Branching type processes

with Stationary Ergodic Immigration

Eitan Altman[†]

†MAESTRO group, INRIA, France

Dec 2008

1 Background

- Most queueing Theory is Markovian
- •Some results are insensitive to correlations, only depend on the the first moment. Example: MG1 PS queue.
- •Objective: Develop tools for handling non Markovian queues.
- •Examples of tools: Stochastic linear difference equations, branching processes.

Background on Branching

•19th centuty: concern among Victorians about possible extinction of aristocratic surnames.

•Galton posed this question in the *Educational Times* of 1873. The Reverand Watson replied with a solution. Joint publication of the solution in 1874.

•The G-W process: $X_{n+1} = \sum_{i=1}^{X_n} \xi_n^{(i)}$.

•The G-W process with immigratioon: $X_{n+1} = \sum_{i=1}^{X_n} \xi_n^{(i)} + B_n$.

Example 1: discrete branching with migration

Queue with Vacations, Gated Regime

- $\bullet M/G/1/\infty$ queue,
- •Arrival rate λ , i.i.d. service times $\{D_n\}$ with first and second moments d, $d^{(2)}$.
- •Sequence of vacations: V_n . Will be assumed stationary ergodic, with first and second moments v, $v^{(2)}$.
- •Gated regime: at the nth end of vacation, a gate is closed (nth polling instant). Then the server goes on serving the customers present at the queue at that polling instant:

Then the server leaves on vacation.

- •We denote:
 - B_n := the number of arrivals during the nth vacation.
 - ullet $\xi_h^{(i)}$:= the number of arrivals during the service time of a customer
- Then:

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_n^{(i)} + B_n, \qquad n \ge n_0.$$

Denote

$$A_n(x) = \sum_{i=1}^{x} \xi_n^{(i)}$$

Then A_n are nonnegative and divisible:

$$A_n(x+y) = A_n^{(1)}(x) + A_n^{(2)}(y)$$

where $A_n^{(i)}$ are i.i.d.

Example 2: continuous branching with migration

Queue with Vacations, Gated Regime

• Define the time to serve N customers as:

$$\tau(N) := \sum_{i=1}^{N} D_i$$

- •Let $\mathcal{N}(T)$ denote the number of arrivals during a random duration T, where the arrival process is Poisson with rate λ , and is independent of T.
- •Denote by $\hat{\mathcal{A}}_n(C_n) = \tau(\mathcal{N}(C_n))$, i.e. the sum of service times of all the arrivals during C_n .
- •We obtain

$$C_{n+1} = \hat{\mathcal{A}}_n(C_n) + V_{n+1}. \tag{1}$$

Example 3: multitype discrete branching

Discrete time infinite server queue

- •Service times are considered to be i.i.d. and independent of the arrival process.
- •We represent the service time as the discrete time analogous of a phase type distribution: there are N possible service phases.
- •The initial phase k is chosen at random according to some probability p(k).
- •If at the beginning of slot n a customer is in a service phase i then it will move at the end of the slot to a service phase j with probability P_{ij} .
- •With probability $1 \sum_{j=1}^{N} P_{ij}$ it ends service and leaves the system at the end of the time slot.
- ullet P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue is strictly smaller than 1), which means that services ends in finite time w.p.1. and that (I-P) is invertible.

- •Let $\xi^{(k)}(n)$, k=1,2,3,..., n=1,2,3,... be i.i.d. random matrices of size $N\times N$. Each of its element can take values of 0 or 1, and the elements are all independent.
- •The ijth element of $\xi^{(k)}(n)$ has the interpretation of the indicator that equals one if at time n, the kth customer among those present at service phase i moved to phase j.
- •Obviously, $E[\xi_{ij}^{(k)}(n)] = P_{ij}$.
- •Let $B_n = (B_n^1, ..., B_n^N)^T$ be a column vector for each integer n, where B_n^i is the number of arrivals at the nth time slot that start their service at phase i.
- $\bullet B_n$ is a stationary ergodic sequence and has finite expectation.
- • Y_n^i := number of customers in phase i at time n. Satisfies

$$Y_{n+1} = A_n(Y_n) + B_n$$

where the ith element of the column vector $A_n(Y_n)$ is given by

$$[A_n(Y_n)]_i = \sum_{j=1}^N \sum_{k=1}^{Y_n^j} \xi_{ji}^{(k)}(n)$$
 (2)

Example 4: Polling systems with N queues are special cases!

• The server moves cyclically (fixed order) between the queues 1, ..., M. It requires walking times (vacations) for moving from one queue to another.

•Upon arrival at a queue, some customers are served. The number to be served is determined by the "polling regime":

Globally Gated (GG) regime (Boxma, Levy, Yechiali 1992):

The cycle time satisfies a **one dimensional recursion**.

We obtained the first two moments of the cycle and the expected waiting times at all queues.

Gated and Exhaustive regimes [see e.g. book by Takagi 1986]: satisfy M-dimensional recursive equations.

No explicit expression for 2nd moments of buffer occupancy or cycle times.

No explicit expression for the expected waiting times.

2 Introduction and Background on Lévy fields

Introduction

• Consider the stochastic recursive equation:

$$Y_{n+1} = A_n(Y_n) + B_n, \qquad n \ge n_0.$$
 (3)

- $ullet Y_n$ is a vector in \mathbb{R}^m_+
- $ullet \{A_n\}_n$ are
- i.i.d., independent of B_n .
- Increasing in the arg for all n.
- nonnegative **Additive Lévy field taking values in** \mathbb{R}^m_+
- $ullet \{B_n\}$ stationary ergodic taking values in \mathbb{R}^m_+
- (3) defines a Continuous Multitype Branching Process (BP) with Migration

Background: Lévy processes

Lévy process taking values in \mathbb{R}_+ :

- Example: Poisson Point Process with intensity λ ,
- Expectation and variance are linear: E[A(t)] = tA and $cov[A(t)] = t\Gamma$.
- For random time τ independent of A,

$$E[A(\tau)] = E[\tau]A$$
, $var[A(\tau)] = E[\tau]\Gamma + var[\tau]A^2$,

• **Divisibility:** $A(\cdot)$ is divisible if the following holds. For any k, there exist $A^{(i)}(\cdot)$, i=0,...,k such that for any non-negative $x_i, i=0,...,k$.

$$A\left(\sum_{i=0}^{k} x_i\right) = \sum_{i=0}^{k} A^{(i)}(x_i)$$
 (4)

where $\{A^{(i)}(\cdot)\}_{i=0,1,2,...,k}$ are i.i.d. with the same distribution as $A(\cdot)$.

Lévy process taking values in \mathbb{R}^m_+ (subordinators):

- Example: Poisson arrival process where the nth arrival brings a batch $B_n=(B_n^1,...,B_n^m).\ B_n^i$ customers go to queue i.
- For A(t) in \mathbb{R}^m_+ , $E[A(t)] = \mathcal{A}t$ where \mathcal{A} is of dimension m.
- $cov[A(t)] = \Gamma t$, where Γ is a matrix of dimension $m \times m$.

Example of Random fields

Random field taking values in \mathbb{R}_+

- Example: Black and white picture.
- The level of grey is a function of two parameters: x and y.

Random field taking values in \mathbb{R}^d_+

- Example: color picture.
- ullet The level of the green, red and blue as a function of the location x and y.

Background: Additive Lévy Fields

Let $A^{(1)},...,A^{(d)}$ be d indep. Lévy proc. on \mathbb{R}^m with scalar "time" parameters.

Additive Lévy field: $A(y) = A^{(1)}(y_1) + ... + A^{(d)}(y_d), \quad \forall y = (y_1, ..., y_d) \in \mathbb{R}^d_+.$

The expectation: $\mathrm{E}[A(y)] = \sum_{j=1}^d y^j \mathcal{A}^{(j)} = \mathcal{A}y$, \mathcal{A} is a matrix whose jth column equals $\mathcal{A}^{(j)}$, $\mathcal{A}^{(j)} = \mathrm{E}[A^{(j)}(1)]$,

The covariance matrix: $cov[A(y)] = \sum_{j=1}^d y_j \Gamma^{(j)}$, where $\Gamma^{(j)} = cov[A^{(j)}(1)]$ is the corresponding covariance matrix of $A^{(j)}(1)$.

Composition: If A_n and A_{n+1} are Additive Lévy processes in \mathbb{R}^m_+ then their composition is also an Additive Lévy process.

Properties of Lévy Fields

- •Expectation and Covariance are linear in y,
- •Let τ be a non-negative random variable in \mathbb{R}^d_+ , independent of A and represented as a column vector. Then

$$E[A(\tau)] = \sum_{j=1}^{m} \mathcal{A}^{(j)} E[\tau_j],$$

and.

$$\operatorname{cov}[A(\tau)] = \sum_{j=1}^{d} \operatorname{E}[\tau_j] \Gamma^{(j)} + \mathcal{A} \operatorname{cov}[\tau] \mathcal{A}^T,$$
(5)

where τ_i is the *j*th entry of the vector τ .

Result 1: Steady State Probabilities of CBP

Iterating $Y_{n+1} = A_n(Y_n) + B_n$, we obtain from A1:

$$Y_{2} = A_{1}(Y_{1}) + B_{1}$$

$$= A_{1}(A_{0}(Y_{0}) + B_{0}) + B_{1}$$

$$= A_{1}^{(0)}(A_{0}(Y_{0})) + A_{1}^{(1)}(B_{0}) + B_{1}$$

$$= A_{1}^{(0)}A_{0}^{(0)}(Y_{0}) + A_{1}^{(1)}(B_{0}) + B_{1}.$$

$$Y_3 = A_2(Y_2) + B_2$$

$$= A_2(A_1(Y_1) + B_1) + B_2$$

$$= A_2(A_1(A_0(Y_0) + B_0) + B_1) + B_2$$

$$= A_2^{(0)}A_1^{(0)}A_0^{(0)}(Y_0) + A_2^{(1)}A_1^{(1)}(B_0) + A_2^{(2)}(B_1) + B_2$$

In general:

$$Y_n = \sum_{j=0}^{n-1} \left(\prod_{i=n-j}^{n-1} A_i^{(n-j)} \right) (B_{n-j-1}) + \left(\prod_{i=0}^{n-1} A_i^{(0)} \right) (Y_0), \quad n > 0$$
 (6)

(we understand $\prod_{i=n}^k A_i(x) = x$ whenever k < n, and $\prod_{i=n}^k A_i(x) = A_k A_{k-1} ... A_n$ whenever k > n).

•Under fairly general assumptions, $\lim_{n\to\infty} \left(\prod_{i=0}^{n-1} A_i^{(0)}\right)(y) = 0$, so Y_n has a limit as $n\to\infty$ distributed like

$$Y_n^* =_d \sum_{j=0}^{\infty} \left(\prod_{i=n-j}^{n-1} A_i^{(n-j)} \right) (B_{n-j-1}), \qquad n \in \mathbb{Z},$$
 (7)

where for each integer i, $\{A_i^{(j)}(\cdot)\}_j$ have the same distribution as $A_i(\cdot)$.

- •Sufficient condition: stationarity plus $\|A\| < 1$.
- •Branching processes: $\{A_i^{(j)}(\cdot)\}_j$ are i.i.d.
- •Stochastic differential equations: they are equal.
- •The representation holds for general dependence: Semi linear processes.

Application: Expected waiting time for a gated queue with vacations

Consider an arbitrary customer. Upon arrival, it has to wait for

- 1. The residual cycle time C_{res} ,
- 2. The service time of all the customers that arrived during C_{past} which is the past cycle time: $d(\lambda E[C_{past}]) = \rho E[C_{past}]$

We have from [Baccelli & Brémaud, 1994]

$$E[C_{res}] = E[C_{past}] = \frac{E[C_0^2]}{2E[C_0]}.$$

Thus the expected waiting time of an arbitrary customer is given by

$$E[W_n] = (1+\rho)\frac{E[C_0^2]}{2E[C_0]},$$

The expected number of customers in queue in stationary regime (not including service) is obtained using Little's Theorem: $\lambda E[W_n]$.

Conclusion: we need to compute $E[C_0]$ and $E[C_0^2]$!

Computing $E[C_0]$ and $E[C_0^2]$

- •Dynamics: $C_{n+1} = \hat{\mathcal{A}}_n(C_n) + V_{n+1}$.
- $\bullet \hat{\mathcal{A}}_n(c)$ is the workload that arrives during duration [0,c).
- •Introduce the correlation function: $r(n) = E[V_0V_n]$.
- The first and second moments of C_n in stationary regime are given by

$$E[C_n] = \frac{v}{1 - \rho},$$

$$E[C_n^2] = \frac{1}{(1-\rho^2)} \left(\frac{\lambda v d^{(2)}}{1-\rho} + r(0) + 2 \sum_{j=1}^{\infty} \rho^j r(j) \right).$$
 (8)

Proof of expressions for $E[C_0^2]$

Useful relations: 2nd moment of workload arriving during ${\it T}$

•If N is a random variable independent of the sequence D_n , and $\tau(N) := \sum_{i=1}^N D_i$ then

$$E[\tau(N)^2] = E[N^2]d^2 + E[N](d^{(2)} - d^2).$$
(9)

•Let $\mathcal{N}(T)$ denote the number of arrivals during a random duration T, where the arrival process is Poisson with rate λ , and is independent of T. Then

$$E[\mathcal{N}(T)^2] = \lambda^2 E[T^2] + \lambda E[T]. \tag{10}$$

•If we take an arbitrary T and choose $N = \mathcal{N}(T)$, then we get from (9)-(10)

$$E[(\hat{A}(T))^{2}] = E[\tau(\mathcal{N}(T))^{2}]$$

$$= d^{2}(\lambda^{2}E[T^{2}] + \lambda E[T]) + \lambda E[T](d^{(2)} - d^{2})$$

$$= d^{2}\lambda^{2}E[T^{2}] + \lambda E[T]d^{(2)}.$$
(11)

•Also, if we take $T = \tau(N)$, then

$$E[\mathcal{N}(\tau(N))]^2 = \lambda^2 \left[E[N^2] d^2 + E[N] (d^{(2)} - d^2) \right] + \lambda dE[N].$$
 (12)

•From $C_{n+1} = \hat{\mathcal{A}}_n(C_n) + V_{n+1}$ we have

$$E[C_{n+1}^2] = E[\hat{\mathcal{A}}_n(C_n)^2] + v^{(2)} + 2E[\hat{\mathcal{A}}_n(C_n)V_{n+1}]$$
$$= \left(\rho^2 E[C_n^2] + \lambda E[C_n]d^{(2)}\right) + v^{(2)} + 2E[\hat{\mathcal{A}}_n(C_n)V_{n+1}].$$

•To compute the last term, we now use the explicit form of C_0 :

$$C_0 = \sum_{j=0}^{\infty} \left(\prod_{i=-j}^{-1} \hat{\mathcal{A}}_i^{(-j)} \right) (V_{-j}).$$

•We use the fact that the processes $\{\hat{\mathcal{A}}_i^{(j)}\}$ are independent of $\{V_n\}$. We get:

$$E[\hat{\mathcal{A}}_{n}(C_{n})V_{n+1}] = E[\hat{\mathcal{A}}_{0}(C_{0})V_{1}] = E\left[\hat{\mathcal{A}}_{0}\left(\sum_{j=0}^{\infty} \left(\prod_{i=-j}^{-1} \hat{\mathcal{A}}_{i}^{(-j)}\right)(V_{-j})\right)V_{1}\right]$$

$$= \rho \sum_{j=0}^{\infty} \rho^{j} E[V_{-j}V_{1}] = \sum_{j=1}^{\infty} \rho^{j} r(j).$$

Substituting this, we obtain the second moment.

3 2nd order moments in continuous B.P.

Joint work with Dieter Fiems

Notation: •Auto-correlations: $\mathcal{B}(k) =_{def} \mathrm{E}[B_0(B_k)^T]$, where k is an integer • $\hat{\mathcal{B}}(k) =_{def} \mathcal{B}(k) - \mathrm{E}[B_0] \mathrm{E}[B_0]^T$. (Note: $\hat{\mathcal{B}}(0)$ equals $\mathrm{cov}[B_0]$.)

Assumptions: Consider $Y_{n+1} = A_n(Y_n) + B_n, \ n \ge n_0$, where

- A_n are i.i.d. additive Lévy fields,
- A_n independent of $\{B_n\}$,
- $\{B_n\}$ are stationary ergodic,
- All eigenvalues of A are within the unit disk,
- the elements of B_0 have finite second order moments.

Theorem: Consider $Y_{n+1} = A_n(Y_n) + B_n$ in stationary regime. Then

- (i) $E[Y_0] = (\mathcal{I} \mathcal{A})^{-1} E[B_0],$
- (ii) $cov(Y_0)$ is the unique solution of the linear equations:

$$cov[Y_0] = \sum_{j=1}^{m} E[Y_0^j] \Gamma^{(j)} + \mathcal{A} cov[Y_0] \mathcal{A}^T + cov[B_0] + \sum_{j=1}^{\infty} \mathcal{A}^j \hat{\mathcal{B}}(j) + (\mathcal{A}^j \hat{\mathcal{B}}(j))^T,$$
(13)

where $E[Y_0^j]$ denotes the *j*th element of $E[Y_0]$.

Proof for first moments:

Taking expectation in $Y_{n+1} = A_n(Y_n) + B_n$ we get

$$\mathrm{E}[Y_0] = \mathcal{A}\,\mathrm{E}[Y_0] + \mathrm{E}[B_0],$$

Since the eigenvalues of \mathcal{A} are within the unit disk, $(\mathcal{I} - \mathcal{A})$ is inverible. Hence we obtain (i).

Proof of uniqueness for the second moments

•Let Z_1 and Z_2 be two solutions of

$$\operatorname{cov}[Y_0] = \sum_{j=1}^m \operatorname{E}[Y_0^j] \Gamma^{(j)} + \mathcal{A} \operatorname{cov}[Y_0] \mathcal{A}^T + \operatorname{cov}[B_0] + \sum_{j=1}^\infty \mathcal{A}^j \hat{\mathcal{B}}(j) + (\mathcal{A}^j \hat{\mathcal{B}}(j))^T.$$

- •Define $Z = Z_1 Z_2$. Then Z satisfies $Z = \mathcal{A}^T Z \mathcal{A}$.
- •Iterating, we obtain,

$$Z = \lim_{n \to \infty} \mathcal{A}^n Z(\mathcal{A}^T)^n = 0$$

where the last equality follows from the fact that all the eigenvalues of \mathcal{A} are within the unit disk.

•This implies uniqueness.

Proof for expression of second moments

- •Consider $Y_{n+1} = A_n(Y_n) + B_n$.
 - Multiply both sides by their transpose,
 - take expectation and
 - use the stationarity

we get:

$$E[Y_0Y_0^T] = E[A_0(Y_0)A_0^T(Y_0)] + E[B_0B_0^T] + E[A_0(Y_0)B_0^T] + E[B_0A_0^T(Y_0)].$$

The covariance matrix $cov[Y_0]$ therefore equals,

$$cov[Y_0] = cov[A_0(Y_0)] + cov[B_0] + E[A_0(Y_0)B_0^T]$$
$$-\mathcal{A}E[Y_0]E[B_0]^T + E[B_0A_0(Y_0)^T] - E[B_0](\mathcal{A}E[Y_0])^T.$$
(14)

It remains to compute the red and the blue expressions.

Red Expression: Using the convariance expression (5) of Additive Lévy processes at random "time":

$$\operatorname{cov}[A_0(Y_0)] = \sum_{j=1}^m \operatorname{E}[Y_0^j] \Gamma^{(j)} + \mathcal{A} \operatorname{cov}[Y_0] \mathcal{A}^T.$$
 (15)

Blue Expression: We use the explicit expression (7) for the stationary state process to obtain

$$\mathbf{E}[Y_0 B_0^T] = \sum_{j=0}^{\infty} \mathbf{E} \left\{ \bigotimes_{i=-j}^{-1} A_{-j,i} (B_{-j-1}) B_0^T \right\} \\
= \sum_{j=0}^{\infty} \mathbf{E} \left(\mathbf{E} \left\{ \bigotimes_{i=-j}^{-1} A_{-j,i} (B_{-j-1}) B_0^T \right\} \middle| \mathbf{B}_0^T \right) \\
= \sum_{j=0}^{\infty} \mathbf{E} \left(\mathcal{A}^j B_{-j-1} B_0^T \right) = \sum_{j=0}^{\infty} \mathcal{A}^j \mathcal{B}(j+1), \tag{16}$$

with $\mathbf{B}_{\mathbf{0}}^- := (B_0, B_{-1}, B_{-2}, ...)$

Substituting the last expression, we compute,

$$\mathbf{E}[A_0(Y_0)B_0^T] = \mathbf{E}\left[\mathbf{E}\left[A_0(Y_0)B_0^T | Y_0, B_0\right]\right] = \mathcal{A}\mathbf{E}\left[Y_0B_0^T\right] = \sum_{j=1}^{\infty} \mathcal{A}^j \mathcal{B}(j),$$

or equivalently,

$$\mathbf{E}[A_0(Y_0)B_0^T] = \sum_{j=1}^{\infty} \mathcal{A}^j \hat{\mathcal{B}}(j) + \sum_{j=1}^{\infty} \mathcal{A}^j \, \mathbf{E}[B_0] \, \mathbf{E}[B_0]^T$$

$$= \sum_{j=1}^{\infty} \mathcal{A}^j \hat{\mathcal{B}}(j) + \mathcal{A}(\mathcal{I} - \mathcal{A})^{-1} \, \mathbf{E}[B_0]^T$$

$$= \sum_{j=1}^{\infty} \mathcal{A}^j \hat{\mathcal{B}}(j) + \mathcal{A} \, \mathbf{E}[Y_0] \, \mathbf{E}[B_0]^T. \tag{17}$$

Substitution of expressions RED and BLUE provides the covariance equation.

4 Symmetric gated polling systems

m gated queues.

Arrivals:

- Arrival processes $\rho^i(t)$ to queue i are i.i.d. Levy processes, distributed as some $\rho(t)$, $t \in \mathbb{R}_+$.
- ullet $\overline{
 ho}=\mathrm{E}[
 ho(1)]$ and $\sigma^2=\mathrm{var}[
 ho(1)]$

Walking times:

- $\{V_n\}$: Stationary ergodic series of walking times, $v := E[V_0]$.
- $\mathcal{V}(j) := \mathrm{E}[V_0 V_j]$ for some integer j and $\hat{\mathcal{V}}(j) := \mathrm{E}[V_0 V_j] v^2$.

Notation:

- I(n):= the queue visited at the nth polling instant
- S(n) := nth polling instant (time at which the server arrives at the nth queue)
- $Y_n^i := S(n) S(n-i)$, (i=1,2,...,m) is the time between the (n-i)th and the nth polling instant.
- In particular, Y_n^m is the duration of the nth cycle.
- ullet Let ho_n^i be i.i.d. copies of the process ho^i , n=1,2,3,...

The dynamics:
$$Y_{n+1}^1 = S(n+1) - S(n) = \rho_n^m(Y_n^m) + V_n \,, \tag{18}$$

$$Y_{n+1}^2 = S(n+1) - S(n-1) = Y_n^1 + \rho_n^m(Y_n^m) + V_n \,,$$

$$Y_{n+1}^3 = S(n+1) - S(n-2) = Y_n^2 + \rho_n^m(Y_n^m) + V_n \,,$$

$$\vdots$$

$$Y_{n+1}^m = S(n+1) - S(n-m+1) = Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,.$$

- •(18) states that the time between S(n) and S(n+1) is the sum of the busy period at queue I(n) plus the nth vacation time;
- •The busy period = the workload that arrived at queue I(n) during the nth cycle.

Notation:

- I(n):= the queue visited at the nth polling instant
- S(n) := nth polling instant (time at which the server arrives at the nth queue)
- $Y_n^i := S(n) S(n-i)$, (i=1,2,...,m) is the time between the (n-i)th and the nth polling instant.
- In particular, Y_n^m is the duration of the nth cycle.
- ullet Let ho_n^i be i.i.d. copies of the process ho^i , n=1,2,3,....

The dynamics:
$$Y_{n+1}^1 = S(n+1) - S(n) = \rho_{\mathbf{n}}^{\mathbf{m}}(\mathbf{Y}_{\mathbf{n}}^{\mathbf{m}}) + V_n \,, \tag{18}$$

$$Y_{n+1}^2 = S(n+1) - S(n-1) = Y_n^1 + \rho_n^m(Y_n^m) + V_n \,,$$

$$Y_{n+1}^3 = S(n+1) - S(n-2) = Y_n^2 + \rho_n^m(Y_n^m) + V_n \,,$$

$$\vdots$$

$$Y_{n+1}^m = S(n+1) - S(n-m+1) = Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,.$$

- •(18) states that the time between S(n) and S(n+1) is the sum of the busy period at queue I(n) plus the nth vacation time;
- ulletThe busy period = the workload that arrived at queue I(n) during the nth cycle.

Notation:

- I(n):= the queue visited at the nth polling instant
- S(n) := nth polling instant (time at which the server arrives at the nth queue)
- $Y_n^i := S(n) S(n-i), \quad (i=1,2,...,m)$ is the time between the (n-i)th and the nth polling instant.
- In particular, Y_n^m is the duration of the nth cycle.
- ullet Let ho_n^i be i.i.d. copies of the process ho^i , n=1,2,3,....

The dynamics:
$$Y_{n+1}^1 = S(n+1) - S(n) = \rho_n^m(Y_n^m) + \mathbf{V_n} \,, \qquad (18)$$

$$Y_{n+1}^2 = S(n+1) - S(n-1) = Y_n^1 + \rho_n^m(Y_n^m) + V_n \,,$$

$$Y_{n+1}^3 = S(n+1) - S(n-2) = Y_n^2 + \rho_n^m(Y_n^m) + V_n \,,$$

$$\vdots$$

$$\vdots$$

$$Y_{n+1}^m = S(n+1) - S(n-m+1) = Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,.$$

- •(18) states that the time between S(n) and S(n+1) is the sum of the busy period at queue I(n) plus the nth vacation time;
- •The busy period = the workload that arrived at queue I(n) during the nth cycle.

Notation:

- I(n):= the queue visited at the nth polling instant
- S(n) := nth polling instant (time at which the server arrives at the nth queue)
- $Y_n^i:=S(n)-S(n-i), \quad (i=1,2,...,m)$ is the time between the (n-i)th and the nth polling instant.
- In particular, Y_n^m is the duration of the nth cycle.
- ullet Let ho_n^i be i.i.d. copies of the process ho^i , n=1,2,3,....

The dynamics:
$$Y_{n+1}^{1} = S(n+1) - S(n) = \rho_{\mathbf{n}}^{\mathbf{m}}(\mathbf{Y}_{\mathbf{n}}^{\mathbf{m}}) + V_{n} ,$$
 (18)
$$Y_{n+1}^{2} = S(n+1) - S(n-1) = Y_{n}^{1} + \rho_{n}^{m}(Y_{n}^{m}) + V_{n} ,$$

$$Y_{n+1}^{3} = S(n+1) - S(n-2) = Y_{n}^{2} + \rho_{n}^{m}(Y_{n}^{m}) + V_{n} ,$$

$$\vdots$$

$$Y_{n+1}^{m} = S(n+1) - S(n-m+1) = Y_{n}^{m-1} + \rho_{n}^{m}(Y_{n}^{m}) + V_{n} .$$

- •(18) states that the time between S(n) and S(n+1) is the sum of the busy period at queue I(n) plus the nth vacation time;
- •The busy period = workload that arrived at queue I(n) during the nth cycle.

Interpretation of the other equations:

For i > 0, we have

$$Y_{n+1}^{i+1} = S(n+1) - S(n-i) = S(n+1) - S(n) + S(n) - S(n-i)$$

where

- •by definition, $S(n) S(n-i) = Y_n^i$, and
- • $S(n+1) S(n) = \rho_n^m(Y_n^m) + V_n$ (see previous slide).

$$Y_{n+1} = A_n(Y_n) + B_n$$
, with

$$\begin{array}{lll} Y_{n+1}^1 &= S(n+1) - S(n) = & \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^2 &= S(n+1) - S(n-1) = & Y_n^1 + \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^3 &= S(n+1) - S(n-2) = & Y_n^2 + \rho_n^m(Y_n^m) + V_n \,, \\ &\vdots & & \vdots & & \\ Y_{n+1}^m &= S(n+1) - S(n-m+1) = & Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,. \end{array}$$

where $Y_{n+1} = (Y_{n+1}^1, ..., Y_{n+1}^m)^T$,

Vector notation:

$$Y_{n+1} = A_n(Y_n) + B_n$$
, with

$$\begin{array}{ll} Y_{n+1}^1 &= S(n+1) - S(n) = & \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^2 &= S(n+1) - S(n-1) = & Y_n^1 + \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^3 &= S(n+1) - S(n-2) = & Y_n^2 + \rho_n^m(Y_n^m) + V_n \,, \\ &\vdots \\ Y_{n+1}^m &= S(n+1) - S(n-m+1) = & Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,. \end{array}$$

$$Y_{n+1} = A_n(Y_n) + B_n$$
, with

$$\begin{array}{lll} Y_{n+1}^1 &= S(n+1) - S(n) = & \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^2 &= S(n+1) - S(n-1) = & Y_n^1 + \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^3 &= S(n+1) - S(n-2) = & Y_n^2 + \rho_n^m(Y_n^m) + V_n \,, \\ &\vdots & & \vdots & & \\ Y_{n+1}^m &= S(n+1) - S(n-m+1) = & Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,. \end{array}$$

where $B_n = V_n(1, 1, 1, ..., 1)^T$,

•in the special case that $\{B_n\}$ is i.i.d. Y_n is a Markov chain

$$Y_{n+1} = A_n(Y_n) + B_n$$
, with

$$\begin{array}{lll} Y_{n+1}^1 &= S(n+1) - S(n) = & \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^2 &= S(n+1) - S(n-1) = & Y_n^1 + \rho_n^m(Y_n^m) + V_n \,, \\ Y_{n+1}^3 &= S(n+1) - S(n-2) = & Y_n^2 + \rho_n^m(Y_n^m) + V_n \,, \\ &\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{n+1}^m &= S(n+1) - S(n-m+1) = & Y_n^{m-1} + \rho_n^m(Y_n^m) + V_n \,. \end{array}$$

$$Y_{n+1} = Y_n^1 \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + Y_n^2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + Y_n^{m-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} + \rho_n^m (Y_n^m) \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + B_n$$

$$Y_{n+1} = A_n(Y_n) + B_n$$
, where

$$A_n(y) = A_n^{(1)}(y_1) + \dots + A_n^{(m)}(y_m),$$
(19)

where $y=(y_1,...,y_m)^T\in\mathbb{R}^m_+$, $t\in\mathbb{R}_+$ and

$$A_n^{(1)}(t) = (0, t, 0, 0, ..., 0)^T,$$

$$A_n^{(2)}(t) = (0, 0, t, 0, ..., 0)^T,$$

$$\vdots$$

$$A_n^{(m-1)}(t) = (0, 0, 0, ..., 0, t)^T,$$

$$A_n^{(m)}(t) = \rho_n^m(t)(1, 1, ..., 1)^T,$$
(20)

- •For each i, $A_n^{(i)}$ is a Lévy process taking values in \mathbb{R}_+^m .
- $ullet A_n$ are Additive Lévy fields

Checking the stability condnition

Taking expectation we get:

$$\mathcal{A} = \begin{pmatrix}
0 & 0 & 0 & 0 & \dots & 0 & \overline{\rho} \\
1 & 0 & 0 & 0 & \dots & 0 & \overline{\rho} \\
0 & 1 & 0 & 0 & \dots & 0 & \overline{\rho} \\
0 & 0 & 1 & 0 & \dots & 0 & \overline{\rho} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \dots & 0 & \overline{\rho} \\
0 & 0 & 0 & 0 & \dots & 1 & \overline{\rho}
\end{pmatrix} .$$
(21)

 \mathcal{A} is known as the *Companion matrix*.

Theorem: A sufficient and necessary condition for all eigenvalues of A to be in the interior of the unit circle is

$$\overline{\rho} < \frac{1}{m}$$
.

Conclusions and Discussion

- •We use neither the "buffer occupancy" nor the "station times" approaches.
- •Advantage: one component of the state is the cycle time; its two first moments provide the expected waiting time.
- •A very similar structure is obtained in the exhaustive case.

5 Semi linear processes

We shall assume that A_n satisfy the following conditions:

A1: $A_n(y)$ has the following **divisibility property**: if for some k, $y=y^0+y^1+...+y^k$ where y^m are vectors, then $A_n(y)$ can be represented as

$$A_n(y) = \sum_{i=0}^k \widehat{A}_n^{(i)}(y^i)$$

where $\{\widehat{A}_n^{(i)}\}_{i=0,1,2,...,k}$ are identically distributed with the same distribution as $A_n(\cdot)$.

A2: (i) There is some matrix \mathcal{A} such that for every y,

$$E[A_n(y)] = \mathcal{A}y.$$

(ii) The correlation matrix of $A_n(y)$ is linear in yy^T and in y. We shall represent it as

$$E[A_n(y)A_n(y)^T] = F(yy^T) + \sum_{j=1}^d y_j \Gamma^{(j)},$$
 (22)

where F is a linear operator that maps $d \times d$ nonnegative definite matrices to other $d \times d$ nonnegative definite matrices and satisfies F(0) = 0.

Moments:

 \bullet (i) The first moment of X_n^* is given by

$$E[X_0^*] = (I - \mathcal{A})^{-1}b. \tag{23}$$

•(ii) Assume that the first and second moments b_i and $b_i^{(2)}$'s are finite and that F satisfies

$$\lim_{n \to \infty} F^n = 0. \tag{24}$$

Define Q to be the matrix whose ijth entry is $Q_{ij} = \sum_{k=1}^{d} \overline{y}_k \Gamma^{(k)}$. Then the matrix $cov(X^*)$ is the unique solution of the set of linear equations:

$$cov(X) = cov(B) + \sum_{r=1}^{\infty} \left(\mathcal{A}^r \widehat{\mathcal{B}}(r) + \left[\mathcal{A}^r \widehat{\mathcal{B}}(r) \right]^T \right) + F(cov[X]) + Q. \quad (25)$$

The second moment matrix $E[XX^T]$ in steady state is the unique solution of the set of linear equations:

$$E[XX^T] = E[B_0B_0^T] + \sum_{r=1}^{\infty} \left(\mathcal{A}^r \mathcal{B}(r) + \left[\mathcal{A}^r \mathcal{B}(r) \right]^T \right) + F(E[XX^T]) + Q(26)$$

6 Example: Discrete time infinite server queue

Example 5: Discrete time infinite server queue

- •Service times are considered to be i.i.d. and independent of the arrival process.
- •We represent the service time as the discrete time analogous of a phase type distribution: there are N possible service phases.
- •The initial phase k is chosen at random according to some probability p(k).
- •If at the beginning of slot n a customer is in a service phase i then it will move at the end of the slot to a service phase j with probability P_{ij} .
- •With probability $1 \sum_{j=1}^{N} P_{ij}$ it ends service and leaves the system at the end of the time slot.
- ullet P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue is strictly smaller than 1), which means that services ends in finite time w.p.1. and that (I-P) is invertible.

- •Let $\xi^{(k)}(n)$, k=1,2,3,..., n=1,2,3,... be i.i.d. random matrices of size $N\times N$. Each of its element can take values of 0 or 1, and the elements are all independent.
- •The ijth element of $\xi^{(k)}(n)$ has the interpretation of the indicator that equals one if at time n, the kth customer among those present at service phase i moved to phase j.
- •Obviously, $E[\xi_{ij}^{(k)}(n)] = P_{ij}$.
- •Let $B_n = (B_n^1, ..., B_n^N)^T$ be a column vector for each integer n, where B_n^i is the number of arrivals at the nth time slot that start their service at phase i.
- $\bullet B_n$ is a stationary ergodic sequence and has finite expectation.
- $\bullet Y_n^i$:= number of customers in phase i at time n. Satisfies

$$Y_{n+1} = A_n(Y_n) + B_n$$

where the ith element of the column vector $A_n(Y_n)$ is given by

$$[A_n(Y_n)]_i = \sum_{j=1}^N \sum_{k=1}^{Y_n^j} \xi_{ji}^{(k)}(n)$$
(27)

- •Numerical example: Service times are geometrically distributed,
- •The SRE becomes one dimensional. Y_n denotes the number of customers in the system.
- $ullet \xi_n^{(k)}$ is the indicator that the kth customer present at the beginning of time-slot n will still be there at the end of the time-slot.
- •The probability that a customer in the system finishes its service within a time slot is precisely $p=1-\mathsf{A}=1-E[\xi_n].$
- •We consider a Markov chain with two states $\{\gamma,\delta\}$ with transition probabilities given by

$$\mathcal{P} = \left(\begin{array}{cc} 1 - \epsilon p & \epsilon p \\ \epsilon q & 1 - \epsilon q \end{array} \right)$$

•As an example, consider the following parameters: p=q=1, at a given state there is at most one arrival with prob. $p_{\gamma}=1, p_{\delta}=0.5$. This gives:

$$var[Y^*] = \frac{1}{(1 - \mathsf{A}^2)} \left(\frac{3}{16} + \frac{2\mathsf{A}}{1 - \mathsf{A} + 2\epsilon\mathsf{A}} + \frac{3}{4} \mathsf{A} \right).$$

In Fig. 1 we plot the variance of the steady state number of customers, $var[Y^*]$, while varying ϵ and A.

Figure 1: $\mathrm{var}[Y*]$ as a function of ϵ and of A

7 Example: Delay Tolerant Ad-hoc Networks

- •Delay tolerant Ad-hoc Networks make use of nodes' mobility to compensate for lack of instantaneous connectivity.
- •Information sent by a source to a disconnected destination can be forwarded and relayed by other mobile nodes.
- •Let X_n^+ be the number of nodes that have a copy of the packet at time n,
- •Let X_n^- be the number of nodes that do not have a copy of the packet at time n.
- •Mobility: a mobile present at time n may leave and other may arrive. Let B_n be the number of new arrivals.

- •Let $\rho_n^{(i)}$ and $\hat{\rho}_n^{(i)}$ be the indicator that node i remains in the system for the next slot. ρ is used for nodes that have the packet and $\hat{\rho}$ for the others.
- •Let $\xi_n^{(i)}$ be the indicator that the source meats mobile i at time slot n. These are i.i.d. Then

$$X_{n+1}^{+} = \sum_{i=1}^{X_n^{+}} \rho_n^{(i)} + \sum_{i=1}^{X_n^{-}} \hat{\rho}_n^{(i)} \xi_n^{(i)}$$

$$X_{n+1}^{-} = \sum_{i=1}^{X_n^{-}} \hat{\rho}_n^{(i)} (1 - \xi_n^{(i)}) + B_n$$

- •Assume that the source limits the transmissions in order to save energy
- •Let ζ_n be the indicator that the source intends to transmit a packet at time n. Assume ζ_n are i.i.d.

$$X_{n+1}^{+} = \sum_{i=1}^{X_n^{+}} \rho_n^{(i)} + \zeta_n \sum_{i=1}^{X_n^{-}} \hat{\rho}_n^{(i)} \xi_n^{(i)}$$

$$X_{n+1}^{-} = \sum_{i=1}^{X_n^{-}} \hat{\rho}_n^{(i)} (1 - \zeta_n \xi_n^{(i)}) + B_n$$

•This is a semi-linear process, not a branching process

Bibliography on 1-dim CB

Definition through a discrete process

- •J. Lamperti, Continuous-state branching process, *Bull. Amer. Math. Soc.*, 73, 382-386, 1967.
- •D. R. Crey, "Asymptotic behaviour of continuous-time continuous state-space branching processes", *J. Appl. Probab.*, 11:669-677, 1974.
- •S. R. Adke and V. G. Gadag. "A new class of branching processes". In C.C. Heyde, editor, *Branching Processes: Proceedings of the First World Congress*, volume 99 of *Springer Lecture Notes*, pages 1–13, 1995.
- •A. Lambert. The genealogy of continuous-state branching processes with immigration. Journal of Probability Theory and Related Fields, 122(1):42–70, 2002.
- •**Ibrahim Rahimov**, "On stochastic model for continuous mass branching population", *Mathematics and Computers in Simulation*, 2007.

Relation with a 1-dim Lévy process

- •J. Neveu, A continuous-state branching process in relation with the GREM model of spin glass theory, Rapport interne no 267, Ecole Polytechnique.
- •J. Bertoin, Subordinators, Lévy processes with no negative jumps, and branching processes.
- •W. Stannat, "Spectral properties for a class of continuous state branching processes with immigration", J. of Functional Analysis, Vol 201, Issue 1, pp 185-227, 2003.
- •J. Bertoin and J. F. Le Gall, "The Bolthausen-Sznitman coalescent and the genealogy of continuous state branching processes", Probab. Theor. Rel. Fields 117, 249-266, 2000.