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January 12, 2015
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The purpose of this talk

to honor François
for his 60-th birthday
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And to opportunistically take advantage of his great popularity and the
large number of friends gathered in this occasion to advertise my recently
published book:

Fourier Analysis and
Stochastic Processes
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What is it about?

Consider a point process N on R with event times {Tn}n∈Z. The “random
Dirac comb”

X (t) :=
∑

n∈Z

δ(t − Tn),

is not a bona fide stochastic process. In particular, one cannot define for
the random Dirac comb associated with a stationary point process a power
spectral measure as in the case of wide-sense stationary stochastic
processes.
The natural extension of the notion of power spectral density is the
so-called Bartlett spectral measure
Here we concentrate on the computation of such measures.
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Who needs it?

1 biology (spike trains)

2 communications (ultra-wide band)

3 perhaps nobody needs it.
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in Math. 598, 249-445, Springer (1976).
D.J. Daley, D. Vere–Jones, An Introduction to the Theory of Point

Processes, Springer, NY (1988, 2003).
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Second moment measure

Second-order: for all compact sets C ,

E
[
N (C )2

]
<∞ .

M2 (A× B) := E [N (A)N (B)] .

M2 is the intensity measure of N × N. By Campbell’s theorem,

E

[∑

n∈N

∑

k∈N

g(Xn,Xk)

]

=

∫

Rm

∫

Rm

g(t, s)M2(dt × ds) .
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L
2
N(M2)

The collection of functions ϕ : Rm → C such that

∫

Rm

∫

Rm

|ϕ(t)ϕ(s)|M2(dt × ds) <∞ ,

⇔ E
[
N(|ϕ|)2

]
<∞ ,

⇒ E [N(|ϕ|)] <∞, E
[
N(|ϕ|2)

]
<∞

⇒ L2N(M2) ⊆ L1
C

(ν) ∩ L2
C

(ν) .

(where ν(C ) := E [N(C )])
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Wide-sense stationary point process

Second-order, plus
E [N(C + t)] = E [N(C )] ,

and
E [N(A+ t)N(B + t)] = E [N(A)N(B)] .

Immediate consequence: for all non-negative ϕ, ψ,

E

[(∫

R

ϕ(t)N(dt)

)(∫

R

ψ(τ + t)N(dt)

)]

is independent of τ ∈ R.
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Covariance measure

Basic lemma from measure theory
(X ,X ), µ loc. fin. measure on X⊗k , invariant by the simultaneous shifts,
that is,

µ((A1 + h)× · · · × (Ak + h)) = µ(A1 × · · · × Ak) .

Then, there exists a locally finite measure µ̂ on X k−1 such that for all
non-negative measurable functions f from X k to R,

∫

X k

f (x1, . . . , xk)µ(dx1 × · · · × dxk)

=

∫

X

{∫

X k−1

f (x1, x1 + x2, . . . , x1 + xk)µ̂(dx2 × · · · × dxk)

}
dx1.
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Application to point processes

M2 ((A+ t)× (B + t)) = M2 (A× B)

Therefore, for all ϕ, ψ ∈ L2N(M2),

∫

Rm

∫

Rm

ϕ (t)ψ∗ (s)M2 (dt × ds)

=

∫

Rm

(∫

Rm

ϕ (t)ψ∗ (s + t) dt

)
σ (ds)

for some locally finite measure σ.

In fact, σ can be identified to the intensity measure of the Palm version of
a given stationary point process.
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Since for ϕ, ψ ∈ L1
C

(Rm),

E [N(ϕ)]E [N(ψ)]∗

=

(
λ

∫

Rm

ϕ (t) dt

)(
λ

∫

Rm

ψ∗ (s) ds

)

= λ2
∫

Rm

(∫

Rm

ϕ (t)ψ∗ (t + s) dt

)
ds ,

For ϕ, ψ ∈ L2N(M2),

cov

(∫

Rm

ϕ (t)N (dt) ,

∫

Rm

ψ (s)N (ds)

)

=

∫

Rm

(∫

Rm

ϕ (t)ψ∗ (t + s) dt

)
ΓN (ds)

where the locally finite measure

ΓN := σ − λ2ℓm

is called the covariance measure of the stationary second-order point
process N.
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Covariance of the renewal process.

Let N be a stationary renewal point process with renewal function R .

ΓN(dt) = λ(R(dt)− λ dt) .

Homogeneous Poisson process on the line. By the covariance formula,

cov (N(ϕ),N(ψ)) = λ

∫

R

ϕ (t)ψ∗ (t) dt .

= λ

∫

R

(∫

R

ϕ (t)ψ∗ (t + s) dt

)
ε0(ds) ,

and therefore, ,
ΓN = λε0 .

P. Brémaud (Inria and EPFL) Point process spectra Jan. 12, 2015 13 / 47



Bartlett spectral measure

The unique locally finite measure µN such that

Var

(∫
ϕ (t)N (dt)

)
=

∫
|ϕ̂ (ν)|2 µN (dν)

for all ϕ ∈ BN , where BN ⊆ L2N(M
2) is a vector space of functions called

the test function space.
By polarization, for all ϕ, ψ ∈ BN ,

cov (N(ϕ) , N(ψ)) =

∫
ϕ̂(ν)ψ̂∗(ν)µN(dν).
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BN should contain a class of functions rich enough to guarantee uniqueness
of the measure µN : if the locally finite measures µ1 and µ2 are such that

∫
|ϕ̂(ν)|2 µ1(dν) =

∫
|ϕ̂(ν)|2 µ2(dν)

for all ϕ ∈ BN , then µ1 ≡ µ2.
Note that BN ⊆ L1

C

(Rm) since, as we observed earlier, L2N(M
2) ⊆ L1

C

(Rm).
In particular the Fourier transform of any ϕ ∈ BN is well-defined.
J. Neveu (1976): BN contains at least the functions that are, together

with their Fourier transform, O
(
1/ |x |2

)
as |x | → ∞.
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Examples

Poisson impulsive white noise. The covariance function is λ times the
Dirac measure at the origin, and therefore its spectral measure is λ times
the Lebesgue measure, therefore it admits a power spectral density that is
a constant:

fN(ν) = λ.
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Examples

Regular grid.
Regular T -grid on R with random origin, that is N ≡ {nT + U ; n ∈ Z}
where T > 0, and U is uniform random [0,T ]. Here, λ = 1/T .

µN =
1

T 2

∑

n 6=0

ε n
T
,

and we can take BN specified by the following two conditions

ϕ ∈ L1
C

(R) ∩ L2
C

(R)

and ∑

n∈Z

∣∣∣ϕ̂
( n

T

)∣∣∣ <∞ .

Note that the latter condition implies (ℓ1
C

(Z) ⊂ ℓ2
C

(Z))

∑

n∈Z

∣∣∣ϕ̂
( n

T
u
)∣∣∣

2
<∞.
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Regular grid, proof
Weak Poisson summation formula : Both sides of the following equality

∑

n∈Z

ϕ (u + nT ) =
1

T

∑

n∈Z

ϕ̂
( n

T

)
e2iπ

n
T
u. (⋆)

are well-defined, and the equality holds for almost-all u ∈ R.
By (⋆),

∫

R

ϕ (t)N (dt) =
∑

n∈Z

ϕ (U + nT ) =
1

T

∑

n∈Z

ϕ̂
( n

T

)
e2iπ

n
T
U

and therefore

E

[∣∣∣∣
∫

R

ϕ (t)N (dt)

∣∣∣∣
2
]

=
1

T 2
E

[∑

n∈Z

∑

k∈Z

ϕ̂
( n

T

)
ϕ̂∗

(
k

T

)
e2iπ(

n−k
T

U)

]

=
1

T 2

∑

n∈Z

∣∣∣ϕ̂
( n

T

)∣∣∣
2
.
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Also

E

[∫

R2

ϕ (t)N (dt)

]
=
∑

n∈Z

E [ϕ (U + nT )]

=
1

T

∫ T

0
ϕ (u + nT ) du =

1

T

∫

R

ϕ (t) dt =
1

T
ϕ̂ (0) .

Therefore

Var

(∫

R

ϕ (t)N (dt)

)

=
1

T 2

∑

n∈Z

∣∣∣ϕ̂
( n

T

)∣∣∣
2
−

1

T 2
|ϕ̂ (0)|2

=
1

T 2

∑

n 6=0

∣∣∣ϕ̂
( n

T

)∣∣∣
2
=

∫

R

|ϕ̂ (ν)|2 µN(dν) .
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Examples

Cox process.
(on R

m with stochastic intensity {λ(t)}t∈Rm .) Suppose that {λ(t)}t∈Rm is
a wss process with mean λ and Cramér spectral measure µλ. Then the
Bartlett spectrum of N is

µN(dν) = µλ(dν) + λdν ,

and we can take BN = L1
C

(Rm) ∩ L2
C

(Rm). Even more, in this case
BN = L2N(M2)
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Examples

Renewal point process
Intensity λ and non-lattice renewal distribution F . Define

F̂ (2iπν) =

∫

R+

e−2iπνtdF (t) .

Note that, since F is non-lattice, F̂ (ν) 6= 1, except for ν = 0. The
covariance measure is given by the formula

Γ(dx) = λR(dx)− λ2ℓ(dx) .

The measure R(dx) is the sum of a Dirac measure at 0, ε(dx), and of a
symmetric measure U(dx), given by, for dx ⊂ (0,∞),

U(dx) =
∑

n≥1

F ∗n(dx) .

Assumption: U admits a density u and∫ ∞

0
|u(t)− λ|dt <∞ . (1)
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Define

ĝ(ν) =

∫ ∞

0
e−2iπνt(u(t)− λ)dt

We then have, taking into account the symmetry of u,

∫

R

e−2iπνt(u(t)− λ)dt = ĝ(ν) + ĝ∗(ν)

We shall prove below that

ĝ(ν) =
F̂ (2iπν)

1− F̂ (2iπν)
+

1

2iπν
(2)

Combining the above results, we see that the Bartlett spectrum of N
admits the density

fN(ν) = λ

(
1 + Re

(
F̂ (2iπν)

1− F̂ (2iπν)

))
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We shall now prove (2). For θ > 0, we have

∫ ∞

0
e−(θ+2iπν)t(u(t)− λ)dt

=
∑

n≥1

∫ ∞

0
e−(θ+2iπν)tF ∗n(dt)

−

∫ ∞

0
e−(θ+2iπν)tλdt

=
∑

n≥1

F̂ (θ + 2iπν)n −
λ

θ + 2iπν

=
F̂ (θ + 2iπν)

1− F̂ (θ + 2iπν)
−

λ

θ + 2iπν

For ν 6= 0, letting θ tend to 0 in the first term of the above equality, we
obtain by dominated convergence

∫∞
0 e−2iπνt(u(t)− λ)dt. Letting θ tend

to 0 in F̂ (θ + 2iπν), we obtain F̂ (2iπν), again by dominated convergence.
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A universal covariance formula

N ≡ {Xn}n∈N p.p. on R
m, locally finite and simple, spectral measure µN .

{Zn}n∈N iid, values in (K ,K) and distribution Q, independent of N.
L
p
C

(ℓ× Q) := {
∫
E [|ϕ(t,Z )|p] dt <∞}

Let ϕ : Rm × K → R such that

ϕ ∈ L1
C

(ℓ× Q) ∩ L2
C

(ℓ× Q)

In particular, ϕ(t,Z ) ∈ L2
C

(P) t-a.e. and we can define t-a.e.

ϕ̄(t) := E [ϕ(t,Z )] .

Also ϕ̄ ∈ L1
C

(Rm) ∩ L2
C

(Rm) and for Q-almost all z ∈ K ,
ϕ(·, z) ∈ L1

C

(Rm) ∩ L2
C

(Rm).

̂̄ϕ(ν) = E [ϕ̂(ν,Z )] := ¯̂ϕ(ν).

Finally, suppose that
ϕ̄ ∈ BN .
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cov

(∑

n∈N

ϕ(Xn,Zn) ,
∑

n∈N

ψ(Xn,Zn)

)

=

∫

Rm

̂̄ϕ(ν) ̂̄ψ
∗
(ν)µN(dν)

+ λ

∫

Rm

cov
(
ϕ̂(ν,Z ), ψ̂∗(ν,Z )

)
dν,
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Thinning

Z1 ∈ 0, 1, P(Z1 = 1) = α. Let

Nα(C ) :=
∑

n≥1

Zn1{Xn∈C}.

µNα
:= α2µN + λα(1− α)ℓm

and BNα
:= L1

C

(Rm) ∩ L2
C

(Rm) ∩ BN

Must show that for any function ϕ ∈ BNα
,

Var

∫

Rm

ϕ(x)Nα(dx) =

∫

Rm

|ϕ̂(ν)| µNα
(dν).

Now ∫

Rm

ϕ(x)Nα(dx) =
∑

n≥1

Znϕ(Xn) .

Applying the general formula with ϕ(x , z) = ψ(x , z) = zϕ(x) with
ϕ ∈ BNα

.
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Jittering

Ñ defined by its points
{Xn + Zn}n∈N.

µ
Ñ
(dν) = |ψZ (ν)|

2 µN(dν)

+ λ
(
1− |ψZ (ν)|

2
)
dν,

where
ψZ (ν) = E

[
e2iπ<ν,Z>

]
.

We can take

B
Ñ
= {ϕ ; E [ϕ(t + Z )] ∈ BN} ∩ L1

C

(Rm) ∩ L2
C

(Rm) .
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Jittered regular grid.
We can take

B
Ñ
=

{
ϕ ;
∑

n∈Z

∣∣∣ϕ̂( n
T
)
∣∣∣ <∞

}
∩ L1

C

(R) ∩ L2
C

(R)

Jittered Cox process.
We can take

B
Ñ
= L1

C

(Rm) ∩ L2
C

(Rm)

Indeed condition E [ϕ(t + Z )] ∈ BN , that is, in this particular case,
E [ϕ(t + Z )] ∈ L1

C

(Rm) ∩ L2
C

(Rm), is exactly ϕ ∈ L1
C

(Rm) ∩ L2
C

(Rm).
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Clustering.

{Zn}n≥1 is an iid collection of point processes on R
m, independent of N.

Let Z be a point process on R
m with the same distribution as the Zn’s.

Define

ψZ (ν) := E

[∫

Rm

e2iπ〈ν,t〉Z (dt)

]

The function ψZ is well defined under the assumption

E [Z (Rm)] <∞.

(In particular, Z is almost surely a finite point process.)
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We now define

Ñ(C ) =N (C ) +
∑

n≥1

Zn(C − Xn),

N̂(C ) =
∑

n≥1

Zn(C − Xn),

Formally

Var

(∫

Rm

ϕ(t)Ñ(dt)

)

= Var


∑

n≥1

{
ϕ (Xn) +

∫

Rm

ϕ (Xn + s)Zn(ds)

}


=Var


∑

n≥1

ϕ (Xn,Zn)


 ,

where

ϕ (x , z) = ϕ (x) +

∫

Rm

ϕ (x + s) z (ds) .
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We have

E [ϕ (x ,Z )] = ϕ (x) + E

[∫

Rm

ϕ (x + s)Z (ds)

]

ϕ̂ (ν, z)

= ϕ̂ (ν) +

∫

Rm

(∫

Rm

ϕ (t + s) z (ds)

)
e−2iπ〈ν,t〉dt

= ϕ̂ (ν) +

∫

Rm

(∫

Rm

ϕ (t + s) e−2iπ〈ν,t〉dt

)
z (ds)

= ϕ̂ (ν) +

∫

Rm

ϕ̂ (ν) e2iπ〈ν,s〉z (ds)

= ϕ̂ (ν)

(
1 +

∫

Rm

e2iπ〈ν,s〉z (ds)

)

Also
̂̄ϕ (ν) = ϕ̂ (ν) (1 + ψZ (ν))
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Applying the general covariance formula, we obtain

µ
Ñ
(dν) = |1 + ψZ (ν)|2 µN (dν)

+ λVar

(∫

Rm

e2iπ〈ν,s〉Z (ds)

)
dν.

Similarly

µ
N̂
(dν) = |ψZ (ν)|2 µN (dν)

+ λVar

(∫

Rm

e2iπ〈ν,s〉Z (ds)

)
dν.
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Multivariate point process

N1 and N2 are wss and moreover jointly wss, that is if

E [N1(A+ t)N2(B + t)] = E [N1(A)N2(B)] .

One says that N1 and N2 admit the cross-spectral measure µN1,N2 ,
sigma-finite signed, if for all ϕ1 ∈ BN1 , ϕ2 ∈ BN2

cov (N1(ϕ1),N2(ϕ2))

=

∫

Rm

ϕ̂1(ν)ϕ̂2(ν)
∗ µN1,N2(dν).

Bivariate wss Cox processes. Let N1 and N2 be wss Cox processes with
stochastic intensities {λ1(t)}t∈R and {λ2(t)}t∈R, jointly stationary wss

stochastic processes with cross-spectral measure µλ1,λ2 .

µN1,N2 = µλ1,λ2 .
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Cross-spectrum of a point process and its jittered version.

cov


∑

n≥1

ϕ(Xn) ,
∑

n≥1

ψ(Xn + Zn)




=

∫

Rm

ϕ̂(ν)E
[
ψ̂(ν + Z )∗

]
µN(dν).

But

ψ̂(ν + Z ) =

∫

Rm

ψ(t + Z ) e−2iπνt dt

=

∫

Rm

ψ(t) e−2iπν(t−Z) dt

= ψ̂(ν)E
[
e+2iπνZ

]

where the expectation is with respect to Z a random variable with the
common probability distribution of the marks.

P. Brémaud (Inria and EPFL) Point process spectra Jan. 12, 2015 34 / 47



Finally

cov

(∑

n∈Z

ϕ(Xn),
∑

n∈Z

ψ(Xn + Zn)

)

=

∫

Rm

ϕ̂(ν)ψ̂(ν)∗E
[
e−2iπνZ

]
µN(dν) ,

and therefore
µN1,N2(dν) = E

[
e−2iπνZ

]
µN(dν) .
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Random sampling

The sampler: A wss point process on R
m with intensity λ, point sequence

{Vn}n≥1.
The sampled process is wss

X (t) =

∫

Rm

e2iπ〈ν,t〉ZX (dν) +mX

The sampled process and the sampler are independent.
The sample brush

Y (t) =
∑

n≥1

X (Vn)δ(t − Vn)

is identified with the signed measure

∑

n≥1

X (Vn)εVn
.

.
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The extended spectral measure of the sample brush: A locally finite
measure µY such that, for any ϕ ∈ BY ,

Var

(∫

Rm

ϕ (t)X (t)N(dt)

)

=

∫

Rm

|ϕ̂ (ν)|2 µY (dν) ,

where BY is a large enough vector space of functions, here also called the
“test functions’’.
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∫

Rm

ϕ (t)Y (t) dt

=

∫

Rm

ϕ (t)


∑

n≥1

X (Vn) δ (t − Vn)


 dt

=
∑

n≥1

ϕ (Vn)X (Vn) =

∫

Rm

ϕ (t)X (t)N (dt) ,

Var

(∫

Rm

ϕ (t)Y (t) dt

)

=

∫

Rm

|ϕ̂ (ν)|2 µY (dν) .
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µY = µN ∗ µX + λ2µX + |mX |
2 µN .

If BN is stable with respect to multiplications by complex exponential
functions, we can take for test function space BY = BN .
To be compared with that giving the spectral measure µY of the product
of two independent wss stochastic processes, Y (t) = Z (t)X (t):
µY = µZ ∗ µX .)
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Examples

Cox sampling.

µY = µλ ∗ µX + λ2µX + |mX |
2 µλ

+ λ
(
σ2X + |mX |

2
)
ℓm

where ℓm is the Lebesgue measure.

BN = L1
C

(Rm) ∩ L2
C

(Rm) = BY .
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Examples

Regular sampling.

fY (ν) =

(
1

T

)2∑

n∈Z

fX

(
ν −

n

T

)
.

The spectral density can recovered from that of the sample comb provided
the former is band-limited, with band width 2B < 1

T
.
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Examples

Poisson sampling.
fY (ν) = λ2fX (ν) + λσ2X .

Whatever the sampling frequency νs = λ, there is no aliasing.
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Reconstruction

Approximate the sampled process by a filtered version of the sample comb:∫

Rm

ϕ (t − s)Y (s) ds

reconstruction error:

ǫ = E

[∣∣∣∣
∫

Rm

ϕ (t − u)Y (u) du − X (t)

∣∣∣∣
2
]
.

The reconstruction error is, when the sampled process is centered:

ǫ =

∫

Rm

|λϕ̂ (ν)− 1|2 µX (dν)

+ λ

∫

Rm

|ϕ̂ (ν)|2 (µX ∗ µλ) (dν) .

Denoting by S the support (assumed of Lebesgue measure 2B <∞) of
the spectral measure µX ,

ϕ̂ (ν) =
1

λ
1S(ν) .
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Examples

Poisson sampling, bad news

ǫ = σ2X
2B

λ
·

Therefore, sampling at the “Nyquist rate” λ = 2B gives a very poor
performance, not better than the estimate based on no observation at all.
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Examples

Regular sampling

ǫ =

∫

R

∣∣∣∣
1

T
ϕ̂ (ν)− 1

∣∣∣∣
2

µX (dν)

+
1

T

∫

R

|ϕ̂ (ν)− 1|2 dν

In the band-limited case, T = 1/2B (that is, λ = 2B) the error is null.
Therefore, the process is perfectly reconstructed by

X (t) =

∫

R

ϕ (t − s)X (s)N (ds)

=
∑

n∈Z

X (Tn) sinc (2B(t − Tn)) ,
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Examples

Effects of jitter in Nyquist sampling

ǫ =
1

2B

(∫ B

−B

σ2X

(
1−

(
|ψZ |

2 ∗ f̃X

)
(ν)
)
dν

)
,

where f̃X is the normalized power spectral density of the process X (t).
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THE END
(for the time being)
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