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MULTICAST TOMOGRAPHY
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DEFINITIONS AND NOTATION

• Tree T = (V,L).
• Nodes V labelled 0, . . . , n.
• m receivers R at leaves of tree.
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PROBING
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PROBING

• View as vector-valued stochastic process

Z(i) = [Z1(i), . . . ,Zn(i)].

• Tree-geometry: node/path state fixed by states of ancestor links:

Xk(i) =
∏

j∈0→k

Zj(i) .

GOAL: TOPOLOGY FROM TOMOGRAPHY

• Deduce the topology T from the distribution of XR = (Xk(i))k∈R .
• First assume infinite data, address identifiability.
• Then consider inference with finite data.
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PREVIOUSLY

SPATIAL AND TEMPORAL INDEPENDENCE (CLASSICAL ASSUMPTIONS)
• Link processes Zk(i) mutually independent.
• Each an i.i.d. random sequence: Pr(Zk(i) = 1) = lk.

• Assume lk < 1, else unidentifiable.
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SHARED PATH TO BRANCH POINT
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SHARED TRANSMISSION

• Function of two nodes, i, j :

S(i, j) =
Pr(Xi = 1)Pr(Xj = 1)

Pr(Xi = 1,Xj = 1)
.

• Under spatial independence

S(i, j) = Pr(Xb = 1).

• Use/need pairwise only⇒ still feasible with finite data.
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CHOOSING SIBLINGS

SHARED TRANSMISSION DECREASES DOWN THE TREE

• If b(i, j) under b(i, k) then S(i, j) < S(i, k).
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CERTAIN PATERNITY

• Pair(s) of nodes in B with lowest shared transmission are siblings.
• If J ⊂ B has S(i, j) minimal for each pair i, j ∈ B then J are siblings.
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SHARED TRANSMISSION FOR VIRTUAL NODES

• Nodes created by merging siblings are “virtual”.
• Will correspond to real nodes if algorithm successful.
• But how to calculate Shared Transmission for j ∈ B\R?

• Define “virtual” losses for j as the sequence

X̃j =

{
1 if Xk = 1 for any k ∈ d(j) ∩ R
0 otherwise,

since know Xj = 1 if a transmission seen at any descendant.
• Shared transmission defined analogously:

S̃(i, j) =
Pr(X̃i = 1)Pr(X̃j = 1)

Pr(X̃i = 1, X̃j = 1)
.

• S̃(i, j) = S(i, j) under classical assumptions!
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ITERATIVE BOTTOM-UP TOPOLOGY INFERENCE

Red nodes are the
working set B.

18 / 121



Background Spatial Dependence JI Models Identifiable JI Finding Siblings SLTD2 Class Size Finite Data Conc

SHARED LOSS TOPOLOGY DISCOVERY – SLTD
1: Input: Set of receivers R; distribution fR, XR(i).
2: Variables: Nodes V , Links L, Root nodes B, X̃(i).
3: Initialize: V ← R; L← ∅; B← R; X̃R(i)← XR(i).
4: while |B| > 1 do
5: Calculate S∗ = max{j,k}⊂B S̃j,k;
6: Find largest J ⊂ B: ∀{j, k} ⊂ J, S̃j,k = S∗;
7: if exists some i 6∈ J, j ∈ J : S̃i,j = S∗ then
8: return ∅; # sibling set not transitive!
9: else

10: Create new node v, set X̃v =
∨

j∈J X̃j;
11: V ← V ∪ v;
12: L← L ∪

⋃
j∈J(v, j);

13: B← (B\J) ∪ v;
14: end if
15: end while
16: Create root node 0;
17: V ← V ∪ 0;
18: L← L ∪ (0,B); # |B| = 1 here
19: Output: T = (V, L);
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CHARACTERIZING THE LINK PROCESSES

SPATIAL STRUCTURE

• Assume Z(i) = [Z1(i), . . . ,Zn(i)] stationary and ergodic.
• Spatial dependency captured by the marginal Z = [Z1, . . . ,Zn].
• Induces the path-passage marginal X = [X1, . . . ,Xn].
• We are interested in fXR .

LINK JOINT DISTRIBUTION

• Characterise joint distribution fZ using probabilities

Pr(Z = r) = Pr(Z1 = r1,Z2 = r2, . . .Zn = rn),

one for each link passage pattern r = [r1, . . . , rn] ∈ {0, 1}n.
• These sum to 1, so 2n − 1 degrees of freedom.
• In contrast: classical case is much simpler, n degrees of freedom.
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MODELS VERSUS TOPOLOGY

MODELS

• A topology T with a joint distribution fZ is a model M = (T, fZ).
• A model M induces a joint distribution fR(M) on the vector

observable XR.
• T(M) is the tree component of the model M.
• Goal: to determine T(M) from fR(M).
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MEASUREMENT EQUIVALENCE

Two models M1 and M2 are measurement equivalent if fR(M1) = fR(M2).

EXAMPLE 1:

Classical with lk = 0.9 for all k ∈ V .
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MEASUREMENT EQUIVALENCE

Two models M1 and M2 are measurement equivalent if fR(M1) = fR(M2).

EXAMPLE 1:

Both models have
Pr(X1 = 1) = 0.93

Pr(X2 = 1) = 0.93

Pr(X3 = 1) = 0.92

Pr([X1,X2] = 12) = 0.94

Pr([X1,X3] = 12) = 0.94

Pr([X2,X3] = 12) = 0.94

Pr(XR = 13) = 0.95.
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MEASUREMENT EQUIVALENCE

Two models M1 and M2 are measurement equivalent if fR(M1) = fR(M2).

EXAMPLE 1:

Classical with lk = 0.9 for all k ∈ V .

Pr(Z = z) =


0 [z1, z2, z3] = [1, 1, 0]
0.930.12 + 0.92 − 0.93 z = [1, 0, 1, 0, 1]
0.9

∑
izi 0.15−

∑
izi otherwise.
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TOPOLOGY IDENTIFIABILITY

EXAMPLE 1 LESSONS

• Example 1 gave two models with same fR(M), different T(M).
• So in that case, T is not identifiable.

• Must restrictM if we hope to identify T for each M ∈M.

TOPOLOGICAL DETERMINISM

• A classM is Topologically Determinate if @M1,M2 ∈M with
fR(M1) = fR(M2), and
T(M1) 6= T(M2).

• i.e., models with same fR have same T .
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GOALS (INFINITE DATA CASE)

• Find “large”, natural Topologically Determinate class(es)M.
• Find algorithm guaranteed to recover T(M) for all M ∈M.

EXAMPLE: CLASSICAL MODELSMC

• Classical models are Topologically Determinate.
• SLTD works for them.
• In fact, one model per fR(M), so one model per T .
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NEW CLASSES

MCE

MJI

MAJIE

MAJI

MC
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DIMENSIONS OF NEW CLASSES

T

dim(MC,T) 4 6 9 14 29
dim(MCE,T) 12 54 489 14350 536805405
dim(MJI,T) 15 56 478 14133 536613988
dim(MAJI,T) 15 56 478 14133 536613988
dim(MAJIE,T) 15 57 489 14395 536805415
dim(MT) 15 63 511 16383 536870911

TABLE : Examples of model class dimensions.
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CLASSICALLY EQUIVALENT MODELS: MCE

DEFINITION

M1 ∈MCE iff ∃M2 ∈MC with fR(M1) = fR(M2) and T(M1) = T(M2).

These are models that appear classical.

SLTD STILL WORKS!
• SLTD returns T(M) correctly for every M ∈MCE.

• Returns topology as though M is classical.
• ∴ Returns correct topology.

• SoMCE is Topologically Determinate.

EXTENSION TRICK WORKS IN GENERAL

• Can apply for any algorithm and class it works on.
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COMMENTS ONMCE

STRENGTHS

• MC ⊂MCE.
• Much larger thanMC.
• Can contain complex spatial dependencies.

DRAWBACKS

• Not constructive.
• Depends on receiver positions.

• Need a model class that:
• Is not based on receiver positions.
• Reflects properties of real networks.
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PAINLESS GENERALITY

RECALL

• Xk =
∏

i∈(0→k) Zk.

DEPENDENCY OF HIDDEN Z

• If Xi = 0 then for all k below i, Xk = 0.
• If Xf (i) = 0 then changing the value of Zi won’t change the output.
• This suggests a way of adding dependency without affecting fR(M).
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MODEL PRINCIPLES

HOW DOES DEPENDENCY ARISE?
• Links touch at routers, influenced by router traffic and dynamics

– suggests dependencies between siblings.
• Distant links unlikely to affect each other except via tree.

– suggests ruling out ‘action at a distance’.

TRANSLATION TO MODEL PRINCIPLES

• Locally: most general possible dependency between adjacent links.
• Globally: only necessary dependency over non-adjacent links.
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JUMP INDEPENDENCE

DEFINITION (JUMP INDEPENDENT MODELS)

A model with links L and receivers R is Jump Independent if ∀k ∈ V\R,
∀J ⊂ V with J ∩ d(k) = ∅, Xc(k) is conditionally independent of XJ

given Xk = 1.
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DEFINITIONS

DEFINITION (SUBTREE INDUCED BY U)

Let M(T, fZ) ∈MJI with T = (V,L). Let U ⊂ V . Then define the
subtree induced by U as

T(U) =
⋃
i∈U

{0→ i}

and R(U) as the leaves of T(U).

DEFINITION (ρ-VALUES)

Define sibling passage probabilities:

ρJ = Pr(∩j∈D{Xj = 1}|Xf (D) = 1)

for each set of siblings D.
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FUNDAMENTAL PROPERTY OF JI MODELS

LEMMA (FUNDAMENTAL PROPERTY OF JI MODELS)

Let M(T, fZ) ∈MJI. Then

Pr(
⋂
k∈U

{Xk = 1}) =
∏

i∈T(U)\R(U)

ρc(i)∩T(U)

for every U ⊂ V.
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FUNDAMENTAL PROPERTY OF JI MODELS

Example : U = {2, 5, 6}
Pr(X2 = 1,X5 = 1,X6 = 1) = ρ1 · ρ2,3 · ρ4,5 · ρ6

47 / 121



Background Spatial Dependence JI Models Identifiable JI Finding Siblings SLTD2 Class Size Finite Data Conc

SHARED TRANSMISSION IN JI MODELS

• For i, j ∈ V ,

Si,j = Pr(Xb = 1) · ρ1ρ2

ρ1,2

=
( ∏

k∈0→b

ρk
)
· ρ1ρ2

ρ1,2

• Shared Transmission a function
of the shared path and the two
children at the branch point.
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BINARY JI MODELS

MEASUREMENT EQUIVALENCE
• Assume M1 ∈MJI and M2 ∈MC with T(M1) = T(M2).
• Solve for li from M2 in terms of ρJ from M1.

li =



ρi,s(i)

ρs(i)
, if i ∈ R

ρi ·
ρc1(i)ρc2(i)

ρc1(i),c2(i)
if i = 1

ρi,s(i)

ρs(i)
· ρc1(i)ρc2(i)

ρc1(i),c2(i)
otherwise.

OBTAIN (BINARY) EXAMPLES OF MODELS IN CE
• If li < 1, must be the marginal link passage parameter of the CE model.
• Insight: siblings dependencies compensated by change in transmission on

path to father.
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IDENTIFIABILITY FAILURE: INVISIBLE PATHS

LEMMA

Let i, j, k be three distinct receivers in a Jump Independent model such
that b(i, k) is below b(i, j). Then S(i, k) = S(j, k) if and only if
b(i, j)→ b(i, k) is invisible.
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IDENTIFIABILITY FAILURE: INVISIBLE PATHS

AUGMENTED PATH

• An augmented path g(g1, g2)→ h(h1, h2) is a path g→ h together
with g1, g2 ∈ c(g), h1, h2 ∈ c(h) such that g1 ∈ g→ h.
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IDENTIFIABILITY FAILURE: INVISIBLE PATHS

INVISIBLE PATH

• An augmented path is invisible if

ρg1ρg2

ρg1,g2

=
( ∏

i∈g→h

ρi
)ρh1ρh2

ρh1,h2

.

• For Binary models this reduces to:∏
i∈g→h

li = 1.

• Analogue of lk 6= 1 from classical.
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IDENTIFIABILITY FAILURE: LOCAL STRUCTURE

LOCAL LIMITATIONS ON ANY SIBLING SET J
• Internally agreeing if Si,j = Sk,l ∀i, j, k, l ∈ J with i 6= j, k 6= l.
• Internally disagreeing if Si,j 6= Sk,l ∀i, j, k, l ∈ J with {i, j} 6= {k, l}.

ROLES

• Disagreeing is the generic/general case.
• Agreeing includes classical.
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AGREEABLE JI MODELS

DEFINITION (AGREEABLE JI MODELS (MAJI))

An AJI model is a model M ∈MJI which satisfies :
i) (internally consistent) Each sibling set J is agreeing or disagreeing.
ii) (no invisible paths) No augmented paths in M are invisible.

ROLE OF RESTRICTIONS

• Condition (i) prevents sibling sets from looking like they aren’t.
• Condition (ii) prevents groups of non-siblings from looking like

they are siblings.

Including ‘agreeing’ in (i) a big headache, but important!
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A PROPERTY OF SIBLINGS IN JI MODELS

LEMMA (SIBLINGS AGREE EXTERNALLY)

Let M ∈MJI. If two nodes i, j are members of a sibling set J, and k ∈ R
such that (0→ k) ∩ J = ∅, then Si,k = Sj,k.
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SEEKING CERTAIN PATERNITY

TRY TO INVERT SIBLING PROPERTY

• Define agreement set of i, j ∈ V

Ai,j = {k ∈ R : S(i, k) = S(j, k), k 6= i, j}.

• Agreement sets used to compare ‘world view’ of candidate siblings.

62 / 121



Background Spatial Dependence JI Models Identifiable JI Finding Siblings SLTD2 Class Size Finite Data Conc

FINDING COMPLETE SIBLING SETS

DEFINITION (EXTERNALLY-AGREEING SETS)

Call D ⊂ R an externally-agreeing set (EAS) if |D| ≥ 3 and Ai,j = R\D
for all i, j ∈ D.

DEFINITION (ALL-AGREEING SETS)

Call D ⊂ R with |D| ≥ 2 an all-agreeing set (AAS) if Ai,j = R\{i, j} for
all i, j ∈ D.
Subsets of an all-agreeing set are also all-agreeing. Call an all-agreeing
set D a maximal all-agreeing set (MAAS) if it is not a proper subset of
another one.
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FINDING COMPLETE SIBLING SETS

LEMMA (FINDING DISAGREEING SIBLING SETS)

Consider M ∈MAJI with receiver nodes R. A set D ⊂ R with |D| ≥ 3 is
an disagreeing sibling set if and only if it is an EAS.

LEMMA (FINDING AGREEING SIBLING SUBSETS)

Consider M ∈MAJI with receiver nodes R. A set D ⊂ R with |D| ≥ 2 is
a subset of an agreeing sibling set if and only if it is an AAS.
• The MAAS are the maximal agreeing sibling subsets.
• Some/all of these may still have hidden siblings.
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PROPOSITION (CERTAIN PATERNITY II)

Assume an M ∈MAJI model. Then at least one available sibling set can
be identified without error.

PROOF

• Find all the EAS and AASes
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CASE 1: AT LEAST ONE EAS EXISTS

Select any of them.
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CASE 2: NO EAS EXISTS

Select a MAAS which is a sibling set (can test if one below another).
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SLTD2
Similar to SLTD, but agreement set based.

THEOREM (CORRECTNESS OF SLTD2 ONMAJI)

Let M = (T, fZ) ∈MAJI. Then SLTD2 returns T .

PROOF

• Find sibling set using Certain Paternity.

• S(i, j) = S̃(i, j) for M ∈MJI.
• So each iteration will be correct.
• Hence recover T at termination.
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AJIE MODELS

• Defined analogously toMCE, but start withMAJI instead ofMC.

• MCE ⊂MAJIE, sinceMC ⊂MAJI.
• SLTD2 succeeds on all topologies inMAJIE.
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RELATIONSHIPS BETWEEN CLASSES

MCE

MJI

MAJIE

MAJI

MC
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DIMENSIONS OF CLASSES

T

dim(MC,T) 4 6 9 14 29
dim(MCE,T) 12 54 489 14350 536805405
dim(MJI,T) 15 56 478 14133 536613988
dim(MAJI,T) 15 56 478 14133 536613988
dim(MAJIE,T) 15 57 489 14395 536805415
dim(MT) 15 63 511 16383 536870911

TABLE : Examples of model class dimensions.
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INFINITE DATA SUMMARY

PREVIOUS WORK

• Classical model: full spatial independence of tree loss process.
• Algorithm SLTD to recover topology in this case.

OUR WORK

• Break spatial independence assumptions.
• Define more general classMCE such that SLTD still works.
• General result for extending class while keeping algorithm.

• Define classMJI with physically motivated structure.
• Find TD classMAJI with dim(MAJI) = dim(MJI).
• New algorithm SLTD2 recovers topology for all M ∈MAJI.
• Also recovers topology for all M ∈MAJIE.
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CHALLENGES FOR FINITE DATA

• Underlying Sij not known, only estimated.
• Failure of exact Sij equality underlying agreement set definition.
• Random topology selection inMAJI, with degree constraints.
• Random model selection, with loss constraints.
• Sensible error metric on trees.
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A SLTD BASED ALGORITHM

MODIFIED ITERATION

• Estimate shared transmission over all pairs

Ŝij =

∑
Xi/np

∑
Xj/np∑

XiXj/np
.

• Merge i, j into J∗ = (ij) with minimal Ŝij.
• Merge additional receivers k in J∗ obeying (we use β = 0.002)

Ŝ(ij)k ≤ (1 + β)Ŝ∗.

Straightforward because key steps based on inequality of Ŝij.
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MEASURING APPROXIMATE AGREEMENT

THREE STEPS TO MEASURE AGREEMENT OF J TO A

(i) shared passage measure pk;ij (|J| = 2 and |A| = 1);
(ii) agreement set measure gij(A) (|J| = 2 and |A| ≥ 1);
(iii) sibling set measure rA(J) (|J| ≥ 2 and |A| ≥ 1).
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MEASURING APPROXIMATE AGREEMENT

STEP (I): SHARED PASSAGE MEASURE pk;ij (|J| = 2 AND |A| = 1)

Let pk|i = Pr(Xk = 1|Xi = 1).
From the definition, Sik = Sjk equivalent to pk|i = pk|j.

Estimate pk|i by

p̂k|i =
∑

(XkXi)/ni .

Null hypothesis: pk|i = pk|j.
Under H0 p̂k| = (nip̂k|i + njp̂k|j)/(ni + nj)

Test statistic: Tij(k) =
p̂k|i − p̂k|j√

ni+nj
ninj

p̂k|(1− p̂k|)

with corresponding (Gaussian based) p-value pij ∈ [0, 1].
Higher pij =⇒ higher agreeement.
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MEASURING APPROXIMATE AGREEMENT

STEP (II): AGREEMENT SET MEASURE gij(A) (|J| = 2 AND |A| ≥ 1)

Let A ⊂ B\{i, j}, and select a significance level α.

Note the good proportion, gp, of the p(k) obeying p(k) > α, k ∈ A.
(Avoids using p-value as a weight – bad idea)
Note worst agreement: gw = mink∈A p(k).
(for gp and gw, higher values =⇒ closer agreement)

Define gij(A) = gp, using gw to break ties.

In other words, agreement follows the worst case in A.
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MEASURING APPROXIMATE AGREEMENT

STEP (III): SIBLING SET MEASURE rA(J) (|J| ≥ 2 AND |A| ≥ 1)

Assume A ⊂ B \ J.
To define rA(J), must combine the values of gij(A) for all {i, j} ∈ J.

Per-leaf noise reduction: for each k ∈ J, average the g(A) values
involving k.

Define rA(R) ∈ [0, 1] as the smallest such average.
(signature of bad leaves won’t be diluted)

Notes:
– rA(J) = g(A) whenever |J| = 2 such as in binary trees.
– Typically A = B \ J in which case we write simply r(J).
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DEFINING TRUETREE

Inspired by SLTD2, tries to use r(J) to identify the MAAS and EAS.

LOCATING AN EAS
Infeasible to search for highest r(J) at each iteration – too many J.
Greedy alternative: construct a subset of J’s likely to contain the EASes
• Set seed J1 = {i, j}, record r(J1).
• J2 = J1 ∪ {kd}, where kd ∈ B \ J1 is the leaf that minimizes r{k}(J1)

– invite most disagreeable member outside of J to join J.
• For each of

(m
2

)
seeds, get a sequence of |B| − 1 candidates EAS J sets.

• Select J∗ with the highest agreement r(J).
• Termination step: (needed since above gives |J| ≤ |B| − 1)

Set J = B if |J∗| = |B| − 1, AND if r(J) > α for all J of size |J| = |B| − 1.

LOCATING A COMPLETE MAAS
Try to assemble set with highest internal agreement based on sibling transitivity.
• Order all seed J’s according to their r(J): r(J1) ≤ r(J2) ≤ r(J3) ≤ etc..
• Initialize J∗ = J1.
• If J∗ ∩ J2 6= ∅, set J∗ = J∗ ∪ J2 and continue, else stop.

Finally: from candidate EAS and MAAS, select one with highest r(J).
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Set J = B if |J∗| = |B| − 1, AND if r(J) > α for all J of size |J| = |B| − 1.

LOCATING A COMPLETE MAAS
Try to assemble set with highest internal agreement based on sibling transitivity.
• Order all seed J’s according to their r(J): r(J1) ≤ r(J2) ≤ r(J3) ≤ etc..
• Initialize J∗ = J1.
• If J∗ ∩ J2 6= ∅, set J∗ = J∗ ∪ J2 and continue, else stop.

Finally: from candidate EAS and MAAS, select one with highest r(J).
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RANDOM TOPOLOGY GENERATION

Want to constrain maximum node degree dmax:
– gives spectrum of error modes.
– includes binary special case.

Generation Method:
– Pseudo-uniform bottom up algorithm with dmax constraint.
– Working on fast approach for true uniform generation.

TEST CASES

dmax = 2 3 4 5 6 7 8 9
m = 3 X X — — — — — —
m = 5 X X X — — — —
m = 9 X X X X

TABLE : The (m, dmax) used in model generation.
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RANDOM SPATIAL DEPENDENCY GENERATION

Want to sample fromMAJI(T).

Main task is to select the joint sibling distributions.
Need to add constraints to allow scenario control.

Generation Method:
– Select loss marginal targets for each sibling set.
– Express constraints as a matrix equation defining a subset ofMJI.
– Use MCMC (R.L.Smith ’84) method to sample uniformly.

Compose sibling set samples according to global JI model rules.
Resulting model-sample is inMAJI(T) with probability 1.
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TREE DISTANCE / ERROR

Want to define distance between T1 = (V1,L1) and T2 = (V2,L2),
sharing the same labelled receivers R, with m = |R|.

Define R(v) to be set of receivers below v.
(leaf based equivalent tree description)

Let V1\2 = {v ∈ V1|@u ∈ V2 with R(v) = R(u)}.
(number of nodes in T1 that do not appear in T2)

Definition:
dist(T1,T2) = |V1\2|+ |V2\1|

This is a true distance metric, taking values in {0, 1, . . . , 2(m− 2)}.

Error:
eT = dist(T, T̂)
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PERFORMANCE UNDER ‘GENTLE MODELS’

Low Loss Regime: ρi ∈ [0.9, 0.99] for each node i.
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(errors averaged over 200 random models for each fixed T , and 6000 probes)

Binary trees: samples Classically Equivalent =⇒ SLTD, TrueTree legal.
If dmax > 2: TrueTree legal (model inMAJI), but SLTD behaviour undefined.
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PERFORMANCE UNDER ‘GENTLE MODELS’

Low Loss Regime: ρi ∈ [0.9, 0.99] for each node i.

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
N

u
m

b
e
r 

o
f 
e
rr

o
rs

Maximum node degree

 

 

SLTD 3 receivers

SLTD 5 receivers

SLTD 9 receivers

TrueTree 3 receivers

TrueTree 5 receivers

TrueTree 9 receivers

118 / 121



Background Spatial Dependence JI Models Identifiable JI Finding Siblings SLTD2 Class Size Finite Data Conc

PERFORMANCE ON DISRUPTIVE MODELS

Low Hot Spot scenario: single model with negative dependency.
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SLTD has worst possible eT = 2 in 100% of cases.
TrueTree has eT = 0 in 100% of cases.
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FINITE CONCLUSION

• Agreement sets great in theory, tricky in practice, but can be done.
• TrueTree

– gives comparable results to SLTD on gentle loss.
– can handle disruptive loss.
– outperforms SLTD when loss higher.

• More work to be done, but promise of SLTD2 on rich class of
spatial models can be realized.
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