The Shannon Capacity of an Energy-harvesting Transmitter Over an Additive Noise Channel

Venkat Anantharam

BLISS (Berkeley Laboratory for Information Sciences and Systems) EECS Department University of California, Berkeley

January 14, 2015

BaccelliFest 2015

Joint work with Varun Jog

Venkat Anantharam (UC Berkeley)

Finite battery AWGN

Introduction: Energy harvesting (EH)

• Harvest ambient energy that would otherwise be lost; e.g., solar, thermal, electromagnetic

Introduction: Energy harvesting (EH)

- Harvest ambient energy that would otherwise be lost; e.g., solar, thermal, electromagnetic
- Can use EH for communication:

EH channel model

Figure: EH communication system block diagram

EH channel model

Figure: EH communication system block diagram

Challenges: New power constraints!

- Unpredictability of energy
- Presence of a battery

Outline

Outline

2 The set $\mathcal{S}_n(\sigma, \rho)$

AWGN channel with a finite battery

Question

What is the channel capacity of a (σ, ρ) energy constrained AWGN channel?

No battery, $\sigma = 0$

The Information Capacity of Amplitudeand Variance-Constrained Scalar Gaussian Channels*

JOEL G. SMITH

No battery, $\sigma = 0$

The Information Capacity of Amplitudeand Variance-Constrained Scalar Gaussian Channels*

JOEL G. SMITH

• Smith shows that

$$\mathsf{Capacity} = \sup_{\rho(\mathsf{x}) \text{ supported on } [-\sqrt{\rho},\sqrt{\rho}]} I(X;Y)$$

• $p^*(x)$ is discrete!

Infinite battery, $\sigma = \infty$

Information-Theoretic Analysis of an Energy Harvesting Communication System

Omur Ozel Sennur Ulukus

Figure: Infinite battery EH transmitter

Infinite battery, $\sigma = \infty$

Information-Theoretic Analysis of an Energy Harvesting Communication System

Omur Ozel Sennur Ulukus

$$W \longrightarrow \underbrace{\operatorname{Encoder}}_{X_i} \underbrace{X_i}_{Y_i} \xrightarrow{Z_i} \\ \downarrow \\ \downarrow \\ \downarrow \\ Y_i \\ Decoder \\ Y_i \\ Y_i \\ Y_i \\ Decoder \\ Y_i \\ Y_i \\ Decoder \\ Y_i \\ Y_$$

Figure: Infinite battery EH transmitter

If
$$\mathbb{E}(E_i)=P$$
, capacity is $rac{1}{2}\log\left(1+rac{P}{N}
ight)$

Venkat Anantharam (UC Berkeley)

(σ, ρ) power constraints

(σ, ρ) power constraints Energy centered view:

Energy consumed

(σ, ρ) power constraints Energy centered view:

Energy consumed

(σ, ρ) power constraints Battery centered view:

Begin with a *fully charged battery* at time 0, i.e $\sigma_0 = \sigma$. Battery charge at all times must be non-negative, i.e.,

(σ, ρ) power constraints

• Both views are equivalent,

$$\sigma_{k+1} = \min(\sigma, \ \sigma + \rho - x_k^2, \ \cdots, \ \sigma + k\rho - \sum_{i=1}^k x_i^2)$$

(σ, ρ) power constraints

• Both views are equivalent,

$$\sigma_{k+1} = \min(\sigma, \ \sigma + \rho - x_k^2, \ \cdots, \ \sigma + k\rho - \sum_{i=1}^k x_i^2)$$

Let S_n(σ, ρ) ⊆ ℝⁿ be the set of all (x₁, x₂, ..., x_n) satisfying the (σ, ρ) power constraints

Capacity in terms of $S_n(\sigma, \rho)$ (2^{*nR*}, *n*) code:

• Capacity C^* is supremum of all achievable rates R

Capacity in terms of $S_n(\sigma, \rho)$ (2^{*nR*}, *n*) code:

• Capacity C^* is supremum of all achievable rates R

Outline

 $S_n(\sigma, \rho)$: Shape

Constraints

$$\sum_{i=k+1}^{l} x_i^2 \leq \sigma + (k-l)\rho \text{ for all } 0 \leq k < l \leq n$$

 $\mathcal{S}_n(\sigma,\rho)$: Shape

Constraints $\sum_{i=k+1}^{l} x_i^2 \le \sigma + (k-l)\rho \text{ for all } 0 \le k < l \le n$

$S_n(\sigma, \rho)$: Size

• How fast does the volume of $S_n(\sigma, \rho)$ grow with *n*?

$$\lim_{n\to\infty}\frac{\log \operatorname{Volume}(\mathcal{S}_n(\sigma,\rho))}{n}=v(\sigma,\rho)$$

$S_n(\sigma, \rho)$: Size

• How fast does the volume of $S_n(\sigma, \rho)$ grow with *n*?

$$\lim_{n\to\infty}\frac{\log \operatorname{Volume}(\mathcal{S}_n(\sigma,\rho))}{n}=v(\sigma,\rho)$$

• Simple bounds:

$$\log 2\sqrt{
ho} \le v(\sigma,
ho) \le \frac{1}{2}\log 2\pi e
ho$$

$S_n(\sigma, \rho)$: Size

• How fast does the volume of $S_n(\sigma, \rho)$ grow with *n*?

$$\lim_{n\to\infty}\frac{\log \operatorname{Volume}(\mathcal{S}_n(\sigma,\rho))}{n}=v(\sigma,\rho)$$

• Simple bounds:

$$\log 2\sqrt{
ho} \le v(\sigma,
ho) \le \frac{1}{2}\log 2\pi e
ho$$

$v(\sigma, ho)$ for $0<\sigma<\infty$

 $v(\sigma,
ho)$ for $0<\sigma<\infty$

• Let $\nu_n(b)$ be "volume density of sequences at state b." Then

$$Volume(\mathcal{S}_n) = \int_{b=0}^{\sigma} \nu_n(b) db$$

• How is ν_{n+1} obtained from ν_n ?

 $v(\sigma,
ho)$ for $0<\sigma<\infty$

• Let $\nu_n(b)$ be "volume density of sequences at state b." Then

$$Volume(\mathcal{S}_n) = \int_{b=0}^{\sigma} \nu_n(b) db$$

- How is ν_{n+1} obtained from ν_n ?
- Answer: Via a linear transformation

$$\nu_{n+1}(c) = \int_0^\sigma A(b,c)\nu_n(b)db$$

$$A(b,c) = \begin{cases} \frac{1}{\sqrt{b+1-c}} & \text{if } c \neq \sigma \text{ and } c \leq b+1\\ \delta(c=\sigma)2\sqrt{b+1-\sigma} & \text{if } c = \sigma \text{ and } \sigma \leq b+1\\ 0 & \text{otherwise.} \end{cases}$$

Plot of $v(\sigma, 1)$

Figure: Plot of $v(\sigma, 1)$

Outline

• Recall capacity of a (σ, ρ) power constrained AWGN channel:

$$C^* = \lim_{n \to \infty} \frac{1}{n} \left[\sup_{p(x^n) \text{ supported on } S_n} h(Y^n) \right] - \frac{1}{2} \log 2\pi e N$$

• Recall capacity of a (σ, ρ) power constrained AWGN channel:

$$C^* = \lim_{n \to \infty} \frac{1}{n} \left[\sup_{p(x^n) \text{ supported on } S_n} h(Y^n) \right] - \frac{1}{2} \log 2\pi e N$$

• Recall the Entropy Power Inequality:

$$e^{\frac{2}{n}h(Y^n)} \ge e^{\frac{2}{n}h(X^n)} + e^{\frac{2}{n}h(Z^n)}$$

• Recall capacity of a (σ, ρ) power constrained AWGN channel:

$$C^* = \lim_{n \to \infty} \frac{1}{n} \left[\sup_{p(x^n) \text{ supported on } S_n} h(Y^n) \right] - \frac{1}{2} \log 2\pi e N$$

• Recall the Entropy Power Inequality:

$$e^{\frac{2}{n}h(Y^n)} \ge e^{\frac{2}{n}h(X^n)} + e^{\frac{2}{n}h(Z^n)}$$

• Now choose $X^n \sim \text{Uniform}(\mathcal{S}_n(\sigma, \rho))$, EPI gives us

$$\frac{1}{2}\log\left(1+\frac{\rho}{N}\right) \geq C^* \geq \lim_{n \to \infty} \frac{I(X^n; Y^n)}{n} \geq \frac{1}{2}\log\left(1+\frac{e^{2\nu(\sigma,\rho)}}{2\pi eN}\right)$$

Compare capacity bounds

$$C \leq \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Vol} \left(\mathcal{S}_n(\sigma, \rho) \oplus \mathcal{B}_n(\sqrt{n(N+\epsilon)}) \right) - \frac{1}{2} \log 2\pi e N$$

۲

$$C \leq \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Vol} \left(\mathcal{S}_n(\sigma, \rho) \oplus B_n(\sqrt{n(N+\epsilon)}) \right) - \frac{1}{2} \log 2\pi e N$$

Let

۲

$$I(N) := \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Vol} \left(S_n(\sigma, \rho) \oplus B_n(\sqrt{nN}) \right) .$$

$$C \leq \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Vol} \left(\mathcal{S}_n(\sigma, \rho) \oplus B_n(\sqrt{n(N+\epsilon)}) \right) - \frac{1}{2} \log 2\pi e N$$

Let

۲

$$I(N) := \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{Vol} \left(S_n(\sigma, \rho) \oplus B_n(\sqrt{nN}) \right) \;.$$

• We can show I(N) is continuous for $N \ge 0$, and so

$$C \leq I(N) - \frac{1}{2}\log 2\pi eN$$

Better capacity bounds

Steiner's formula

 $K_n \subset \mathbb{R}^n$ compact convex set and $B_n \subset \mathbb{R}^n$ the unit ball, then

$$\operatorname{Vol}\left(K_n\oplus tB_n
ight)=\sum_{j=0}^n\mu_{n-j}(K_n)\epsilon_jt^j$$

where $(\mu_0(K_n), \ldots, \mu_n(K_n))$ are the intrinsic volumes of K_n and ϵ_j the volume of B_j .

• For $\sigma = 0$ the role of K_n is played by the cube $[-\sqrt{\rho}, \sqrt{\rho}]^n$, with intrinsic volumes $\binom{n}{j}(2\sqrt{\rho})^{n-j}$.

- For σ = 0 the role of K_n is played by the cube [-√ρ, √ρ]ⁿ, with intrinsic volumes (ⁿ_i)(2√ρ)^{n-j}.
- This gives

$$I(N) = H(\theta^*) + (1 - \theta^*) \log 2\sqrt{\rho} + rac{ heta^*}{2} \log rac{2\pi e N}{ heta^*} \; ,$$

where $H(\theta^*) := -\theta^* \log \theta^* - (1 - \theta^*) \log(1 - \theta^*)$, and

$$\frac{(1-\theta^*)^2}{\theta^{*3}} = \frac{2\rho}{\pi N}$$

.

- For σ = 0 the role of K_n is played by the cube [-√ρ, √ρ]ⁿ, with intrinsic volumes (ⁿ_i)(2√ρ)^{n-j}.
- This gives

$$I(N) = H(heta^*) + (1 - heta^*) \log 2\sqrt{
ho} + rac{ heta^*}{2} \log rac{2\pi e N}{ heta^*} \; ,$$

where
$$H(\theta^*) := -\theta^* \log \theta^* - (1 - \theta^*) \log(1 - \theta^*)$$
, and
 $\frac{(1 - \theta^*)^2}{\theta^{*3}} = \frac{2\rho}{\pi N}$.

• Convolution of intrinsic volume sequences and finding the dominant term in the convolution.

• Let $(\mu_n(0), \ldots, \mu_n(n))$ denote the intrinsic volumes of $S_n(\sigma, \rho)$.

Let (μ_n(0),...,μ_n(n)) denote the intrinsic volumes of S_n(σ, ρ).

 ¹ · Σⁿ · · · · it

$$g_n(t) := \frac{1}{n} \log \sum_{j=0} \mu_n(j) e^{jt}$$

- Let (μ_n(0),...,μ_n(n)) denote the intrinsic volumes of S_n(σ, ρ).
 g_n(t) := ¹/_n log Σⁿ_{i=0} μ_n(j)e^{jt}
- Cumulant generating function of the intrinsic volume sequence

Let (μ_n(0),...,μ_n(n)) denote the intrinsic volumes of S_n(σ, ρ).

 g_n(t) := ¹/₂ log Σⁿ μ_n(i)e^{jt}

$$g_n(t) := \frac{1}{n} \log \sum_{j=0}^n \mu_n(j) e^{jt}$$

- Cumulant generating function of the intrinsic volume sequence
- We prove that the pointwise limit of $g_n(t)$ as $n o \infty$ exists, call it $\Lambda(t)$

• Let $(\mu_n(0), \dots, \mu_n(n))$ denote the intrinsic volumes of $S_n(\sigma, \rho)$.

$$g_n(t) := \frac{1}{n} \log \sum_{j=0} \mu_n(j) e^{jt}$$

- Cumulant generating function of the intrinsic volume sequence
- We prove that the pointwise limit of $g_n(t)$ as $n o \infty$ exists, call it $\Lambda(t)$
- If $\Lambda^*(\cdot)$ denotes the convex conjugate dual of $\Lambda(\cdot),$ then

$$I(N) = \sup_{\theta \in [0,1]} \left[-\Lambda^*(1-\theta) + \frac{\theta}{2} \log \frac{2\pi e N}{\theta} \right]$$

• (σ, ρ) constraints produce rich geometric structure

- (σ, ρ) constraints produce rich geometric structure
- Volume of $S_n(\sigma, \rho)$ + EPI implies neat lower bound on capacity

- (σ, ρ) constraints produce rich geometric structure
- Volume of $S_n(\sigma, \rho)$ + EPI implies neat lower bound on capacity
- Even small battery provides considerable gains in capacity

- (σ, ρ) constraints produce rich geometric structure
- Volume of $S_n(\sigma, \rho)$ + EPI implies neat lower bound on capacity
- Even small battery provides considerable gains in capacity
- Steiner's formula in the large deviations regime provides refined upper bounds to the capacity.

- (σ, ρ) constraints produce rich geometric structure
- Volume of $S_n(\sigma, \rho)$ + EPI implies neat lower bound on capacity
- Even small battery provides considerable gains in capacity
- Steiner's formula in the large deviations regime provides refined upper bounds to the capacity.
- The upper and lower bounds match to the first derivative at low noise and to the sixth derivative at high noise.

Venkat Anantharam (UC Berkeley)

Figure: Gorges du Verdon, 25 years ago

Venkat Anantharam (UC Berkeley)

Figure: With a different kind of Indian

Venkat Anantharam (UC Berkeley)

Figure: Ten Years Ago

Venkat Anantharam (UC Berkeley)

Figure: Proving a theorem by the Seine

Venkat Anantharam (UC Berkeley)

Figure: The Royal Society of Edinburgh

Venkat Anantharam (UC Berkeley)

Figure: The Royal Society of Edinburgh

Venkat Anantharam (UC Berkeley)

Figure: Freezing in sunny California

Venkat Anantharam (UC Berkeley)

Figure: Yes, it was windy!

Venkat Anantharam (UC Berkeley)

Figure: The pig and the Trabant

Venkat Anantharam (UC Berkeley)

Figure: I dare you to eat it !

Venkat Anantharam (UC Berkeley)

Figure: These are the types of friends I have !!!

Venkat Anantharam (UC Berkeley)

Thank you!