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Problem statement

Consider some continuous-time, discrete-event, infinite-horizon
control problem.

The standard way to analyze such problems is to reduce them
to a discrete-time problem using some embedding of a
discrete-time process into the continuous-time one.

The optimal policy is deduced from the solution of the
discrete-time problem.
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Problem statement (ctd)

There are various ways to place the observation points:

jump instants,

controllable event instants,

uniformization instants.

They may result in different value functions.

Question

Is there a way to “play” with the embedding process in order to
obtain structural properties of the optimal policy?
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A basic continuous-time control model

As a starting point, consider:

a continuous-time, piecewise-constant process
{X (t); t ≥ 0} over some discrete state space X ;

a sequence of decision instants {Tn; n ∈ N}, endogenous

a finite set of actions A;

at a decision point t, given the current state x = X (t),
there is a feasible set of actions Ax ⊂ A.
Assuming that action a ∈ As is applied,

a reward r(x , a, y) is obtained;
the state jumps to a random Ta(x) with distribution
Pxay = P(Ta(x) = y);
given y , the next decision point is at t + τ , where τ has an
exponential distribution with parameter λy .

between decision points, a reward is accumulated at
`(x(t)), piecewise constant by assumption.
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Basic model (ctd.)

Reward criterion: expected total discounted reward. Given
X (0) = x ,

J(x) = E
{∫ ∞

0
e−αt`(X (t))dt

+
∞∑

n=1

e−αTnr(X (T−n ),A(Tn),X (T+
n ))

}
.

The goal is to find the optimal feedback control d : X → A
(with the constraint that d(x) ∈ Ax for all x) to maximize J.
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Basic embedding

Features of this model:

control is instantaneous and localized in time

evolution is strictly Markovian

immediate generalization to semi-Markov
decision/transition instants.

Two possibilities for the observation of the process:

just before a transition/control: → V−(x)

just after a transition/control: → V +(x)

Question:

What is their relation with J(x)?



Reduction of
continuous-
time control

to
discrete-time

control

A. Jean-Marie

Problem
statement

The model

Uniformization

Event model

Application

Direct Bellman equations

Conditioning on T1, the first decision point, we get:

V +(x) =
1

α + λx

[
`(x) + λxV

−(x)
]

V−(x) = max
a∈Ax

{∑
y

Pxay

(
r(x , a, y) + V +(y)

)}
= max

a∈Ax

{
E
(
r(x , a,Ta(x)) + V +(Ta(x))

)}
.
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Basic functional equations

Eliminating V + or V− leads to two forms of Bellman’s
equation:

Bellman Equations

V +(x) =
1

α + λx

[
`(x)

+ λx max
a∈Ax

∑
y

Pxay

[
r(x , a, y) + V +(y)

] ]
V−(x) = max

a∈Ax

∑
y

Pxay

[
r(x , a, y)

+
1

α + λy

[
`(y) + λyV−(y)

] ]
.
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Uniformization à la carte

For each state x , define νx ≥ λx and introduce a new,
uncontrollable transition point after τ ∼ Exp(νx).
Extend the state space to X × {r , u},
r = regular event, u = uniformization event.
Table of rewards and transition probabilities:

x ′ a y ′ r(x ′, a, y ′) Px ′ay ′

(x , r) a (y , r) r(x , a, y)
λy

νy
Pxay

(x , r) a (y , u) r(x , a, y)
νy − λy

νy
Pxay

(x , u) ∗ (x , r) 0
λy

νy

(x , u) ∗ (y , u) 0
νy − λy

νy

Running reward: `(x , e) = `(x); transition rate: λ(x , e) = νx .
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Relationships

Lemma

Let V (·) be the direct value function and Vu(·, ·) be the
uniformized value function. Then:

V−u (x , r) = V−(x)

V−u (x , u) = V +(x)

V +
u (x , r) =

1

α + νx
(`(x) + νxV

−(x))

V +
u (x , u) =

1

α + νx
(`(x) + νxV

+(x)) .
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Interpretations

No uniformization (λx = µx):

V +
u (x , r) =

1

α + λx
(`(x) + λxV

−(x)) = V +(x)

V +
u (x , u) = E

{∫ T1

0
e−αu`(x)du + e−αT1V +(x)

}
.

Hyper-frequent uniformization (νx →∞):

lim
νx→∞

V +
u (x , r) = V−(x) = V−u (x , u)

lim
νx→∞

V +
u (x , u) = V +(x) = V−u (x , r) .

No discounting (α→ 0):

V +
u (x , r) ∼ `(x)

νx
+ V−(x)

V +
u (x , u) ∼ `(x)

νx
+ V +(x) .



Reduction of
continuous-
time control

to
discrete-time

control

A. Jean-Marie

Problem
statement

The model

Uniformization

Event model

Application

Bellman equations for the uniformized process

Lemma

The basic value functions V + and V− satisfy:

V +(x) =
1

α + νx

[
`(x) + (νx − λx)V +(x)

+ λx max
a∈Ax

∑
y

Pxay

[
r(x , a, y) + V +(y)

] ]

V−(x) =
1

α + νx

[
(νx − λx)V−(x)

+ (α + λx) max
a∈Ax

∑
y

Pxay

[
r(x , a, y) +

1

α + λy
(`(y) + λyV−(y))

]]
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The event model

If transitions have several “types”, the strictly markovian model
requires to extend the state space: x = (s, e) with s the actual
system state, and e the event type. We get:

V +(s, e) =
1

α + λs,e

[
`(s, e)

+ λs,e max
a∈As,e

∑
s′

∑
e′

P((s, e); a; (s ′, e ′))

{
r((s, e), a, (s ′, e ′)) + V +(s ′, e ′)

} ]
V−(s, e) = max

a∈As,e

∑
s′

∑
e′

P((s, e); a; (s ′, e ′))[
r((s, e), a, (s ′, e ′)) +

`(s ′, e ′) + λs′,e′V−(s ′, e ′)

α + λs′,e′

]
.
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The event model

Question

Under which conditions is it possible to “get rid” of the event
part in the state representation.

Is it possible that:

V +(s, e) = V +(s) ∀e?
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Application: arrival control in the M/M/1

Let λ and µ denote the arrival and service rates. Reward R for
each accepted customer, and (negative) running reward `(s) for
keeping s customers in queue.

Markovian state: x ∈ N× {a, d} (numbered 1/0 in Puterman).
The equations for the value function, after uniformization at
uniform rate λ+ µ, are:

VP(s, d)

=
1

α + λ+ µ

[
`(s) + µVP((s − 1)+, d) + λVP(s, a)

]
VP(s, a)

= max

{
R +

1

α + λ+ µ
[`(s + 1) + µVP(s, d) + λVP(s + 1, a)] ,

1

α + λ+ µ
[`(s) + µVP(s − 1, d) + λVP(s, a)]

}
.
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Where is the observation?

But Puterman p. 568 says:

The system is in state < s, 0 > if there are s jobs in
the system and no arrivals. We observe this state
when a transition corresponds to a departure. [...]
The state < s, 1 > occurs when there are s jobs in
the system and a new job arrives.

In our notation, this would correspond to setting:

VP(s, d) = V +
u ((s + 1, d), r)

VP(s, a) = V−u ((s, a), r) .

Work in progress....
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Lunch time!
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