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Discrete Time Model The Model

The Discrete Time Model

Controler

Impatience

Queue

Arrivals

Server

Arrival

Customers arrive to an infinite-buffer queue.

Time is discrete.

The distribution of arrivals in each slot At , arbitrary with mean λ
(customers/slot)
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Discrete Time Model The Model

The Discrete Time Model

Controler

Impatience

Queue

Arrivals

Server

Services

Service occurs by batches of size B.

Service time is one slot.
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Discrete Time Model The Model

The Discrete Time Model

Controler

Impatience

Queue

Arrivals

Server

Deadline

Customers are impatient: they may leave before service.

the individual probability of being impatient in each slot: α

memoryless, geometrically distributed patience
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Discrete Time Model The Model

The Discrete Time Model

Controler

Impatience

Queue

Arrivals

Server

Control

Service is controlled. The controller knows the number of customers but
not their amount of patience: just the distribution.
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Discrete Time Model The Problem

The Question

What is the optimal policy π∗ of the controller, so as to minimize the
θ-discounted global cost:

vπθ (x) = Eπx

[ ∞∑
n=0

θn c(xn, qn)

]
,

where:

xn: number of customers at step n;

qn: decision taken at step n;

and c(x , q) is the cost incurred, involving:

cB : cost for serving a batch (setup cost)

cH : per capita holding cost of customers

cL: per capita loss cost of impatient customers.
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Discrete Time Model The Literature

Related Literature
Control of queues and/or impatience (or reneging, abandonment) : a long
history.

Optimal, deadline-based scheduling:
I Bhattacharya & Ephremides, 1989
I Towsley & Panwar, 1990

Optimal admission/service control (without impatience)
I Deb & Serfozo, 1973
I Altman & Koole, 1998 (admission)
I Papadaki & Powell, 2002 (service)

Optimal routing with impatience
I Kocaga & Ward, 2009
I Movaghar, 2005

but : No optimal control of batch service in presence of stochastic
impatience, so far.
Morever, Structural Properties when losses are hard to exhibit.

Koole 2008,
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Discrete Time Model MDP Model

State dynamics

xn: number of customers in the queue at time n.
qn the decision at slot n :
qn = 1 is service occurs, qn = 0 if not.

Sequence of events (at each slot)

1 Begining of the slot

2 Admission in service

3 Impatience on remaining customers

4 Arrivals
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Discrete Time Model MDP Model

State dynamics

System Dynamics

The sequence of events leads to :

xn+1 = R(xn, qn) := S
(
[xn − qnB]+

)
+ An+1 .

S(x): the (random) number of “survivors” after impatience, out of x
customers initially present.

I (x): the number of impatient customers.
=⇒ binomially distributed random variables
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Discrete Time Model Optimal Policy

Definition of a Policy

Definition (Policy)

A policy π = (d1, d2, . . . , dn, . . .) is a sequence of decision rules.

A decision rules from H the set of information (called history) to an
action : H 7→ q ∈ A.

Definition (Markov deterministic Policy)

When all the past is reduced to the state, then the rule depends only of
the state it is a Markovian policy.

When the rule leads to an unique decision q we say it is deterministic.
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Discrete Time Model Optimal Policy

Dynamic programming

To a policy correspond a value

Optimization criterion (discounted criteria):

vπθ (x) = Eπx

[ ∞∑
n=0

θn c(xn, qn)

]
.

The dynamic programming

We are looking for a couple (π∗,Vθ(x)∗, where the optimal value function
Vθ(x)∗ is solution to:

Vθ(x) = min
q∈{0,1}

{cBq + cQ [x − Bq]+ + θE
(
V (S([x − Bq]+) + A)

)
}.
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Discrete Time Model Case B = 1

Optimality Results

Theorem

The optimal policy is of threshold type: there exists a ν such that
d(x) = 1{x≥ν}.

Theorem

Let ψ be the number defined by

ψ = cB −
cQ

1− αθ
.

Then,

1 If ψ > 0, the optimal threshold is ν = +∞.

2 If ψ < 0, the optimal threshold is ν = 1.

3 If ψ = 0, any threshold ν ≥ 1 gives the same value.
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Discrete Time Model Case B = 1

Method of Proof : Structured policies
Framework: propagation of properties through the dynamic programming
operator (Puterman, Glasserman & Yao).

Theorem (Puterman, Theorem 6.11.3)

Let Vw be a set of functions on the state space adequately chosen.
Assume that:

0. ∀ v ∈ Vw , ∃ d, Markov decision rule, such that Lv = Ldv.

If, furthermore,

1 v ∈ V σ implies Lv ∈ V σ,

2 v ∈ V σ implies there exists a decision d such that
d ∈ Dσ ∩ arg mind Ldv,

3 V σ is a closed by simple convergence.

Then, there exists an optimal stationary policy (d∗)∞ in Πσ with
d∗ ∈ arg mind Ldv.

Hyon & Jean-Marie () Scheduling with Impatience Séminaire OCOQS Oct 2011 11 / 20



Discrete Time Model Case B = 1

Method of Proof : One step

Property (Submodularity (Topkis, Glasserman & Yao, Puterman))

A function g is submodular if, for any x ≥ x ∈ X and any q ≥ q ∈ Q:

g(x , q)− g(x , q) ≤ g(x , q)− g(x , q).

Property (Monotone Control (Topkis, Glasserman & Yao, Puterman))

A control is said monotone if the function d x 7→ q is monotone.

Theorem

If Tv(x , q) is submodular over N×Q then x 7→ arg minq Tv(x , q) is
increasing in x.

Proof based on the propagation on v increasing and convex.
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Discrete Time Model Case B = 1

Computation of the Optimal Threshold : sample path analysis

The system under threshold ν evolves as:

xn+1 = Rν(xn) := S
(
[xn − 1{x≥ν}]

+
)

+ An+1 . (1)

Using (1), direct computations give:

Vν(x) =
cQ

1− θα

(
x +

θλ

1− θ

)
+ ψ Φ(ν, x)

Φ(ν, x) =
∞∑
n=0

θnP(R(n)
ν (x) ≥ ν)

ψ = cB −
cQ

1− αθ
.

Lemma

The function Φ(ν, x) is decreasing in ν ≥ 1, for every x.
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Discrete Time Model Case B = 1

What goes wrong when B ≥ 2

Numerical experiments and exact results in special cases reveal that:

The value function V (x) is not convex in general

The function TV (x , q) is not submodular in general

V not convex

B = 10, λ = 1, α = 0.1, θ = 0.8
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Continuous Time Model

The Continuous Time Model

Controler

Impatience

Queue

Arrivals

Server

Arrival

Customers arrive to an infinite-buffer queue.

Time is continuous.

The distribution of arrivals follows a Poisson Process with intensity λ.
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Continuous Time Model

The Continuous Time Model

Controler

Impatience

Queue

Arrivals

Server

Services

Service occurs by batches of size B.

Service time is exponentially distributed with parameter µ.

Service can be launched only if the server is idle.
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Continuous Time Model Puterman Modeling

The Continuous Time Model using Puterman

The instant considered is just before the decision and just after a natural
transition.

System Dynamic

So the dynamic is :

1 Admission in service or not (i.e. decision)

2 Moving instantaneously in the new state (triggered transition)

3 Remaining in the state until the next transition (arrival, departure,
impatience) (natural transition).

The state space is (x , β) with :

x denotes the number of customers which are waiting in the queue.

β which is either 1 if the batch is busy or 0 otherwise.
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Continuous Time Model Puterman Modeling

The Continuous Time Model using Puterman II

The Bellman Equation associated with the MDP is (with y = (x , β))

V π(y) = min
q

TV π(y , q) = C (y , q) +
Λ(y , q)

Λ(y , q) + θ

∑
y ′

p(y ′|(y , q))V π(y ′),

(2)
where Λ(y , q) is the (state dependant) rate of event.
Where C (y , q) is the lump cost function :

C (y , q) =

{
Λ(y ,q)

Λ(y ,q)+θ (xαcl) if q = 0

cB + Λ(y ,q)
Λ(y ,q)+θ+ ((x − B)αcl) if q = 1 and β = 0

No structural properties appears in this model : “even for the lump cost”
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Continuous Time Model Koole Modeling

The Continuous Time Model using Koole

The instant considered is just after the decision.

System Dynamic

1 Considering state after triggered transition

2 Remaining in this state until the next natural transition (arrival,
departure, impatience).

3 Decision

4 instantaneous triggered transition.

The state space is the same.
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Continuous Time Model Koole Modeling

The Continuous Time Model using Koole
The Bellman Equation (total cost criteria) is (in y = (x , β)) :

Vn(x , 1) =
xαcl + xcH

Λ(x , q)
+

1

Λ(x , q)

(
xαVn−1(x − 1, 1) + λVn−1(x + 1, 1)

+ µmin (Vn−1(x − B, 1) + cB ,Vn−1(x , 0))

)

Vn(x , 0) =
xαcl + xcH

Λ(x , q)
+

1

Λ(x , q)

(
xαmin (Vn−1(x − 1, 0),Vn−1(x − 1− B, 1) + cB)

+ λmin (Vn−1(x + 1, 0),Vn−1(x + 1− B, 1) + cB)

)
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Continuous Time Model Koole Modeling

Difference of the considered sets

Puterman and Koole consider different set for they structural properties
even though they uses the same properties

Puterman

One uses two sets : the state space and the control set. One studies the
submodularity considering one comparatively to the other.

Koole

One uses just the state space. One study the effect of a state space with a
special properties between its coordinates.
N.B. the decision is binary.

Hyon & Jean-Marie () Scheduling with Impatience Séminaire OCOQS Oct 2011 20 / 20
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