Yaglom limits can depend on the starting state
 Ce travail conjoint avec Bob Foley ${ }^{1}$ est dédié à François Baccelli.

David McDonald ${ }^{2}$

Mathematics and Statistics
University of Ottawa
david.r.mcdonald@gmail.com
12 January 2015

[^0]A quotation

Semi-infinite random walk with absorption-Gambler's ruin

Our example

Periodic Yaglom limits

Applying the theory
ρ-Martin entrance boundary

Closing words

The long run is a misleading guide ...

> The long run is a misleading guide to current affairs. In the long run we are all dead. Economists set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the storm is past the ocean is flat again.

John Maynard Keynes

- Keynes was a Probabilist: Keynes, John Maynard (1921), Treatise on Probability, London: Macmillan \& Co.
- Rather than insinuating that Keynes didn't care about the long run, probabilists might interpret Keynes as advocating the study of evanescent stochastic process:
$\mathbb{P}_{x}\left\{X_{n}=y \mid X_{n} \in S\right\}$.

An evanescent process-Gambler's ruin

- Suppose a gambler is pitted against an infinitely wealthy casino.
- The gambler enters the casino with $x>0$ dollars.
- With each play, the gambler either wins a dollar with probability b where $0<b<1 / 2 \ldots$
- ... or loses a dollar with probability a where $a+b=1$.
- The gambler continues to play for as long as possible.
- In the long run the gambler is certainly broke.
- What can be said about her fortune after playing many times given that she still has at least one dollar?

A quasi-stationary distribution

- Seneta and Vere-Jones (1966) answered this question with the following probability distribution π^{*} :

$$
\begin{equation*}
\pi^{*}(y)=\frac{1-\rho}{a} y\left(\sqrt{\frac{b}{a}}\right)^{y-1} \quad \text { for } y=1,2, \ldots \tag{1}
\end{equation*}
$$

- where $a=1-b$ and $\rho=2 \sqrt{a b}$.

Limiting conditional distributions

- Let X_{n} be her fortune after n plays.
- Notice that her fortune alternates between being odd and even.
- For n large, Seneta and Vere-Jones proved that

$$
\mathbb{P}_{x}\left\{X_{n}=y \mid X_{n} \geq 1\right\} \approx \begin{cases}\frac{\pi^{*}(y)}{\pi^{*}(2 \mathbb{N})} & \text { for } y \text { even, } x+n \text { even } \\ \frac{\pi^{*}(y)}{\pi^{*}(2 \mathbb{N}-1)} & \text { for } y \text { odd, } x+n \text { odd }\end{cases}
$$

- The subscript x means that $X_{0}=x, \mathbb{N}:=\{1,2, \ldots\}$.
- The probability π assigns to the even and odd natural numbers is denoted by $\pi^{*}(2 \mathbb{N})$ and $\pi^{*}(2 \mathbb{N}-1)$, respectively.

Gambler's ruin as a Markov chain

- The Seneta-Vere-Jones example has a state space $\mathbb{N}_{0}:=\{0\} \cup \mathbb{N}$ where 0 is absorbing.
- The transition matrix between states in \mathbb{N} is

$$
P=\left[\begin{array}{cccccc}
0 & b & 0 & 0 & 0 & \cdots \\
a & 0 & b & 0 & 0 & \cdots \\
0 & a & 0 & b & 0 & \cdots \\
\vdots & & & & &
\end{array}\right]
$$

- P is irreducible, strictly substochastic, and periodic with period 2.

Graphic of Gambler's ruin

Figure: P restricted to \mathbb{N}.

Facts from Seneta and Vere-Jones

- The z-transform of the return time to 1 is given in Seneta and Vere-Jones:

$$
F_{11}(z)=\left(\frac{1-\sqrt{1-4 a b z^{2}}}{2}\right)
$$

- Hence the convergence parameter of P is $R=1 / \rho$ where $\rho=2 \sqrt{a b}$.
- Moreover $F_{11}(R)=1 / 2$ so P is R-transient.
- Using Stirling's formula as $n \rightarrow \infty$: for $y-x$ even

$$
P^{2 n}(x, y) \sim \frac{x y}{\sqrt{\pi} n^{3 / 2}}(2 \sqrt{a b})^{n}\left(\sqrt{\frac{a}{b}}\right)^{x-1}\left(\sqrt{\frac{b}{a}}\right)^{y-1} .
$$

- Denote the time until absorption by τ so $P_{x}(\tau=n)=f_{x 0}^{(n)}$.
- If $n-x$ is even then from Feller Vol. 1

$$
f_{x 0}^{(n)} \sim \frac{x \cdot 2^{n+1}}{(2 \pi)^{1 / 2}(n)^{3 / 2}} b^{\frac{1}{2}(n-x)} a^{\frac{1}{2}(n+x)}
$$

Define the kernel Q

- It will be convenient to introduce a chain with kernel Q on \mathbb{N}_{0} with absorption at δ
- defined for $x \geq 0$ by $Q(x, y)=P(x+1, y+1)$

Figure: Q is P relabelled to \mathbb{N}_{0}.

Our example

- The kernel K of our example has state space \mathbb{Z}.
- For $x>0, K(x, y)=Q(x, y), K(-x,-y)=Q(x, y)$,
- $K(0,1)=K(0,-1)=b / 2, K(0, \delta)=a$.
- Folding over the two spoke chain gives the chain with kernel Q.

Figure: K restricted to \mathbb{Z}.

Yaglom limit of our example

- Define a family σ_{ξ} of ρ-invariant qsd's for K
- indexed by $\xi \in[-1,1]$ and given by

$$
\begin{align*}
& \sigma_{\xi}(0)=\frac{1-\rho}{a} \tag{2}\\
& \sigma_{\xi}(y)=\sigma_{\xi}(0) \frac{[1+|y|+\xi y]}{2}\left(\sqrt{\frac{b}{a}}\right)^{|y|} \quad \text { for } y \in \mathbb{Z} \tag{3}
\end{align*}
$$

- For $x, y \in 2 \mathbb{Z}$,

$$
\lim _{n \rightarrow \infty} \frac{K^{2 n}(x, y)}{K^{2 n}(x, 2 \mathbb{Z})}=\frac{1+\rho}{\rho} \sigma_{\xi(x)}(y) \text { where } \frac{\rho}{1+\rho}=\sigma_{\xi(x)}(2 \mathbb{Z})
$$

- where $\xi(x)=\frac{x}{1+|x|}$ for $x \in \mathbb{Z}$.
- Notice the limit depends on x !

Definition of Periodic Yaglom limits

- For periodic chains, define $k=k(x, y) \in\{0,1,2, \ldots d-1\}$ so that $K^{n d+k}(x, y)>0$ for n sufficiently large.
- We can partition S into d sets labeled S_{0}, \ldots, S_{d-1} so that the starting state $x \in S_{0}$ and that $K^{n d+k}(x, y)>0$ for n sufficiently large if $y \in S_{k}$.
- Theorem A of Vere-Jones implies that for any $y \in S_{k}$, $\left[K^{n d+k}(x, y)\right]^{1 /(n d+k)} \rightarrow \rho$.
- We say that we have a periodic Yaglom limit if for some $k \in\{0, \ldots, d-1\}$

$$
\begin{equation*}
\mathbb{P}_{x}\left\{X_{n d+k}=y \mid X_{n d+k} \in S\right\}=\frac{K^{n d+k}(x, y)}{K^{n d+k}(x, S)} \rightarrow \pi_{x}^{k}(y) \tag{4}
\end{equation*}
$$

where π_{x}^{k} is a probability measure on S with $\pi_{x}^{k}\left(S_{k}\right)=1$.

Asymptotics of Periodic Yaglom limits

Proposition

- If π_{x}^{k} is the periodic Yaglom limit for some
$k \in\{0,1, \ldots, d-1\}$, then there are periodic Yaglom limits for all $k \in\{0,1, \ldots, d-1\}$.
- Moreover, there is a ρ invariant qsd π_{x} such that $\pi_{x}^{k}(y)=\pi_{x}(y) / \pi_{x}\left(S_{k}\right)$ for $y \in S_{k}$ for each $k \in\{0,1, \ldots, d-1\}$.
- We conclude $\frac{K^{n d+k}(x, y)}{K^{n d+k}(x, S)} \rightarrow \frac{\pi_{x}(y)}{\pi_{x}\left(S_{k}\right)}$ for all
$k \in\{0,1, \ldots, d-1\}$ where $x \in S_{0}$ by definition and $y \in S_{k}$.

Periodic ratio limits

- We say that we have a periodic ratio limit if for $x, y \in S_{0}$

$$
\lim _{n \rightarrow \infty} \frac{K^{n d}\left(y, S_{0}\right)}{K^{n d}\left(x, S_{0}\right)}=\lambda(x, y)=\frac{h(y)}{h(x)}
$$

- Proposition

If we have both periodic Yaglom and ratio limits on S_{0} then for any $k, m \in\{0,1, \ldots, d-1\}, u \in S^{k}$ and $y \in S_{m}$,

$$
K^{n d+d-m+k}(u, y) / K^{n d+d-m+k}\left(u, S_{k}\right) \rightarrow \pi_{u}(y) / \pi_{u}\left(S_{m}\right)
$$

Theory applied to our example

- Let $S_{0}=2 \mathbb{Z}$ and let $x \in S_{0}$.
- We check that for $y \in 2 \mathbb{Z}$,

$$
\lim _{n \rightarrow \infty} \frac{K^{2 n}(x, y)}{K^{2 n}(x, 2 \mathbb{Z})}=\frac{1+\rho}{1} \sigma_{\xi(x)}(y) \text { where } \sigma_{\xi(x)}(2 \mathbb{Z})=\frac{1}{1+\rho}
$$

- From Proposition 1 we then get for $y \in 2 \mathbb{Z}-1$,

$$
\lim _{n \rightarrow \infty} \frac{K^{2 n+1}(x, y)}{K^{2 n}(x, 2 \mathbb{Z}-1)}=\frac{1+\rho}{\rho} \sigma_{\xi(x)}(y) \text { where } \sigma_{\xi(x)}(2 \mathbb{Z}-1)=\frac{\rho}{1+\rho} .
$$

Checking the periodic Yaglom limit I

- Assume $x, y \geq 1$. Similar to the classical ballot problem, there are two types of paths from x to y : those that visit 0 and those that do not. From the reflection principle, any path from x to y that visits 0 has a corresponding path from $-x$ to y with the same probability of occurring.
- Thus, if ${ }_{\{0\}} K^{n}(x, y)$ denotes the probability of going from x to y without visiting zero, we have

$$
K^{n}(x, y)={ }_{\{0\}} K^{n}(x, y)+K^{n}(-x, y)={ }_{\{0\}} K^{n}(x, y)+K^{n}(x,-y)
$$

- From the coupling argument, ${ }_{\{0\}} K^{n}(x, y)=P^{n}(x, y)$.

Checking the periodic Yaglom limit II

- For $x, y \geq 0$,

$$
Q^{n}(x, y)=K^{n}(x,|y|):=K^{n}(x, y)+K^{n}(x,-y) .
$$

- Hence,

$$
\begin{aligned}
K^{n}(x, y) & =K^{n}(x,|y|)-K^{n}(x,-y) \\
& =K^{n}(x,|y|)-\left(K^{n}(x, y)-{ }_{\{0\}} K^{n}(x, y)\right) \\
& =\frac{1}{2}\left({ }_{\{0\}} K^{n}(x, y)+K^{n}(x,|y|)\right) .
\end{aligned}
$$

- Similarly,

$$
K^{n}(x,-y)=\frac{1}{2}\left(K^{n}(x,|y|)-{ }_{\{0\}} K^{n}(x, y)\right)
$$

Checking the periodic Yaglom limit III

- For $x, y>0$ and both even, from (35) in Vere-Jones and Seneta

$$
\left.\begin{array}{rl}
\{0\} & K^{2 n}(x, y)
\end{array}\right)=P^{2 n}(x, y) .
$$

- Moreover,

$$
\begin{aligned}
\left.K^{2 n}(x,|y|)\right) & =Q^{2 n}(x, y)+Q^{2 n}(x,-y) \\
& =P^{2 n}(x+1, y+1)+P^{2 n}(x+1,-(y+1)) \\
& \sim(x+1)\left(\sqrt{\frac{a}{b}}\right)^{x}(y+1)\left(\sqrt{\frac{b}{a}}\right)^{y} \sqrt{\frac{1}{\pi}} \frac{(4 a b)^{n}}{n^{3 / 2}}
\end{aligned}
$$

Checking the periodic Yaglom limit IV

- Let τ_{δ} be the time to absorption for the chain X. so

$$
P_{x}\left(\tau_{\delta}=n\right)=P_{x+1}(\tau=n) \text { and }
$$

$$
\begin{equation*}
P_{x}\left(\tau_{\delta}>2 n\right)=\sum_{v=n+1}^{\infty} f_{x+1,0}^{2 v-1} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& P_{x}(\tau>2 n) \\
& \quad \sim \sum_{v=n+1}^{\infty} \frac{(x+1) \cdot 2^{2 v}}{(2 \pi)^{1 / 2}(2 v-1)^{3 / 2}} b^{\frac{1}{2}(2 v-1-(x+1))} a^{\frac{1}{2}(2 v-1+(x+1))} \\
& \quad \sim \frac{(x+1)}{(2 \pi)^{1 / 2}}\left(\sqrt{\frac{a}{b}}\right)^{x} \frac{(4 a b)^{n}}{(2 n)^{3 / 2}} \frac{4 a}{1-4 a b} .
\end{aligned}
$$

Checking the periodic Yaglom limit V

- Hence, for $x, y>0$,

$$
\begin{aligned}
& \frac{K^{2 n}(x, y)}{P_{x}(\tau>2 n)}=\frac{1}{2} \frac{\left.K^{2 n}(x,|y|)\right)+{ }_{\{0\}} K^{2 n}(x, y)}{P_{x}(\tau>2 n)} \\
& \sim \frac{\frac{1}{2}(x+1)\left(\sqrt{\frac{a}{b}}\right)^{x}(y+1)\left(\sqrt{\frac{b}{a}}\right)^{y} \sqrt{\frac{1}{\pi}} \frac{(4 a b)^{n}}{n^{3 / 2}}}{\frac{(x+1)}{(2 \pi)^{1 / 2}}\left(\sqrt{\frac{a}{b}}\right)^{x} \frac{(4 a b)^{n}}{(2 n)^{3 / 2}} \frac{4 a}{1-4 a b}} \\
& +\frac{\frac{1}{2} \frac{x y}{\sqrt{\pi} n^{3 / 2}}(\sqrt{a b})^{2 n}\left(\frac{a}{b}\right)^{x / 2}\left(\frac{b}{a}\right)^{y / 2}}{\frac{(x+1)}{(2 \pi)^{1 / 2}}\left(\sqrt{\frac{a}{b}}\right)^{x} \frac{(4 a b)^{n}}{(2 n)^{3 / 2}} \frac{4 a}{1-4 a b}} \\
& \sim \frac{1-4 a b}{a}\left(\frac{1+|y|+\xi y}{2}\right)\left(\sqrt{\frac{b}{a}}\right)^{y}=(1+\rho) \sigma_{\xi(x)}(y) .
\end{aligned}
$$

Checking the periodic Yaglom limit VI

$$
\begin{aligned}
& \frac{K^{2 n}(x,-y)}{P_{x}(\tau>2 n)} \\
& \quad=\frac{1}{2} \frac{\left(K^{2 n}(x,|y|)-{ }_{\{0\}} K^{2 n}(x, y)\right.}{P_{x}(\tau>2 n)} \\
& \quad \sim(y+1)\left(\sqrt{\frac{b}{a}}\right)^{y} \frac{1-4 a b}{2 a}-\frac{x y}{x+1}\left(\sqrt{\frac{b}{a}}\right)^{y} \frac{1-4 a b}{2 a} \\
& \quad=\frac{1-4 a b}{a}\left(\frac{1+|y|-\xi y}{2}\right)\left(\sqrt{\frac{b}{a}}\right)^{y}=(1+\rho) \sigma_{\xi(x)}(-y)
\end{aligned}
$$

Finally, for $y=0, K^{2 n}(x, 0)=P_{x+1,1}^{2 n}$ so

$$
\begin{aligned}
\frac{K^{2 n}(x, 0)}{P_{x}(\tau>2 n)} & =\frac{P_{x+1,1}^{2 n}}{P_{x}(\tau>2 n)}=\frac{(x+1)\left(\sqrt{\frac{a}{b}}\right)^{x} \sqrt{\frac{1}{\pi}} \frac{(4 a b)^{n}}{n^{3 / 2}}}{\frac{(x+1)}{(2 \pi)^{1 / 2}}\left(\sqrt{\frac{a}{b}}\right)^{x} \frac{(4 a b)^{n}}{(2 n)^{3 / 2}} \frac{4 a}{1-4 a b}} \\
& =\frac{1-4 a b}{a}=(1+\rho) \sigma_{\xi(x)}(0)
\end{aligned}
$$

Checking the periodic Yaglom limit VII

- Therefore starting from x even we have a periodic Yaglom limit with density $(1+2 \sqrt{a b}) \sigma_{\xi}(\cdot)$ on $S_{0}=2 \mathbb{Z}$ with $\xi=x /(|x|+1) \in[0,1]$.
- Similarly, for $x, y>0$ even, $K^{2 n}(-x, y)=K^{2 n}(x,-y)$ and $K^{2 n}(-x,-y)=K^{2 n}(x, y)$; hence, starting from $-x$ even we get a Yaglom limit $(1+2 \sqrt{a b}) \sigma_{\xi}(\cdot)$ on $2 \mathbb{Z}$ with $\xi=x /(|x|+1)$ so $\xi \in[-1,0]$.

Checking the periodic ratio limit

- Again taking $S_{0}=2 \mathbb{Z}$,

$$
\begin{aligned}
\frac{K^{2 n}(y, 2 \mathbb{Z})}{K^{2 n}(x, 2 \mathbb{Z})} & =\frac{P_{y}(\tau>2 n)}{P_{x}(\tau>2 n)} \\
& \sim \frac{(|y|+1)(\sqrt{a / b})^{|y|}}{(|x|+1)(\sqrt{a / b})^{|x|}}=\frac{h_{0}(y)}{h_{0}(x)}
\end{aligned}
$$

- In fact h_{0} is the unique ρ-harmonic function for Q
- in the family of ρ-harmonic functions for K

$$
\begin{equation*}
h_{\xi}(y):=[1+|y|+\xi y]\left(\sqrt{\frac{a}{b}}\right)^{|y|} \quad \text { for } y \in \mathbb{Z} \tag{6}
\end{equation*}
$$

Checking the periodic Yaglom limit VIII

- Applying Proposition 2, starting from u odd we have a periodic Yaglom limit on the evens with density $(1+2 \sqrt{a b}) \sigma_{\xi(u)}(\cdot)$ on $S_{0}=2 \mathbb{Z}$ with $\xi=u /(|u|+1) \in[0,1]$.
- Similarly, starting from u odd we have a periodic Yaglom limit on the odds: $\frac{1+2 \sqrt{a b}}{2 \sqrt{a b}} \sigma_{\xi(u)}(\cdot)$

Cone of ρ-invariant probabilities

- The probabilities σ_{ξ} with $\xi \in[-1,1]$ form a cone.
- The extremal elements are $\xi=-1$ and $\xi=1$ since

$$
\sigma_{\xi}(y)=\frac{1+\xi}{2} \sigma_{1}(y)+\frac{1-\xi}{2} \sigma_{-1}(y)
$$

- Define the potential $G(x, y)=\sum_{n=0}^{\infty} R^{n} K^{n}(x, y)$ and
- the ρ-Martin kernel $M(y, x)=G(y, x) / G(y, 0)$.
- As a measure in $x, M(y, x) \in \mathcal{B}$ are the positive excessive measures of $R \cdot K$ normalized to be 1 at $x=0$; i.e. $\mu \geq R \mu K$ if $\mu \in \mathcal{B}$.
- Each point $y \in \mathbb{Z}$ is identified with the measure $M(y, \cdot) \in \mathcal{B}$, which by the Riesz decomposition theorem is extremal in \mathcal{B}.

The ρ-Martin entrance boundary

- As $y \rightarrow+\infty, M(y, \cdot) \rightarrow M(+\infty, \cdot)=\sigma_{1}(\cdot) / \sigma_{1}(0)$.
- We conclude $+\infty$ is a point in the Martin boundary of \mathbb{Z}.
- We have therefore identified $+\infty$ in the Martin boundary with the ρ-invariant measure $\sigma_{1}(\cdot) / \sigma_{1}(0)$, which is identified with the point +1 in the topological boundary of

$$
\left\{\xi=\frac{x}{1+|x|}: x \in \mathbb{Z}\right\}
$$

- By a similar argument we see $-\infty$ is also in the Martin boundary of \mathbb{Z}.
- As $y \rightarrow+\infty, M(y, \cdot) \rightarrow M(-\infty, \cdot)=\sigma_{-1}(\cdot) / \sigma_{-1}(0)$.
- Again we have identified $-\infty$ in the Martin boundary with the ρ-invariant measure $\sigma_{-1}(\cdot) / \sigma_{-1}(0)$ which is identified with the point -1 in the topological boundary of

$$
\left\{\xi=\frac{x}{1+|x|}: x \in \mathbb{Z}\right\} .
$$

Harry Kesten's example

- Kesten (1995) constructed an amazing example of a sub-Markov chain possessing most every nice property-including having a ρ-invariant qsd-that fails to have a Yaglom limit.
- Kesten's example has the same state space and the same structure as ours.
- The only difference is that at any state x there is a probability r_{x} of holding in state x and probabilities $a\left(1-r_{x}\right)$ and $b\left(1-r_{x}\right)$ of moving one step closer or further from zero.
- If $\alpha=a\left(1-r_{0}\right)$, then our chain is exactly Kesten's chain watched at the times his chain changes state.
- It is pretty clear Harry could have derived our example with a moment's thought, but he focused on the non-existence of Yaglom limits. His example is orders of magnitude more sophisticated and complicated than ours.

[^0]: ${ }^{1}$ Partially supported by NSF Grant CMMI-0856489
 ${ }^{2}$ Partially supported by NSERC Grant 4551 / 2011

