Segment recombinations and random sharing models

Anton Muratov Sergei Zuyev

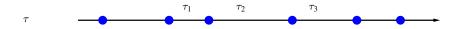
Chalmers University of Technology, Gothenburg, Sweden

January 14th 2015, Paris

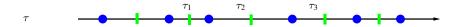
 Take a homogeneous Poisson point process (PPP) on ℝ and shift all the points randomly independently by equally distributed amounts. The result is again a homogeneous PPP.

- Take a homogeneous Poisson point process (PPP) on ℝ and shift all the points randomly independently by equally distributed amounts. The result is again a homogeneous PPP.
- What's if the shifts depend on the neighbouring points?

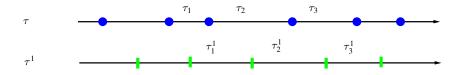
Take a homogeneous PPP on the line:



Take the middle points of the segments:

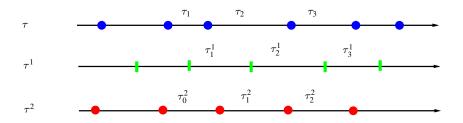


The middle points of each segment do not form a PPP anymore

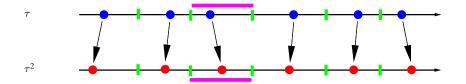


because the independence of the segment lengths is broken!

Iterate the same procedure

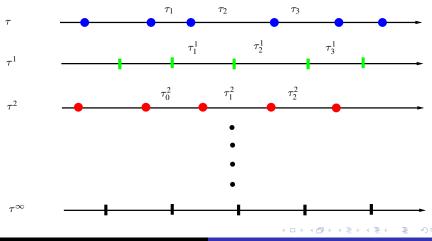


Notice that every second generation moves each point to the centre of its 1D Voronoi cell



Limiting configuration

Limiting configuration is a grid (Hasegawa & Tanemura'76)

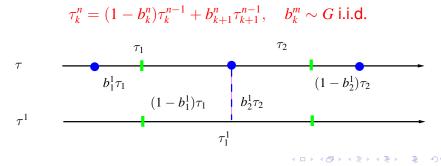


Sergei Zuyev Segment recombinations and random sharing models

Above we have

$$\tau_k^n = \frac{1}{2} \tau_k^{n-1} + \frac{1}{2} \tau_{k+1}^{n-1}, \quad n = 1, 2, \dots, \ (\tau^0 \stackrel{\text{def}}{=} \tau).$$

More generally, proportions can be independent random variables with a common distribution G on [0, 1]:



Sergei Zuyev Segment recombinations and random sharing models

Is there a distribution *G* such that for $\tau \sim \text{PPP}$,

 $\tau^1 \stackrel{\mathcal{D}}{=} \tau$?

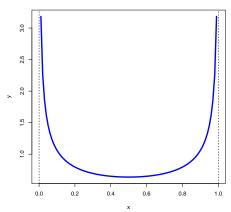
Sergei Zuyev Segment recombinations and random sharing models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer:

Yes!

G is Beta distribution B(r, 1 - r) for some $r \in (0, 1)$



Beta B(1/2,1/2) density

Segment recombinations and random sharing models

Э

크

Sergei Zuyev

Assume that τ is a renewal process, so that τ_k are i.i.d. with a common distribution *F* on $(0, \infty)$. Is there *G* such that $\tau^1 \stackrel{\mathcal{D}}{=} \tau$?

Theorem

- $\tau^1 \stackrel{\mathcal{D}}{=} \tau$ iff one of the following alternatives is true:
 - *F* is degenerate (τ is a grid) and *G* is degenerate concentrated on some $b \in [0, 1]$.
 - $F = \Gamma(\alpha, \gamma)$ and $G = B(r\alpha, (1 r)\alpha)$ for some constants $\alpha > 0$, $\gamma > 0$ and $r \in [0, 1]$,

< ∰ > < ≣ >

Theorem

$\tau^1 \stackrel{\mathcal{D}}{=} \tau$ iff one of the following alternatives is true:

- *F* is degenerate (τ is a grid) and *G* is degenerate concentrated on some $b \in [0, 1]$.
- 2 $F = \Gamma(\alpha, \gamma)$ and $G = B(r\alpha, (1 r)\alpha)$ for some constants $\alpha > 0$, $\gamma > 0$ and $r \in [0, 1]$,

Corollary

- $\tau \sim \text{PPP}$ and $G = \mathsf{B}(r, 1 r)$ for some $r \in [0, 1]$
- τ is renewal process with Γ(2, λ) inter-point distances (every second point in a PPP) and G = Unif(0, 1).

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Definition

An independently scattered random measure Λ on $\mathbb R$ with Gamma-distributed increments:

 $\Lambda([a,b]) \sim \Gamma(\alpha(b-a),\lambda)$ for some $\alpha, \ \lambda > 0$

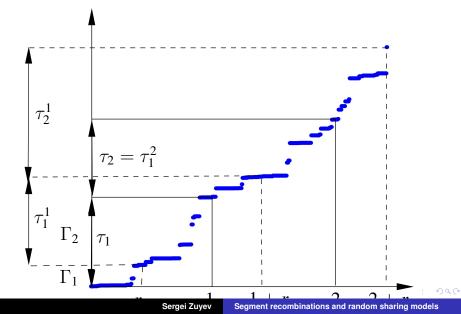
is called the Gamma random measure. $\xi(t) = \Lambda[0, t]$ is called the Gamma process.

 Λ is purely atomic and it can be represented as

$$\Lambda([a,b]) \stackrel{\mathcal{D}}{=} \int_{[a,b]} \int_{(0,\infty)} y \,\Phi(dx \, dy) = \sum_{(x_i,y_i) \in \Phi} y_i \, \mathrm{I}\!\!\mathrm{I}\{x_i \in [a,b]\},$$

where Φ is a PPP on $\mathbb{R} \times (0, \infty)$ driven by intensity measure $\alpha dx y^{-1} e^{-\lambda y} dy$ [Ferguson & Klass'72].

Proof: sufficiency



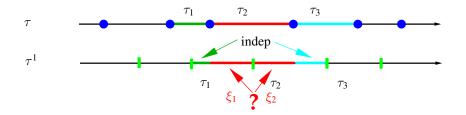
Proof: sufficiency

•
$$\tau_k \stackrel{\mathcal{D}}{=} \Lambda([k-1,k]) \sim \Gamma(\alpha,\lambda)$$
 i.i.d.
• $\beta_1 = \Gamma_1/(\Gamma_1 + \Gamma_2) \sim \Gamma(r\alpha)/\Gamma(\alpha) = \mathsf{B}(r\alpha,(1-r)\alpha).$
Similarly other b_k i.i.d.

< 一型

Proof: necessity

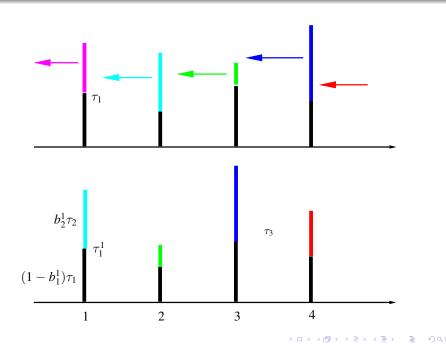
Formal proof: via a joint ch.f. *Idea*: shape vs. size result: $b_1 = \xi_1/(\xi_1 + \xi_2) \perp \tau_2 = (\xi_1 + \xi_2) \Longrightarrow \xi_i \sim \Gamma.$



The same recursion

 $\tau_k^n = (1 - b_k^n) \, \tau_k^{n-1} + b_{k+1}^n \, \tau_{k+1}^{n-1}, \quad n = 1, 2, \dots, \ (\tau^0 \stackrel{\text{def}}{=} \tau).$

allows for another interpretation: τ_k^n is a wealth of household *k* at time *n*, each time a random *b*-share of the wealth is passed to the left neighbour.



Sergei Zuyev Segment recombinations and random sharing models

Fix a random probability distribution π on $I \subseteq \mathbb{Z}$. Previously π was the pair (1 - G, G) concentrated on $I = \{0, 1\}, \pi_1 \stackrel{\mathcal{D}}{=} b, \pi_0 \stackrel{\mathcal{D}}{=} 1 - b$.

At every moment n = 1, 2, ... each household k

• draws independently a realisation $\pi^n(k) = (\pi^n_i(k))_{i \in I}$ of π and

Fix a random probability distribution π on $I \subseteq \mathbb{Z}$. Previously π was the pair (1 - G, G) concentrated on $I = \{0, 1\}, \pi_1 \stackrel{\mathcal{D}}{=} b, \pi_0 \stackrel{\mathcal{D}}{=} 1 - b$.

At every moment n = 1, 2, ... each household k

- draws independently a realisation $\pi^n(k) = (\pi^n_i(k))_{i \in I}$ of π and
- 2 passes proportion $\pi_i^n(k)$ of its wealth τ_k^{n-1} to household k i (leaving proportion $\pi_0(k)$ to itself).

Theorem

If one of the following alternatives is true:

• $F = \Gamma(\alpha, \gamma)$ and π is Dirichlet $\text{Dir}((r_i \alpha)_{i \in I})$ for some α ,

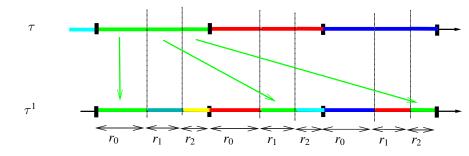
 $\gamma > 0$ and constants r_i such that $\sum_{i \in I} r_i = 1$.

F is degenerate (equal wealths) and G is degenerate (non-random proportions sharing)

then $\tau^1 \stackrel{\mathcal{D}}{=} \tau$.

Proof

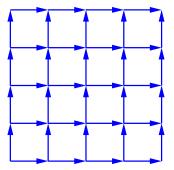
Redistribution of the Gamma-measure:



▲□ → ▲ □ → ▲ □ →

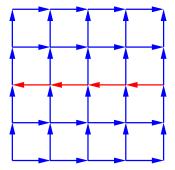
크

The same proof works for lattices with one type of vertices



- 17 ▶

Is the ballance condition enough?



• Half-wealth sharing leads to equal wealths (socialism)

- Half-wealth sharing leads to equal wealths (socialism)
- Beta-wealth sharing of gamma-distributed wealth leaves its distribution unchanged (stable capitalism)

- Half-wealth sharing leads to equal wealths (socialism)
- Beta-wealth sharing of gamma-distributed wealth leaves its distribution unchanged (stable capitalism)
- Question: How attractive is capitalism? (e.g. does beta-sharing of somehow distributed wealths leads to gamma-distributed independent wealths?)

Evolution

The recursion can be written as a linear operator acting on sequences: $\tau^n = B_n \tau^{n-1}$, where B_n is a double-infinite matrix with elements $\pi_{i+k}^n(k)$ at the place (k, i) (the proportion of the wealth of the household *i* which *k* receives at time *n*, $(k, i \in \mathbb{Z})$. E.g.,

$$B_n = \begin{bmatrix} & & & & & \\ \dots & 1 - b_1^n & b_2^n & 0 & 0 & \dots \\ \dots & 0 & 1 - b_2^n & b_3^n & 0 & \dots \\ \dots & 0 & 0 & 1 - b_3^n & b_4^n & \dots \\ \dots & & \dots & & & \end{bmatrix}, \quad n = 1, 2, \dots$$

Let $h = (h_i)_{i \in \mathbb{Z}}$ be a non-negative sequence with a compact support: $\sum_i \mathbb{I}_{h_i > 0} < \infty$.

$$L_n[h] = \mathbf{E} \, e^{-\langle h, au^n
angle} = \mathbf{E} \, e^{-\langle h, B_n \dots B_1 au
angle} = \mathbf{E} \, e^{-\langle h, B_1 \dots B_n au
angle}$$

< 同 > < 回 > < 回 >

Assume $\tau = \mathbf{1}$ and consider $\xi_n = \langle h, B_1 \dots B_n \mathbf{1} \rangle$. Let $\mathcal{B}_n = \sigma\{B_1, \dots, B_n\}$.

$$\mathbf{E}[\xi_n \mid \mathcal{B}_{n-1}] = \langle h, B_1, \dots, B_{n-1}(\mathbf{E} B_n) \mathbf{1} \rangle$$

The *k*-th element of $(\mathbf{E} B_n)\mathbf{1}$ is

$$\begin{split} \mathbf{E} \sum_{i} \pi_{i+k}^{n}(k) &= (\text{average total prop.'ns received by } k) \\ &= (\text{average total prop.'ns sent by } k) = 1 \end{split}$$

so that $(\mathbf{E} B_n)\mathbf{1} = \mathbf{1}$ and thus ξ_n is a martingale.

(日) (圖) (E) (E) (E)

Thus $\xi_n = \xi_n(h)$ converges a.s. to some $\xi_{\infty}(h)$ which is a linear function of a finite-dimensional *h*. Hence it is $\langle h, \tau^{\infty} \rangle$ for $\tau_k^{\infty} = \xi_{\infty}(\delta_k)$. Finally, $\exp\{-\xi_n\}$ is a bounded submartingale so it converges in \mathcal{L}_1 :

$$\mathbf{E}\exp\{-\langle h,\tau^n\rangle\}\to\mathbf{E}\exp\{-\langle h,\tau^\infty\rangle\}$$

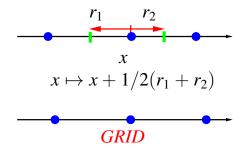
so that τ^{∞} is a weak limit of τ^n

A (1) > A (2) > A (2) >

More generally,

Theorem

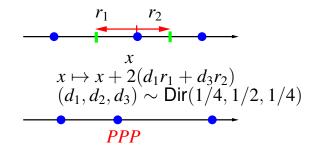
If τ^0 is an i.i.d. sequence of realisations of τ with var $\tau < \infty$, then there exists a random sequence τ^{∞} (not necessarily i.i.d.) such that τ^{∞} is a weak limit of τ^n . If $\pi \sim \text{Dir}$ then $\{\tau_k^\infty\}$ are independent Gamma-distributed, so the stable capitalism is attractive for i.i.d. starting wealths with finite variance and Dirichlet sharing!



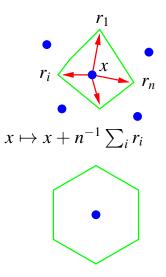
Sergei Zuyev Segment recombinations and random sharing models

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크



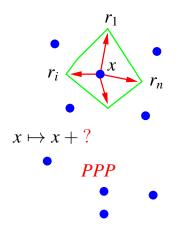
Lloyd algorithm



Sergei Zuyev Segment recombinations and random sharing models

< 回 > < 回 > < 回 >

How to preserve Poisson?



Sergei Zuyev Segment recombinations and random sharing models

- M. Hasegawa, M. Tanemura On the pattern of space division by territories, Ann. Inst. Statist. Math. 28 509–519, part B, 1976
- T. S. Ferguson, M. J. Klass A representation of independent increment processes without Gaussian components, Ann. Math. Statist. 43, 1634–1643, 1972
- A. Muratov and S. Zuyev On neighbour-dependent shifts preserving renewal process, arXiv:1308.3351, 2013

Thank you!

Questions?

Sergei Zuyev Segment recombinations and random sharing models

< ∰ > < ≣ >