) — instantaneous cost in state x when action a is triggered.

Model description

Definition Optimal control

Plan

Optimal control

2 Model description

- Admission control
- Policies
- Results

3 Extensions

el description Extensions Definition Optimal control

Optimal control problem

Policy

A policy π is a sequence of decision rules that maps the information history (past states and actions) to the action set A.

Markov deterministic policy

A Markov deterministic policy is of the form $(a(\cdot), a(\cdot), \ldots)$ where $a(\cdot)$ is a single deterministic decision rule that maps the current state to a decision (hence, in our case $a(\cdot)$ is a function from \mathcal{X} to \mathcal{A}).

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimal control

Optimal control problem — optimality criteria

イロト イ押ト イヨト イヨト

Minimal long-run average cost

$$\bar{v}^* = \min_{\pi} \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_y^{\pi} \left(\sum_{\ell=0}^{n-1} C(y_\ell, a_\ell) \right)$$

Policies π^* optimising some optimality criteria are called optimal policies (with respect to a given criterion).

Goal: characterise optimal policy π^* that reaches \bar{v}^* .

Optimal control

Optimal control problem — optimality criteria

イロン イ団 とく ヨン ト ヨン・

Minimal (expected) *n*-stage total cost

$$V_n(y) = \min_{\pi(n)} \mathbb{E}_y^{\pi(n)} \left(\sum_{\ell=0}^{n-1} C(y_\ell, a_\ell) \right), \ y \in \mathcal{X}, \ y_0 = y$$

Convergence results [2], [3, Chapter 8]

The minimal *n*-stage total cost value function V_n does not converge when *n* tends to infinity. The difference $V_{n+1}(y) - V_n(y)$ converges to the minimal long-run average cost (\bar{v}^*).

Relation between different optimality criteria [2], [3, Chapter 8]

The optimal *n*-stage policy (minimizing V_n) tends to the optimal average policy π^* (minimizing \bar{v}^*) when *n* tends to infinity.

Definition Optimal control

Cost value function

Bellman equation

 $V_{n+1} = TV_n$ where T is the dynamic programming operator:

$$(Tf)(y) = \min_{a}(\hat{T}f)(y, a) = \min_{a}\left(C(y, a) + \sum_{y' \in \mathcal{X}} \mathbb{P}(y'|(y, a))f(y')\right),$$

Decomposition of T

The dynamic programming equation is:

$$V_n(x,k) = T_{unif}\left(\sum_{i=1}^{J} p_i T_{CA(i)}(V_{n-1}), T_D(V_{n-1})\right),$$
(1)

where $V_0(x, k) \equiv 0$ and T_{unif} , $T_{CA(i)}$ and T_D are the different event operators.

Admission control Policies Results

Plan

Markov Decision Processes

- Definition
- Optimal control

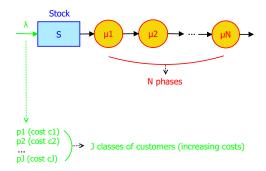
2 Model description

- Admission control
- Policies
- Results

3 Extensions

Admission control Policies Results

Description of operators



Controlled arrival operator of a customer of class *i*, $T_{CA(i)}$

$$T_{CA(i)}f(x,k) = \begin{cases} \min\{f(x+1,k), \ f(x,k) + c_i\} & \text{if } x < S, \\ f(x,k) + c_i & \text{if } x = S. \end{cases}$$

Admission control Policies Results

Description of operators

Let
$$\mu'_{k} = \mu_{k}/\alpha$$
.

Departure operator, T_D

$$T_D f(x,k) = \mu'_k \begin{cases} f(x,k+1) & ext{if } (k < N) ext{ and } (x > 0), \\ f((x-1)^+,1) & ext{if } (k = N) ext{ or } (x = 0 ext{ and } k = 0) \\ + (1 - \mu'_k) f(x,k). \end{cases}$$

Uniformization operator, T_{unif}

$$T_{unif}(f(x,k),g(x,k)) = rac{\lambda}{\lambda+lpha}f(x,k) + rac{lpha}{\lambda+lpha}g(x,k).$$

Admission control Policies Results

Plan

Markov Decision Processes

- Definition
- Optimal control

2 Model description

Admission control

Policies

Results

3 Extensions

Admission control Policies Results

イロト イ押ト イヨト イヨト

Critical level policies

Definition (Critical level policy)

A policy is called a critical level policy if for any fixed *k* and any customer class *j* it exists a level $t_{k,j}$ in *x*, depending on phase *k* and customer class *j*, such that in state (x, k):

- for all $0 \le x < t_{k,j}$ it is optimal to accept any customer of class *j*,
- for all $x \ge t_{k,j}$ it is optimal to reject any customer of class *j*.

Structural properties of policies

Assume a critical level policy and consider a decision for a fixed customer class *j*.

Definition (Switching curve)

For every k, we define a level $t(k) = t_{k,j}$ such that when we are in state (x, k) decision 1 is taken if and only if x < t(k) and 0 otherwise. The mapping $k \mapsto t(k)$ is called a *switching curve*.

Definition (Monotone switching curve)

We say that a decision rule is of the monotone switching curve type if the mapping $k \mapsto t(k)$ is monotone.

イロト イ押ト イヨト イヨト

Markov Decision Processes Model description Admission contro Policies Results

Example — critical levels, switching curve

Extensions

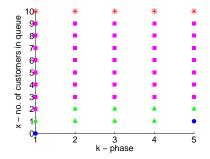


Figure: Acceptance points for different customer classes. Blue circle — all classes are accepted, green triangle — classes 2 and 3 are accepted, pink square — only class 3 is accepted, red asterisk — rejection of any class.

Admission control Policies Results

Properties of value functions

Definition (Convexity)

f is convex in x (denoted by Convex(x)) if for all y = (x, k):

$$2f(x+1,k) \leq f(x,k) + f(x+2,k)$$
.

Definition (Submodularity)

f is submodular in *x* and *k* (denoted by Sub(x, k)) if for all y = (x, k):

$$f(x+1,k+1) + f(x,k) \le f(x+1,k) + f(x,k+1)$$
.

Theorem (Th 8.1 [2])

Let a(y) be the optimal decision rule: i) If $f \in Convex(x)$, then a(y) is decreasing in x. ii) If $f \in Sub(x, k)$, then a(y) is increasing in k.

Admission control Policies Results

Properties of value functions

Definition (Convexity)

f is convex in x (denoted by Convex(x)) if for all y = (x, k):

$$2f(x+1,k) \leq f(x,k) + f(x+2,k)$$
.

Definition (Submodularity)

f is submodular in *x* and *k* (denoted by Sub(x, k)) if for all y = (x, k):

$$f(x+1,k+1) + f(x,k) \le f(x+1,k) + f(x,k+1)$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Th 8.1 [2])

Let a(y) be the optimal decision rule: i) If $f \in Convex(x)$, then a(y) is decreasing in x. ii) If $f \in Sub(x, k)$, then a(y) is increasing in k. Markov Decision Processes Admission co Model description Policies Extensions Results

Plan

Markov Decision Processes

- Definition
- Optimal control

2 Model description

- Admission control
- Policies
- Results

3 Extensions

イロト イ団ト イヨト イヨト

크

Properties of the value function of the model

Let V_n be a *n*-steps total cost value function satisfying the definition of the model. $V_n(x, k) = T_{cost} \left(T_{unif} \left[\sum_{i=1}^{J} p_i T_{CA(i)}(V_{n-1}), T_D(V_{n-1}) \right] \right)$,

Lemma

For all $n \ge 0$, V_n is in $Incr(\preceq) \cap AConvex(x) \cap Convex(x)$.

Lemma

For all $n \ge 0$ V_n is in $Sub(x, k) \cap BSub(x, k)$.

 $f \in AConvex(x)$ means that $\forall k \in \{1, ..., N\}$ $f(0, 1) + f(2, k) \ge 2f(1, k)$

 $f \in BSub(x, k)$ means that $\forall 0 < x < S$ $f(x, 1) + f(x, N) \le f(x - 1, 1) + f(x + 1, N)$

Proofs are done by checking the preservation of all the properties by all the operators.

Admission control Policies Results

Main structural results

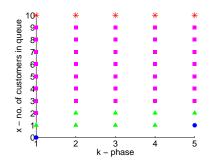
Theorem

The optimal policy is a critical level policy.

Theorem

For any critical level policy, if the rejection costs are nondecreasing $(c_1 \leq \cdots \leq c_J)$, then the levels $t_{k,j}$ are nondecreasing with respect to customer class *j*, *i*.e. $t_{k,j} \leq t_{k,j+1}$.

Proofs: convexity (+ convergence).



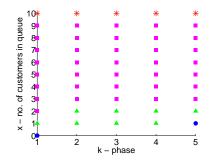
Admission control Policies Results

Main structural results

Theorem

The optimal policy defines an increasing switching curve.

Proof: submodularity (+ convergence).



Hyperexponential model

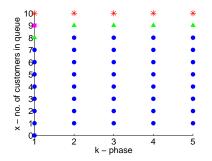


Figure: Acceptance points for different customer classes. Blue circle — all classes are accepted, green triangle — classes 2 and 3 are accepted, pink square — only class 3 is accepted, red asterisk — rejection of any class.

Extensions

Holding costs

The addition of holding costs breaks similarities between queueing models and inventory systems.

Holding cost operator, T_{cost}

$$T_{cost}f(x,k) = \frac{x}{\lambda + \alpha} + f(x,k)$$

Universality of the approach

The same reasoning can be applied to queueing models with holding costs resulting in the same properties of optimal policies.

References

AY Ha

Inventory rationing in a make-to-stock production system with several demand classes and lost sales

Management Science, 43(8):1093–1103, 1997.

G. Koole.

Monotonicity in Markov reward and decision chains: Theory and applications.

Foundation and Trends in Stochastic Systems, 1(1), 2006.

M. Puterman.

Markov Decision Processes Discrete Stochastic Dynamic Programming. Wiley, 2005.