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1. Four problems on random shifts

1. Extra head problem

Consider a two-sided sequence of independent and fair coin
tosses. Find a coin that landed heads so that the other coin
cosses are still independent and fair.

2. Marriage of Lebesgue and Poisson

Let η be a stationary Poisson process in Rd . Find a point T of η
such that

θTη − δ0
d
= η.
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3. Poisson matching

Let η and ξ be two independent stationary Poisson processes
with equal intensity. Find a point T of ξ such that

θT (η + δ0, ξ)
d
= (η, ξ + δ0)

4. Unbiased shifts of Brownian motion

Let B = (Bt )t∈R be a two-sided standard Brownian motion. Find
a random time T such that the space-time shifted process
(BT +t − BT )t∈R is a Brownian motion, independent of BT .
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2. Invariant transports of random measures

Setting

(Ω,F ,P) is a σ-finite measure space. For the first three
problems P can be taken as probability measure.

Definition

A random measure on Rd is a random element in the space of
all locally finite measures on Rd equipped with the Kolmogorov
product σ-field.

Günter Last Extra head problem



Setting

We consider mappings θs : Ω→ Ω, s ∈ Rd , satisfying θ0 = idΩ

and the flow property

θs ◦ θt = θs+t , s, t ∈ Rd .

The mapping (ω, s) 7→ θsω is supposed to be measurable. We
assume that P is stationary, that is

P ◦ θs = P, s ∈ Rd .

Definition

A random measure ξ is invariant if

ξ(θsω,B − s) = ξ(ω,B), ω ∈ Ω, s ∈ Rd ,B ∈ Bd .
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Definition

Let ξ be an invariant random measure on Rd . The measure

Qξ(A) :=

∫∫
1{θsω ∈ A, s ∈ B} ξ(ω,ds)P(dω), A ∈ F ,

is called the Palm measure of ξ (with respect to P), where
B ∈ Bd satisfies 0 < λd (B) <∞.

Theorem (Refined Campbell theorem)

Let ξ be an invariant random measure on Rd . Then

EP

∫
f (θs, s) ξ(ds) = EQξ

∫
f (θ0, s) ds

for all measurable f : Ω× Rd → [0,∞).
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Definition

An allocation rule is a measurable mapping τ : Ω× Rd → Rd

that is equivariant in the sense that

τ(θtω, s − t) = τ(ω, s)− t , s, t ∈ Rd ,P-a.e. ω ∈ Ω.

Theorem (L. and Thorisson ’09)

Let ξ and η be two invariant random measures with positive and
finite intensities. Let τ be an allocation rule and define
T := τ(·,0). Then

Qξ(θT ∈ ·) = Qη

iff τ is balancing ξ and η, that is∫
1{τ(s) ∈ ·}ξ(ds) = η P-a.e.
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Remark

The previous result extends to weighted transport kernels and
to LCSC-groups G; see L. and Thorisson ’09 and L. ’10a. It can
even be extended to random measures on a space, on which G
operates; see L. ’10b and Kallenberg ’11.
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Example

Assume that ξ = λd is Lebesgue measure and that η is a
simple point process. An allocation rule τ is balancing ξ and η,
iff P-a.e.

λd (Cτ (t)) = 1, t ∈ η,

where the cell Cτ (t) is given by

Cτ (t) := {s ∈ Rd : τ(s) = t}.

Theorem (Holroyd and Peres ’05)

Assume that η is a stationary unit-rate Poisson process and let
τ be an allocation rule. Then τ is balancing Lebesgue measure
and η iff

P(θτ(0)η ∈ ·) = P(η + δ0 ∈ ·).
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Example

Assume that ξ and η are simple point processes. An allocation
rule τ is balancing ξ and η, iff τ is a perfect matching (P-a.e.) of
the points of ξ with the points of η.

Theorem (Holroyd, Pemantle, Peres, Schramm ’09)

Assume that ξ and η are independent stationary unit-rate
Poisson processes (defined on their canonical probability
space) and let τ be an allocation rule. Then τ is balancing ξ
and η iff

θT (ξ + δ0, η)
d
= (ξ, η + δ0),

where T := τ((ξ + δ0, η),0).
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3. Local time of Brownian motion

Setting

B = (Bt )t∈R is a two-sided standard Brownian motion starting in
0 (B0 = 0) defined on its canonical probability space (Ω,F ,P0).

Definition

An unbiased shift (of B) is a random time T (negative values
are allowed) such that:

B(T ) := (BT +t − BT )t∈R is a Brownian motion,
B(T ) is independent of BT .
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Example

If T ≥ 0 is a stopping time, then (BT +t − BT )t≥0 is a one-sided
Brownian motion independent of BT . However, the example

T := inf{t ≥ 0 : Bt = a}

shows that (BT +t − BT )t∈R need not be a two-sided Brownian
motion.

Example

Consider a deterministic T ≡ t0. Then B(T ) = (Bt0+t − Bt0)t∈R is
a two-sided Brownian. However, since B(T )

−t0 = −Bt0 , this
two-sided motion is not independent of BT = Bt0 .
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Remark

An unbiased shift with BT = 0 is characterized by

(BT +t )t∈R
d
= B.

According to Mandelbrot (The Fractal Geometry of Nature)

”...the process of Brownian zeros is stationary in a weakened
form.“ He is using the (non-rigorous) concept of conditional
stationarity.
However, the stopping time

T := inf{t ≥ 1 : Bt = 0}

has the property BT = 0. But clearly B(T ) is not a Brownian
motion. The missing link will be provided by balancing local
times at different levels.
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Definition

Let `0 be the local time (random measure) at zero. Its
right-continuous (generalised) inverse is defined as

Tr :=

{
sup{t ≥ 0 : `0[0, t ] = r}, r ≥ 0,
sup{t < 0 : `0[t ,0] = −r}, r < 0.

Theorem

Let r ∈ R. Then Tr is an unbiased shift.

Idea of the proof: The intervals [Tn,Tn+1], n ∈ Z, split B into
iid-cycles. The distribution of these cycles is time-reversible.
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Definition

The local time measure `x at x ∈ R can be defined by

`x (C) := lim
h→0

1
h

∫
1{s ∈ C, x ≤ Bs ≤ x + h}ds.

Hence ∫
f (Bs, s)ds =

∫∫
f (x , s)`x (ds)dx P0-a.s.

for all measurable f : R2 → [0,∞).
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Definition

For t ∈ R the shift θt : Ω→ Ω is given by

(θtω)s := ωt+s, s ∈ R.

For x ∈ R let

Px := P0(B + x ∈ ·), x ∈ R,

where B is the identity on Ω.

Remark

It is a possible to choose a perfect version of local times, that is
a (measurable) kernel satisfying for all x ∈ R and Px -a.e. that `x

is diffuse and

`x (θtω,C − t) = `x (ω,C), C ∈ B, t ∈ R,
`x (B, ·) = `0(B − x , ·).
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Definition

Let

P :=

∫
Pxdx

be the distribution of a Brownian motion with a ”uniformly
distributed“ starting value.

Remark

Stationary increments of B imply that P is stationary, that is

P = P ◦ θs, s ∈ R.
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Theorem (Geman and and Horowitz ’73)

The Palm (probability) measure of the local time `x is Px .

Definition

Let ν be a probability measure on R. Define

Pν :=

∫
Pxν(dx), `ν :=

∫
`xν(dx).

Corollary

Pν is the Palm probability measure of `ν .

Remark

In the language of stochastic analysis `ν is a continuous
additive functional with Revuz measure ν.
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4. Existence of unbiased shifts

Definition (Skorokhod embedding problem)

Let ν be a probability measure on R. A random time T embeds
ν if BT has distribution ν.

Theorem

Let T be a random time and ν be a probability measure on R.
Then T is an unbiased shift embedding ν if and only if the
allocation rule τ defined by τT (s) := T ◦ θs + s is balancing `0

and `ν .
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Example

Let r > 0. Then

τ(s) := inf{t > s : `0([s, t ]) = r}, s ∈ R.

Then τ is an allocation rule balancing `0 with itself. Hence
Tr = τ(·,0) is an unbiased shift (embedding δ0).
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Theorem

Let ν be a probability measure on R with ν{0} = 0. Then the
stopping time

T := inf{t > 0 : `0[0, t ] = `ν [0, t ]}

embeds ν and is an unbiased shift.

Remark

The above stopping time above was introduced in Bertoin and
Le Jan (1992) as a solution of the Skorokhod embedding
problem.

Theorem (L., Mörters and Thorisson ’14)

Let ν be a probability measure on R. Then there is a non-
negative stopping time that is an unbiased shift embedding ν.
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Theorem (L., Mörters and Thorisson ’14)

Let ξ and η be jointly stationary orthogonal diffuse random
measures on R with finite and equal intensities. Then the
mapping τ : Ω× R→ R, defined by

τ(s) := inf{t > s : ξ[s, t ] = η[s, t ]}, s ∈ R,

is an allocation rule balancing ξ and η.

Remark

The previous theorem holds in a more general stationary
setting. The assumption of equal intensities has to be replaced
by

E
[
ξ[0,1]

∣∣I] = E
[
η[0,1]

∣∣I] P-a.e.,

where I is the invariant σ-field. In the Brownian setting, P is
trivial on I. (If A ∈ I then either P(A) = 0 or P(Ac) = 0.)
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5. Moment properties of unbiased shifts

Theorem (L., Mörters and Thorisson ’14)

If T is an unbiased shift embedding a probability measure
ν 6= δ0, then

E0
√
|T | =∞.

Idea of the proof:
Take an x > 0 such that ν[x ,∞) = P(BT > x) > 0.
On the event {BT > x}, T can be bounded from below by
the minimum of two independent hitting times for −x ,
independent of BT .
Use the moment properties of hitting times.
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Theorem (L., Mörters and Thorisson ’14)

Suppose ν is a distribution with ν{0} = 0. If the stopping time
T ≥ 0 is an unbiased shift embedding ν, then

E0T 1/4 =∞.

Theorem (L., Mörters and Thorisson ’14)

Suppose ν is a distribution with a finite first moment and let T
be the Bertoin/Le Jan stopping time. Then, for all β ∈ [0,1/4),

E0T β <∞.
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Idea of the proof: Recall that

T = inf{t > 0 : X (t) = 0}

where Xt := `0[0, t ]− `ν [0, t ]. Define a time-change

Ur := inf{t > 0 : `0[0, t ] + `ν [0, t ] = r}, r > 0,

with respect to a clock which does not tick during the flat pieces
of X . Then

X̃ (r) := X (Ur ), r > 0

resembles a random walk whose return times have tails of
order t−

1
2 . As Ur ∼ r2 by Brownian scaling, the return times for

the original X have tails of order t−
1
4 .
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