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The Discrete Time Model
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Arrival
@ Customers arrive to an infinite-buffer queue.
@ Time is discrete.

@ The distribution of arrivals in each slot A;, arbitrary with mean A
(customers/slot)

v
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The Discrete Time Model

\I IArrIivalsI\ll I\II I\II

Queue Server

. Controler
Impatience

Services
@ Service occurs by batches of size B.

@ Service time is one slot.
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The Discrete Time Model
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Deadline

Customers are impatient: they may leave before service.

@ the individual probability of being impatient in each slot: «

@ memoryless, geometrically distributed patience
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The Discrete Time Model
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Service is controlled. The controller knows the number of customers but
not their amount of patience: just the distribution.

Control
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Discrete Time Model The Problem

The Question

What is the optimal policy m* of the controller, so as to minimize the
0-discounted global cost:

i (x) = EI | 0" c(xn qn)|
n=0

where:
@ Xx,: number of customers at step n;
@ q,: decision taken at step n;
and c(x, q) is the cost incurred, involving:
@ cp: cost for serving a batch (setup cost)
@ cy: per capita holding cost of customers

@ c;: per capita loss cost of impatient customers.
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Discrete Time Model The Literature

Related Literature

Control of queues and/or impatience (or reneging, abandonment) : a long
history.

@ Optimal, deadline-based scheduling:
» Bhattacharya & Ephremides, 1989
» Towsley & Panwar, 1990
@ Optimal admission/service control (without impatience)
» Deb & Serfozo, 1973
» Altman & Koole, 1998 (admission)
» Papadaki & Powell, 2002 (service)
o Optimal routing with impatience
» Kocaga & Ward, 2009
» Movaghar, 2005

but :  No optimal control of batch service in presence of stochastic
impatience, so far.
Morever, Structural Properties when losses are hard to exhibit.

e Koole 2008,
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Discrete Time Model MDP Model

State dynamics

Xp: number of customers in the queue at time n.
gn the decision at slot n :
gn = 1 is service occurs, g, = 0 if not.

Sequence of events (at each slot)

© Begining of the slot
@ Admission in service

© Impatience on remaining customers
Q Arrivals
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Discrete Time Model MDP Model

State dynamics

System Dynamics

The sequence of events leads to :

Xp+1 = R(qun) = S([Xn_an]+) + Apt1 .

S(x): the (random) number of “survivors” after impatience, out of x
customers initially present.

I(x): the number of impatient customers.
= binomially distributed random variables
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Discrete Time Model Optimal Policy

Definition of a Policy

Definition (Policy)

A policy m = (d1,da,...,dn,...) is a sequence of decision rules. J

A decision rules from H the set of information (called history) to an
action: H— g€ A

Definition (Markov deterministic Policy)

When all the past is reduced to the state, then the rule depends only of
the state it is a Markovian policy.

When the rule leads to an unique decision q we say it is deterministic.
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Discrete Time Model Optimal Policy

Dynamic programming

To a policy correspond a value

Optimization criterion (discounted criteria):

Z 0" c(xn, q,,)] .
n=0

vg (x) = EX

The dynamic programming

We are looking for a couple (7%, Vyp(x)*, where the optimal value function
Vp(x)* is solution to:

Vox) = min {csq + colx - Bq]* +0E (V(S([x — Bq]*) + A))}.
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Discrete Time Model Case B=1

Optimality Results

Theorem

The optimal policy is of threshold type: there exists a v such that
d(X) = l{le,}.

Theorem

Let 1) be the number defined by

_ <
V=% T"ag

Then,

Q Ify > 0, the optimal threshold is v = +o0.

@ I/fy <0, the optimal threshold is v = 1.

© Ify =0, any threshold v > 1 gives the same value.
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Discrete Time Model Case B=1

Method of Proof : Structured policies

Framework: propagation of properties through the dynamic programming
operator (Puterman, Glasserman & Yao).

Theorem (Puterman, Theorem 6.11.3)

Let V,, be a set of functions on the state space adequately chosen.
Assume that:

0. VveV,, dd Markov decision rule, such that Lv = Lyv.
If, furthermore,
Q v e V% implieslLv € V?,
@ v € V7 implies there exists a decision d such that
d € D° Nargming Lyv,
© V7 is a closed by simple convergence.

Then, there exists an optimal stationary policy (d*)>° in N7 with
d* € argming Lgv.
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Discrete Time Model Case B=1

Method of Proof : One step

Property (Submodularity (Topkis, Glasserman & Yao, Puterman))
A function g is submodular if, for any x > x € X and any ¢ > q € Q:

g(x,q9) — g(x,9) < g(x,q) — g(x, q).

Property (Monotone Control (Topkis, Glasserman & Yao, Puterman))

A control is said monotone if the function d x — q is monotone.

Theorem

If Tv(x,q) is submodular over N x Q then x — arg ming Tv(x, q) is
increasing in X.

Proof based on the propagation on v increasing and convex.

v
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Discrete Time Model Case B=1

Computation of the Optimal Threshold : sample path analysis
The system under threshold v evolves as:

xai1 = Ro(m) = S ([xa— LpsnylT) + Anpr - (1)J

Using (1), direct computations give:

V,(x) = —2 (x + ﬂ) + 1 O(v,x)

“1-6a 1-0
d(v, x) = 29"P(Rﬁ")(X) > v)
n=0
C
Yp=cg — —2

Lemma
The function ®(v, x) is decreasing in v > 1, for every x.
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Discrete Time Model Case B=1

What goes wrong when B > 2

Numerical experiments and exact results in special cases reveal that:
@ The value function V(x) is not convex in general

@ The function TV/(x, q) is not submodular in general

V' not convex Tv(x, q) not submodular
B=10,A =1, a=0.1,60=038 B=2,A2=01a=096=0.9

Increments of Tv{x,1) - TV(x.0) ——
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Continuous Time Model

The Continuous Time Model

TN N

Queue

Server

{ Controler
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Arrival

@ Customers arrive to an infinite-buffer queue.

@ Time is continuous.

@ The distribution of arrivals follows a Poisson Process with intensity .
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Continuous Time Model

The Continuous Time Model

TN N

\ Queue Server
{ Controler
Impatience E

Services
@ Service occurs by batches of size B.
@ Service time is exponentially distributed with parameter p.

@ Service can be launched only if the server is idle.
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Continuous Time Model Puterman Modeling

The Continuous Time Model using Puterman

The instant considered is just before the decision and just after a natural
transition.

System Dynamic
So the dynamic is :
@ Admission in service or not (i.e. decision)
@ Moving instantaneously in the new state (triggered transition)

© Remaining in the state until the next transition (arrival, departure,
impatience) (natural transition).

The state space is (x, §) with :

@ x denotes the number of customers which are waiting in the queue.
@ [ which is either 1 if the batch is busy or 0 otherwise.
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Continuous Time Model Puterman Modeling

The Continuous Time Model using Puterman ||

The Bellman Equation associated with the MDP is (with y = (x, 3))

Vi(y) = min TV (y,q) = Cly,q) + (A Zp Yy @)V (y),

()

where A(y, q) is the (state dependant) rate of event.
Where C(y, q) is the lump cost function :

Cly,q) = /\?}’(,};)‘74)-9 (xacy) ifg=0
7 CB+%((X—B)QCI) ifg=1land § =0

No structural properties appears in this model : “even for the lump cost”
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Continuous Time Model Koole Modeling

The Continuous Time Model using Koole

The instant considered is just after the decision.

System Dynamic
© Considering state after triggered transition

@ Remaining in this state until the next natural transition (arrival,
departure, impatience).

@ Decision

@ instantaneous triggered transition.

The state space is the same.
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Continuous Time Model Koole Modeling

The Continuous Time Model using Koole
The Bellman Equation (total cost criteria) is (in y = (x,3)) :

XQCp + XCH 1
Va(x,1) =
e N ) (
Xa\/,,_]_(X — 1, 1) + )\Vn_]_(X + 1, 1)
+ pmin (Vp—1(x — B, 1) + cg, Va_1(x, 0)))
Xocy + XCH 1
Vih(x,0) = +
C0="Nea A (

xamin(Vp—1(x —1,0), Vp_1(x —1— B,1) + cg)

+Amin(Vh_1(x+1,0), Vooi(x+1—-B,1) + cB))
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loats Vet
Difference of the considered sets

Puterman and Koole consider different set for they structural properties
even though they uses the same properties

Puterman
One uses two sets : the state space and the control set. One studies the
submodularity considering one comparatively to the other.

Koole

One uses just the state space. One study the effect of a state space with a
special properties between its coordinates.

N.B. the decision is binary.
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