Branching type processes

with Stationary Ergodic Immigration

Eitan Altman ${ }^{\dagger}$
${ }^{\dagger}$ MAESTRO group, INRIA, France

1 Background

- Most queueing Theory is Markovian
- Some results are insensitive to correlations, only depend on the the first moment. Example: MG1 PS queue.
-Objective: Develop tools for handling non Markovian queues.
- Examples of tools: Stochastic linear difference equations, branching processes.

Background on Branching

-19th centuty: concern among Victorians about possible extinction of aristocratic surnames.

- Galton posed this question in the Educational Times of 1873. The Reverand Watson replied with a solution. Joint publication of the solution in 1874.
- The G-W process: $X_{n+1}=\sum_{i=1}^{X_{n}} \xi_{n}^{(i)}$.
-The G-W process with immigratioon: $X_{n+1}=\sum_{i=1}^{X_{n}} \xi_{n}^{(i)}+B_{n}$.

Example 1: discrete branching with migration

Queue with Vacations, Gated Regime

- $M / G / 1 / \infty$ queue,
- Arrival rate λ, i.i.d. service times $\left\{D_{n}\right\}$ with first and second moments $d, d^{(2)}$.
- Sequence of vacations: V_{n}. Will be assumed stationary ergodic, with first and second moments $v, v^{(2)}$.
- Gated regime: at the nth end of vacation, a gate is closed (nth polling instant). Then the server goes on serving the customers present at the queue at that polling instant:
Then the server leaves on vacation.
-We denote:
- $B_{n}:=$ the number of arrivals during the nth vacation.
- $\xi_{h}^{(i)}:=$ the number of arrivals during the service time of a customer
-Then:

$$
X_{n+1}=\sum_{i=1}^{X_{n}} \xi_{n}^{(i)}+B_{n}, \quad n \geq n_{0}
$$

Denote

$$
A_{n}(x)=\sum_{i=1}^{x} \xi_{n}^{(i)}
$$

Then A_{n} are nonnegative and divisible:

$$
A_{n}(x+y)=A_{n}^{(1)}(x)+A_{n}^{(2)}(y)
$$

where $A_{n}^{(i)}$ are i.i.d.

Example 2: continuous branching with migration

Queue with Vacations, Gated Regime

-Define the time to serve N customers as:

$$
\tau(N):=\sum_{i=1}^{N} D_{i}
$$

- Let $\mathcal{N}(T)$ denote the number of arrivals during a random duration T, where the arrival process is Poisson with rate λ, and is independent of T.
- Denote by $\hat{\mathcal{A}}_{n}\left(C_{n}\right)=\tau\left(\mathcal{N}\left(C_{n}\right)\right)$, i.e. the sum of service times of all the arrivals during C_{n}.
-We obtain

$$
\begin{equation*}
C_{n+1}=\hat{\mathcal{A}}_{n}\left(C_{n}\right)+V_{n+1} \tag{1}
\end{equation*}
$$

Example 3: multitype discrete branching

Discrete time infinite server queue

- Service times are considered to be i.i.d. and independent of the arrival process.
- We represent the service time as the discrete time analogous of a phase type distribution: there are N possible service phases.
-The initial phase k is chosen at random according to some probability $p(k)$.
- If at the beginning of slot n a customer is in a service phase i then it will move at the end of the slot to a service phase j with probability $P_{i j}$.
- With probability $1-\sum_{j=1}^{N} P_{i j}$ it ends service and leaves the system at the end of the time slot.
- P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue is strictly smaller than 1), which means that services ends in finite time w.p.1. and that $(I-P)$ is invertible.
-Let $\xi^{(k)}(n), k=1,2,3, \ldots, n=1,2,3, \ldots$ be i.i.d. random matrices of size $N \times N$. Each of its element can take values of 0 or 1 , and the elements are all independent.
- The $i j$ th element of $\xi^{(k)}(n)$ has the interpretation of the indicator that equals one if at time n, the k th customer among those present at service phase i moved to phase j.
-Obviously, $E\left[\xi_{i j}^{(k)}(n)\right]=P_{i j}$.
- Let $B_{n}=\left(B_{n}^{1}, \ldots, B_{n}^{N}\right)^{T}$ be a column vector for each integer n, where B_{n}^{i} is the number of arrivals at the nth time slot that start their service at phase i.
- B_{n} is a stationary ergodic sequence and has finite expectation.
- $Y_{n}^{i}:=$ number of customers in phase i at time n. Satisfies

$$
Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}
$$

where the i th element of the column vector $A_{n}\left(Y_{n}\right)$ is given by

$$
\begin{equation*}
\left[A_{n}\left(Y_{n}\right)\right]_{i}=\sum_{j=1}^{N} \sum_{k=1}^{Y_{n}^{j}} \xi_{j i}^{(k)}(n) \tag{2}
\end{equation*}
$$

Example 4: Polling systems with N queues are special cases!

-The server moves cyclically (fixed order) between the queues $1, \ldots, M$. It requires walking times (vacations) for moving from one queue to another.

- Upon arrival at a queue, some customers are served. The number to be served is determined by the "polling regime":

Globally Gated (GG) regime (Boxma, Levy, Yechiali 1992):
The cycle time satisfies a one dimensional recursion.
We obtained the first two moments of the cycle and the expected waiting times at all queues.

Gated and Exhaustive regimes [see e.g. book by Takagi 1986]:
satisfy M-dimensional recursive equations.
No explicit expression for 2nd moments of buffer occupancy or cycle times.
No explicit expression for the expected waiting times.

2 Introduction and Background on Lévy fields

Introduction

-Consider the stochastic recursive equation:

$$
\begin{equation*}
Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}, \quad n \geq n_{0} \tag{3}
\end{equation*}
$$

- Y_{n} is a vector in R_{+}^{m}
- $\left\{A_{n}\right\}_{n}$ are
- i.i.d., independent of B_{n}.
- Increasing in the arg for all n.
- nonnegative Additive Lévy field taking values in \mathbb{R}_{+}^{m}
- $\left\{B_{n}\right\}$ stationary ergodic taking values in \mathbb{R}_{+}^{m}
(3) defines a Continuous Multitype Branching Process (BP) with Migration

Background: Lévy processes

Lévy process taking values in \mathbb{R}_{+}:

- Example: Poisson Point Process with intensity λ,
- Expectation and variance are linear: $E[A(t)]=t \mathcal{A}$ and $\operatorname{cov}[A(t)]=t \Gamma$.
- For random time τ independent of A,

$$
E[A(\tau)]=E[\tau] \mathcal{A}, \quad \operatorname{var}[A(\tau)]=\mathrm{E}[\tau] \Gamma+\operatorname{var}[\tau] \mathcal{A}^{2}
$$

- Divisibility: $A(\cdot)$ is divisible if the following holds.

For any k, there exist $A^{(i)}(\cdot), i=0, \ldots, k$ such that for any non-negative $x_{i}, i=0, \ldots, k$,

$$
\begin{equation*}
A\left(\sum_{i=0}^{k} x_{i}\right)=\sum_{i=0}^{k} A^{(i)}\left(x_{i}\right) \tag{4}
\end{equation*}
$$

where $\left\{A^{(i)}(\cdot)\right\}_{i=0,1,2, \ldots, k}$ are i.i.d. with the same distribution as $A(\cdot)$.

Lévy process taking values in \mathbb{R}_{+}^{m} (subordinators):

- Example: Poisson arrival process where the nth arrival brings a batch $B_{n}=\left(B_{n}^{1}, \ldots, B_{n}^{m}\right) . B_{n}^{i}$ customers go to queue i.
- For $A(t)$ in $\mathbb{R}_{+}^{m}, E[A(t)]=\mathcal{A} t$ where \mathcal{A} is of dimension m.
- $\operatorname{cov}[A(t)]=\Gamma t$, where Γ is a matrix of dimension $m \times m$.

Example of Random fields

Random field taking values in \mathbb{R}_{+}

- Example: Black and white picture.
- The level of grey is a function of two parameters: x and y.

Random field taking values in \mathbb{R}_{+}^{d}

- Example: color picture.
- The level of the green, red and blue as a function of the location x and y.

Background: Additive Lévy Fields

Let $A^{(1)}, \ldots, A^{(d)}$ be d indep. Lévy proc. on \mathbb{R}^{m} with scalar "time" parameters.

Additive Lévy field: $A(y)=A^{(1)}\left(y_{1}\right)+\ldots+A^{(d)}\left(y_{d}\right), \quad \forall y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}_{+}^{d}$.

The expectation: $\mathrm{E}[A(y)]=\sum_{j=1}^{d} y^{j} \mathcal{A}^{(j)}=\mathcal{A} y$, \mathcal{A} is a matrix whose j th column equals $\mathcal{A}^{(j)}$, $\mathcal{A}^{(j)}=\mathrm{E}\left[A^{(j)}(1)\right]$,

The covariance matrix: $\operatorname{cov}[A(y)]=\sum_{j=1}^{d} y_{j} \Gamma^{(j)}$, where $\Gamma^{(j)}=\operatorname{cov}\left[A^{(j)}(1)\right]$ is the corresponding covariance matrix of $A^{(j)}(1)$.

Composition: If A_{n} and A_{n+1} are Additive Lévy processes in \mathbb{R}_{+}^{m} then their composition is also an Additive Lévy process.

Properties of Lévy Fields

- Expectation and Covariance are linear in y,
-Let τ be a non-negative random variable in \mathbb{R}_{+}^{d}, independent of A and represented as a column vector. Then

$$
E[A(\tau)]=\sum_{j=1}^{m} \mathcal{A}^{(j)} E\left[\tau_{j}\right]
$$

and,

$$
\begin{equation*}
\operatorname{cov}[A(\tau)]=\sum_{j=1}^{d} \mathrm{E}\left[\tau_{j}\right] \Gamma^{(j)}+\mathcal{A} \operatorname{cov}[\tau] \mathcal{A}^{T} \tag{5}
\end{equation*}
$$

where τ_{j} is the j th entry of the vector τ.

Result 1: Steady State Probabilities of CBP

Iterating $Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}$, we obtain from A1:

$$
\begin{gathered}
Y_{2}=A_{1}\left(Y_{1}\right)+B_{1} \\
=A_{1}\left(A_{0}\left(Y_{0}\right)+B_{0}\right)+B_{1} \\
=A_{1}^{(0)}\left(A_{0}\left(Y_{0}\right)\right)+A_{1}^{(1)}\left(B_{0}\right)+B_{1} \\
=A_{1}^{(0)} A_{0}^{(0)}\left(Y_{0}\right)+A_{1}^{(1)}\left(B_{0}\right)+B_{1} \\
Y_{3}=A_{2}\left(Y_{2}\right)+B_{2} \\
=A_{2}\left(A_{1}\left(Y_{1}\right)+B_{1}\right)+B_{2} \\
=A_{2}\left(A_{1}\left(A_{0}\left(Y_{0}\right)+B_{0}\right)+B_{1}\right)+B_{2} \\
=A_{2}^{(0)} A_{1}^{(0)} A_{0}^{(0)}\left(Y_{0}\right)+A_{2}^{(1)} A_{1}^{(1)}\left(B_{0}\right)+A_{2}^{(2)}\left(B_{1}\right)+B_{2}
\end{gathered}
$$

In general:

$$
\begin{equation*}
Y_{n}=\sum_{j=0}^{n-1}\left(\prod_{i=n-j}^{n-1} A_{i}^{(n-j)}\right)\left(B_{n-j-1}\right)+\left(\prod_{i=0}^{n-1} A_{i}^{(0)}\right)\left(Y_{0}\right), \quad n>0 \tag{6}
\end{equation*}
$$

(we understand $\prod_{i=n}^{k} A_{i}(x)=x$ whenever $k<n$, and $\prod_{i=n}^{k} A_{i}(x)=A_{k} A_{k-1} \ldots A_{n}$ whenever $k>n$).

- Under fairly general assumptions, $\lim _{n \rightarrow \infty}\left(\prod_{i=0}^{n-1} A_{i}^{(0)}\right)(y)=0$, so Y_{n} has a limit as $n \rightarrow \infty$ distributed like

$$
\begin{equation*}
Y_{n}^{*}={ }_{d} \sum_{j=0}^{\infty}\left(\prod_{i=n-j}^{n-1} A_{i}^{(n-j)}\right)\left(B_{n-j-1}\right), \quad n \in Z \tag{7}
\end{equation*}
$$

where for each integer $i,\left\{A_{i}^{(j)}(\cdot)\right\}_{j}$ have the same distribution as $A_{i}(\cdot)$.

- Sufficient condition: stationarity plus $\|\mathcal{A}\|<1$.
- Branching processes: $\left\{A_{i}^{(j)}(\cdot)\right\}_{j}$ are i.i.d.
- Stochastic differential equations: they are equal.
-The representation holds for general dependence: Semi linear processes.

Application: Expected waiting time

 for a gated queue with vacationsConsider an arbitrary customer. Upon arrival, it has to wait for

1. The residual cycle time $C_{r e s}$,
2. The service time of all the customers that arrived during $C_{\text {past }}$ which is the past cycle time: $d\left(\lambda E\left[C_{\text {past }}\right]\right)=\rho E\left[C_{\text {past }}\right]$

We have from [Baccelli \& Brémaud, 1994]

$$
E\left[C_{r e s}\right]=E\left[C_{p a s t}\right]=\frac{E\left[C_{0}^{2}\right]}{2 E\left[C_{0}\right]} .
$$

Thus the expected waiting time of an arbitrary customer is given by

$$
E\left[W_{n}\right]=(1+\rho) \frac{E\left[C_{0}^{2}\right]}{2 E\left[C_{0}\right]},
$$

The expected number of customers in queue in stationary regime (not including service) is obtained using Little's Theorem: $\lambda E\left[W_{n}\right]$.

Conclusion: we need to compute $E\left[C_{0}\right]$ and $E\left[C_{0}^{2}\right]$!

Computing $E\left[C_{0}\right]$ and $E\left[C_{0}^{2}\right]$

-Dynamics: $C_{n+1}=\hat{\mathcal{A}}_{n}\left(C_{n}\right)+V_{n+1}$.

- $\hat{\mathcal{A}}_{n}(c)$ is the workload that arrives during duration $[0, c)$.
- Introduce the correlation function: $r(n)=E\left[V_{0} V_{n}\right]$.
- The first and second moments of C_{n} in stationary regime are given by

$$
\begin{gather*}
E\left[C_{n}\right]=\frac{v}{1-\rho} \\
E\left[C_{n}^{2}\right]=\frac{1}{\left(1-\rho^{2}\right)}\left(\frac{\lambda v d^{(2)}}{1-\rho}+r(0)+2 \sum_{j=1}^{\infty} \rho^{j} r(j)\right) . \tag{8}
\end{gather*}
$$

Proof of expressions for $E\left[C_{0}^{2}\right]$

Useful relations: 2nd moment of workload arriving during T

- If N is a random variable independent of the sequence D_{n}, and $\tau(N):=\sum_{i=1}^{N} D_{i}$ then

$$
\begin{equation*}
E\left[\tau(N)^{2}\right]=E\left[N^{2}\right] d^{2}+E[N]\left(d^{(2)}-d^{2}\right) \tag{9}
\end{equation*}
$$

- Let $\mathcal{N}(T)$ denote the number of arrivals during a random duration T, where the arrival process is Poisson with rate λ, and is independent of T. Then

$$
\begin{equation*}
E\left[\mathcal{N}(T)^{2}\right]=\lambda^{2} E\left[T^{2}\right]+\lambda E[T] \tag{10}
\end{equation*}
$$

- If we take an arbitrary T and choose $N=\mathcal{N}(T)$, then we get from (9)-(10)

$$
\begin{align*}
E\left[(\hat{\mathcal{A}}(T))^{2}\right] & =E\left[\tau(\mathcal{N}(T))^{2}\right] \\
& =d^{2}\left(\lambda^{2} E\left[T^{2}\right]+\lambda E[T]\right)+\lambda E[T]\left(d^{(2)}-d^{2}\right) \\
& =d^{2} \lambda^{2} E\left[T^{2}\right]+\lambda E[T] d^{(2)} \tag{11}
\end{align*}
$$

-Also, if we take $T=\tau(N)$, then

$$
\begin{equation*}
E[\mathcal{N}(\tau(N))]^{2}=\lambda^{2}\left[E\left[N^{2}\right] d^{2}+E[N]\left(d^{(2)}-d^{2}\right)\right]+\lambda d E[N] \tag{12}
\end{equation*}
$$

-From $C_{n+1}=\hat{\mathcal{A}}_{n}\left(C_{n}\right)+V_{n+1}$ we have

$$
\begin{aligned}
E\left[C_{n+1}^{2}\right] & =E\left[\hat{\mathcal{A}}_{n}\left(C_{n}\right)^{2}\right]+v^{(2)}+2 E\left[\hat{\mathcal{A}}_{n}\left(C_{n}\right) V_{n+1}\right] \\
& =\left(\rho^{2} E\left[C_{n}^{2}\right]+\lambda E\left[C_{n}\right] d^{(2)}\right)+v^{(2)}+2 E\left[\hat{\mathcal{A}}_{n}\left(C_{n}\right) V_{n+1}\right]
\end{aligned}
$$

- To compute the last term, we now use the explicit form of C_{0} :

$$
C_{0}=\sum_{j=0}^{\infty}\left(\prod_{i=-j}^{-1} \hat{\mathcal{A}}_{i}^{(-j)}\right)\left(V_{-j}\right)
$$

- We use the fact that the processes $\left\{\hat{\mathcal{A}}_{i}^{(j)}\right\}$ are independent of $\left\{V_{n}\right\}$. We get:

$$
\begin{aligned}
E\left[\hat{\mathcal{A}}_{n}\left(C_{n}\right) V_{n+1}\right] & =E\left[\hat{\mathcal{A}}_{0}\left(C_{0}\right) V_{1}\right]=E\left[\hat{\mathcal{A}}_{0}\left(\sum_{j=0}^{\infty}\left(\prod_{i=-j}^{-1} \hat{\mathcal{A}}_{i}^{(-j)}\right)\left(V_{-j}\right)\right) V_{1}\right] \\
& =\rho \sum_{j=0}^{\infty} \rho^{j} E\left[V_{-j} V_{1}\right]=\sum_{j=1}^{\infty} \rho^{j} r(j)
\end{aligned}
$$

Substituting this, we obtain the second moment.

3 2nd order moments in continuous B.P.

Joint work with Dieter Fiems

Notation: •Auto-correlations: $\mathcal{B}(k)={ }_{\text {def }} \mathrm{E}\left[B_{0}\left(B_{k}\right)^{T}\right]$, where k is an integer - $\hat{\mathcal{B}}(k)={ }_{\text {def }} \mathcal{B}(k)-\mathrm{E}\left[B_{0}\right] \mathrm{E}\left[B_{0}\right]^{T}$. (Note: $\hat{\mathcal{B}}(0)$ equals $\operatorname{cov}\left[B_{0}\right]$.)

Assumptions: Consider $Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}, n \geq n_{0}$, where

- A_{n} are i.i.d. additive Lévy fields,
- A_{n} independent of $\left\{B_{n}\right\}$,
- $\left\{B_{n}\right\}$ are stationary ergodic,
- All eigenvalues of \mathcal{A} are within the unit disk,
- the elements of B_{0} have finite second order moments.

Theorem: Consider $Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}$ in stationary regime. Then
(i) $\mathrm{E}\left[Y_{0}\right]=(\mathcal{I}-\mathcal{A})^{-1} \mathrm{E}\left[B_{0}\right]$,
(ii) $\operatorname{cov}\left(Y_{0}\right)$ is the unique solution of the linear equations:

$$
\begin{equation*}
\operatorname{cov}\left[Y_{0}\right]=\sum_{j=1}^{m} \mathrm{E}\left[Y_{0}^{j}\right] \Gamma^{(j)}+\mathcal{A} \operatorname{cov}\left[Y_{0}\right] \mathcal{A}^{T}+\operatorname{cov}\left[B_{0}\right]+\sum_{j=1}^{\infty} \mathcal{A}^{j} \hat{\mathcal{B}}(j)+\left(\mathcal{A}^{j} \hat{\mathcal{B}}(j)\right)^{T} \tag{13}
\end{equation*}
$$

where $\mathrm{E}\left[Y_{0}^{j}\right]$ denotes the j th element of $\mathrm{E}\left[Y_{0}\right]$.

Proof for first moments:

Taking expectation in $Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}$ we get

$$
\mathrm{E}\left[Y_{0}\right]=\mathcal{A} \mathrm{E}\left[Y_{0}\right]+\mathrm{E}\left[B_{0}\right]
$$

Since the eigenvalues of \mathcal{A} are within the unit disk, $(\mathcal{I}-\mathcal{A})$ is inverible.
Hence we obtain (i).

Proof of uniqueness for the second moments

-Let Z_{1} and Z_{2} be two solutions of

$$
\operatorname{cov}\left[Y_{0}\right]=\sum_{j=1}^{m} \mathrm{E}\left[Y_{0}^{j}\right] \Gamma^{(j)}+\mathcal{A} \operatorname{cov}\left[Y_{0}\right] \mathcal{A}^{T}+\operatorname{cov}\left[B_{0}\right]+\sum_{j=1}^{\infty} \mathcal{A}^{j} \hat{\mathcal{B}}(j)+\left(\mathcal{A}^{j} \hat{\mathcal{B}}(j)\right)^{T}
$$

-Define $Z=Z_{1}-Z_{2}$. Then Z satisfies $Z=\mathcal{A}^{T} Z \mathcal{A}$.

- Iterating, we obtain,

$$
Z=\lim _{n \rightarrow \infty} \mathcal{A}^{n} Z\left(\mathcal{A}^{T}\right)^{n}=0
$$

where the last equality follows from the fact that all the eigenvalues of \mathcal{A} are within the unit disk.
-This implies uniqueness.

Proof for expression of second moments

-Consider $Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}$.

- Multiply both sides by their transpose,
- take expectation and
- use the stationarity
we get:

$$
\mathrm{E}\left[Y_{0} Y_{0}^{T}\right]=\mathrm{E}\left[A_{0}\left(Y_{0}\right) A_{0}^{T}\left(Y_{0}\right)\right]+\mathrm{E}\left[B_{0} B_{0}^{T}\right]+\mathrm{E}\left[A_{0}\left(Y_{0}\right) B_{0}^{T}\right]+\mathrm{E}\left[B_{0} A_{0}^{T}\left(Y_{0}\right)\right]
$$

The covariance matrix $\operatorname{cov}\left[Y_{0}\right]$ therefore equals,

$$
\begin{align*}
\operatorname{cov}\left[Y_{0}\right]= & \operatorname{cov}\left[A_{0}\left(Y_{0}\right)\right]+\operatorname{cov}\left[B_{0}\right]+\mathrm{E}\left[A_{0}\left(Y_{0}\right) B_{0}^{T}\right] \\
& -\mathcal{A} \mathrm{E}\left[Y_{0}\right] \mathrm{E}\left[B_{0}\right]^{T}+\mathrm{E}\left[B_{0} A_{0}\left(Y_{0}\right)^{T}\right]-\mathrm{E}\left[B_{0}\right]\left(\mathcal{A} \mathrm{E}\left[Y_{0}\right]\right)^{T} . \tag{14}
\end{align*}
$$

It remains to compute the red and the blue expressions.

Red Expression: Using the convariance expression (5) of Additive Lévy processes at random "time":

$$
\begin{equation*}
\operatorname{cov}\left[A_{0}\left(Y_{0}\right)\right]=\sum_{j=1}^{m} \mathrm{E}\left[Y_{0}^{j}\right] \Gamma^{(j)}+\mathcal{A} \operatorname{cov}\left[Y_{0}\right] \mathcal{A}^{T} . \tag{15}
\end{equation*}
$$

Blue Expression: We use the explicit expression (7) for the stationary state process to obtain

$$
\begin{align*}
\mathrm{E}\left[Y_{0} B_{0}^{T}\right] & =\sum_{j=0}^{\infty} \mathrm{E}\left\{\bigotimes_{i=-j}^{-1} A_{-j, i}\left(B_{-j-1}\right) B_{0}^{T}\right\} \\
& =\sum_{j=0}^{\infty} \mathrm{E}\left(\mathrm{E}\left\{\bigotimes_{i=-j}^{-1} A_{-j, i}\left(B_{-j-1}\right) B_{0}^{T}\right\} \mid \mathbf{B}_{\mathbf{0}}^{-}\right) \\
& =\sum_{j=0}^{\infty} \mathrm{E}\left(\mathcal{A}^{j} B_{-j-1} B_{0}^{T}\right)=\sum_{j=0}^{\infty} \mathcal{A}^{j} \mathcal{B}(j+1) \tag{16}
\end{align*}
$$

with $\mathbf{B}_{\mathbf{0}}^{-}:=\left(B_{0}, B_{-1}, B_{-2}, \ldots\right)$.

Substituting the last expression, we compute,

$$
\mathrm{E}\left[A_{0}\left(Y_{0}\right) B_{0}^{T}\right]=\mathrm{E}\left[\mathrm{E}\left[A_{0}\left(Y_{0}\right) B_{0}^{T} \mid Y_{0}, B_{0}\right]\right]=\mathcal{A} \mathrm{E}\left[Y_{0} B_{0}^{T}\right]=\sum_{j=1}^{\infty} \mathcal{A}^{j} \mathcal{B}(j),
$$

or equivalently,

$$
\begin{align*}
\mathrm{E}\left[A_{0}\left(Y_{0}\right) B_{0}^{T}\right] & =\sum_{j=1}^{\infty} \mathcal{A}^{j} \hat{\mathcal{B}}(j)+\sum_{j=1}^{\infty} \mathcal{A}^{j} \mathrm{E}\left[B_{0}\right] \mathrm{E}\left[B_{0}\right]^{T} \\
& =\sum_{j=1}^{\infty} \mathcal{A}^{j} \hat{\mathcal{B}}(j)+\mathcal{A}(\mathcal{I}-\mathcal{A})^{-1} \mathrm{E}\left[B_{0}\right]^{T} \\
& =\sum_{j=1}^{\infty} \mathcal{A}^{j} \hat{\mathcal{B}}(j)+\mathcal{A} \mathrm{E}\left[Y_{0}\right] \mathrm{E}\left[B_{0}\right]^{T} \tag{17}
\end{align*}
$$

Substitution of expressions RED and BLUE provides the covariance equation.

4 Symmetric gated polling systems

m gated queues.

Arrivals:

- Arrival processes $\rho^{i}(t)$ to queue i are i.i.d. Levy processes, distributed as some $\rho(t), t \in \mathbb{R}_{+}$.
- $\bar{\rho}=\mathrm{E}[\rho(1)]$ and $\sigma^{2}=\operatorname{var}[\rho(1)]$

Walking times:

- $\left\{V_{n}\right\}$: Stationary ergodic series of walking times, $v:=\mathrm{E}\left[V_{0}\right]$.
- $\mathcal{V}(j):=\mathrm{E}\left[V_{0} V_{j}\right]$ for some integer j and $\hat{\mathcal{V}}(j):=\mathrm{E}\left[V_{0} V_{j}\right]-v^{2}$.

Notation:

- $I(n):=$ the queue visited at the nth polling instant
- $S(n):=n$th polling instant (time at which the server arrives at the nth queue)
- $Y_{n}^{i}:=S(n)-S(n-i), \quad(i=1,2, \ldots, m)$ is the time between the $(n-i)$ th and the nth polling instant.
- In particular, Y_{n}^{m} is the duration of the nth cycle.
- Let ρ_{n}^{i} be i.i.d. copies of the process $\rho^{i}, n=1,2,3, \ldots$.

The dynamics: $\quad Y_{n+1}^{1}=S(n+1)-S(n)=\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}$,

$$
\begin{align*}
& Y_{n+1}^{2}=S(n+1)-S(n-1)=Y_{n}^{1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \tag{18}\\
& Y_{n+1}^{3}=S(n+1)-S(n-2)=Y_{n}^{2}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
\end{align*}
$$

$$
Y_{n+1}^{m}=S(n+1)-S(n-m+1)=Y_{n}^{m-1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
$$

$\bullet(18)$ states that the time between $S(n)$ and $S(n+1)$ is the sum of the busy period at queue $I(n)$ plus the nth vacation time;
-The busy period $=$ the workload that arrived at queue $I(n)$ during the nth cycle.

Notation:

- $I(n):=$ the queue visited at the nth polling instant
- $S(n):=n$th polling instant (time at which the server arrives at the nth queue)
- $Y_{n}^{i}:=S(n)-S(n-i), \quad(i=1,2, \ldots, m)$ is the time between the $(n-i)$ th and the nth polling instant.
- In particular, Y_{n}^{m} is the duration of the nth cycle.
- Let ρ_{n}^{i} be i.i.d. copies of the process $\rho^{i}, n=1,2,3, \ldots$.

The dynamics: $\quad Y_{n+1}^{1}=S(n+1)-S(n)=\rho_{\mathbf{n}}^{\mathbf{m}}\left(\mathbf{Y}_{\mathbf{n}}^{\mathbf{m}}\right)+V_{n}$,

$$
\begin{align*}
& Y_{n+1}^{2}=S(n+1)-S(n-1)=Y_{n}^{1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \tag{18}\\
& Y_{n+1}^{3}=S(n+1)-S(n-2)=Y_{n}^{2}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
\end{align*}
$$

$$
Y_{n+1}^{m}=S(n+1)-S(n-m+1)=Y_{n}^{m-1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
$$

-(18) states that the time between $S(n)$ and $S(n+1)$ is the sum of the busy period at queue $I(n)$ plus the nth vacation time;

- The busy period $=$ the workload that arrived at queue $I(n)$ during the nth cycle.

Notation:

- $I(n):=$ the queue visited at the nth polling instant
- $S(n):=n$th polling instant (time at which the server arrives at the nth queue)
- $Y_{n}^{i}:=S(n)-S(n-i), \quad(i=1,2, \ldots, m)$ is the time between the $(n-i)$ th and the nth polling instant.
- In particular, Y_{n}^{m} is the duration of the nth cycle.
- Let ρ_{n}^{i} be i.i.d. copies of the process $\rho^{i}, n=1,2,3, \ldots$.

The dynamics: $\quad Y_{n+1}^{1}=S(n+1)-S(n)=\rho_{n}^{m}\left(Y_{n}^{m}\right)+\mathbf{V}_{\mathrm{n}}$,

$$
\begin{align*}
& Y_{n+1}^{2}=S(n+1)-S(n-1)=Y_{n}^{1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \tag{18}\\
& Y_{n+1}^{3}=S(n+1)-S(n-2)=Y_{n}^{2}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
\end{align*}
$$

$$
Y_{n+1}^{m}=S(n+1)-S(n-m+1)=Y_{n}^{m-1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
$$

$\bullet(18)$ states that the time between $S(n)$ and $S(n+1)$ is the sum of the busy period at queue $I(n)$ plus the nth vacation time;
-The busy period $=$ the workload that arrived at queue $I(n)$ during the nth cycle.

Notation:

- $I(n):=$ the queue visited at the nth polling instant
- $S(n):=n$th polling instant (time at which the server arrives at the nth queue)
- $Y_{n}^{i}:=S(n)-S(n-i), \quad(i=1,2, \ldots, m)$ is the time between the $(n-i)$ th and the nth polling instant.
- In particular, Y_{n}^{m} is the duration of the nth cycle.
- Let ρ_{n}^{i} be i.i.d. copies of the process $\rho^{i}, n=1,2,3, \ldots$.

The dynamics: $\quad Y_{n+1}^{1}=S(n+1)-S(n)=\rho_{\mathbf{n}}^{\mathbf{m}}\left(\mathbf{Y}_{\mathbf{n}}^{\mathbf{m}}\right)+V_{n}$,

$$
\begin{align*}
& Y_{n+1}^{2}=S(n+1)-S(n-1)=Y_{n}^{1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \tag{18}\\
& Y_{n+1}^{3}=S(n+1)-S(n-2)=Y_{n}^{2}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
\end{align*}
$$

$$
Y_{n+1}^{m}=S(n+1)-S(n-m+1)=Y_{n}^{m-1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}
$$

-(18) states that the time between $S(n)$ and $S(n+1)$ is the sum of the busy period at queue $I(n)$ plus the nth vacation time;

- The busy period $=$ workload that arrived at queue $I(n)$ during the nth cycle.

Interpretation of the other equations:
For $i>0$, we have

$$
Y_{n+1}^{i+1}=S(n+1)-S(n-i)=S(n+1)-S(n)+S(n)-S(n-i)
$$

where
-by definition, $S(n)-S(n-i)=Y_{n}^{i}$, and

- $S(n+1)-S(n)=\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}($ see previous slide $)$.

Vector notation:

\[

\]

Vector notation:

\[

\]

where $Y_{n+1}=\left(Y_{n+1}^{1}, \ldots, Y_{n+1}^{m}\right)^{T}$,

Vector notation:

\[

\]

where $B_{n}=V_{n}(1,1,1, \ldots, 1)^{T}$,

- in the special case that $\left\{B_{n}\right\}$ is i.i.d. Y_{n} is a Markov chain

Vector notation:

$$
\begin{gathered}
Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}, \text { with } \\
Y_{n+1}^{1}=S(n+1)-S(n)= \\
Y_{n+1}^{2}=S(n+1)-S(n-1)=\quad Y_{n}^{1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n}, \\
Y_{n+1}^{3}=S(n+1)-S(n-2)= \\
\vdots \\
Y_{n+1}^{m}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \\
=S(n+1)-S(n-m+1)=Y_{n}^{m-1}+\rho_{n}^{m}\left(Y_{n}^{m}\right)+V_{n} \\
Y_{n+1}=Y_{n}^{1}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+Y_{n}^{2}\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\ldots+Y_{n}^{m-1}\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right)+\rho_{n}^{m}\left(Y_{n}^{m}\right)\left(\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right)+B_{n}
\end{gathered}
$$

Vector notation:

$$
\begin{gather*}
Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}, \text { where } \\
A_{n}(y)=A_{n}^{(1)}\left(y_{1}\right)+\ldots+A_{n}^{(m)}\left(y_{m}\right), \tag{19}
\end{gather*}
$$

where $y=\left(y_{1}, \ldots, y_{m}\right)^{T} \in \mathbb{R}_{+}^{m}, t \in \mathbb{R}_{+}$and

$$
\begin{align*}
A_{n}^{(1)}(t) & =(0, t, 0,0, \ldots, 0)^{T} \tag{20}\\
A_{n}^{(2)}(t) & =(0,0, t, 0, \ldots, 0)^{T} \\
& \vdots \\
A_{n}^{(m-1)}(t) & =(0,0,0, \ldots, 0, t)^{T} \\
A_{n}^{(m)}(t) & =\rho_{n}^{m}(t)(1,1, \ldots, 1)^{T},
\end{align*}
$$

-For each $i, A_{n}^{(i)}$ is a Lévy process taking values in \mathbb{R}_{+}^{m}.

- A_{n} are Additive Lévy fields

Checking the stability condnition

Taking expectation we get:

$$
\mathcal{A}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & \bar{\rho} \tag{21}\\
1 & 0 & 0 & 0 & \ldots & 0 & \bar{\rho} \\
0 & 1 & 0 & 0 & \ldots & 0 & \bar{\rho} \\
0 & 0 & 1 & 0 & \ldots & 0 & \bar{\rho} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & \bar{\rho} \\
0 & 0 & 0 & 0 & \ldots & 1 & \bar{\rho}
\end{array}\right) .
$$

\mathcal{A} is known as the Companion matrix.
Theorem: A sufficient and necessary condition for all eigenvalues of \mathcal{A} to be in the interior of the unit circle is

$$
\bar{\rho}<\frac{1}{m} .
$$

Conclusions and Discussion

-We use neither the "buffer occupancy" nor the "station times" approaches.
-Advantage: one component of the state is the cycle time; its two first moments provide the expected waiting time.
-A very similar structure is obtained in the exhaustive case.

5 Semi linear processes

We shall assume that A_{n} satisfy the following conditions:
A1: $A_{n}(y)$ has the following divisibility property: if for some k, $y=y^{0}+y^{1}+\ldots+y^{k}$ where y^{m} are vectors, then $A_{n}(y)$ can be represented as

$$
A_{n}(y)=\sum_{i=0}^{k} \widehat{A}_{n}^{(i)}\left(y^{i}\right)
$$

where $\left\{\widehat{A}_{n}^{(i)}\right\}_{i=0,1,2, \ldots, k}$ are identically distributed with the same distribution as $A_{n}(\cdot)$.

A2: (i) There is some matrix \mathcal{A} such that for every y,

$$
E\left[A_{n}(y)\right]=\mathcal{A} y
$$

(ii) The correlation matrix of $A_{n}(y)$ is linear in $y y^{T}$ and in y. We shall represent it as

$$
\begin{equation*}
E\left[A_{n}(y) A_{n}(y)^{T}\right]=F\left(y y^{T}\right)+\sum_{j=1}^{d} y_{j} \Gamma^{(j)} \tag{22}
\end{equation*}
$$

where F is a linear operator that maps $d \times d$ nonnegative definite matrices to other $d \times d$ nonnegative definite matrices and satisfies $F(0)=0$.

Moments:

-(i) The first moment of X_{n}^{*} is given by

$$
\begin{equation*}
E\left[X_{0}^{*}\right]=(I-\mathcal{A})^{-1} b \tag{23}
\end{equation*}
$$

-(ii) Assume that the first and second moments b_{i} and $b_{i}^{(2)}$'s are finite and that F satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F^{n}=0 \tag{24}
\end{equation*}
$$

Define Q to be the matrix whose $i j$ th entry is $Q_{i j}=\sum_{k=1}^{d} \bar{y}_{k} \Gamma^{(k)}$. Then the matrix $\operatorname{cov}\left(X^{*}\right)$ is the unique solution of the set of linear equations:

$$
\begin{equation*}
\operatorname{cov}(X)=\operatorname{cov}(B)+\sum_{r=1}^{\infty}\left(\mathcal{A}^{r} \widehat{\mathcal{B}}(r)+\left[\mathcal{A}^{r} \widehat{\mathcal{B}}(r)\right]^{T}\right)+F(\operatorname{cov}[X])+Q \tag{25}
\end{equation*}
$$

The second moment matrix $E\left[X X^{T}\right]$ in steady state is the unique solution of the set of linear equations:

$$
E\left[X X^{T}\right]=E\left[B_{0} B_{0}^{T}\right]+\sum_{r=1}^{\infty}\left(\mathcal{A}^{r} \mathcal{B}(r)+\left[\mathcal{A}^{r} \mathcal{B}(r)\right]^{T}\right)+F\left(E\left[X X^{T}\right]\right)+Q(26)
$$

6 Example: Discrete time infinite server queue

Example 5: Discrete time infinite server queue

- Service times are considered to be i.i.d. and independent of the arrival process.
-We represent the service time as the discrete time analogous of a phase type distribution: there are N possible service phases.
-The initial phase k is chosen at random according to some probability $p(k)$.
- If at the beginning of slot n a customer is in a service phase i then it will move at the end of the slot to a service phase j with probability $P_{i j}$.
- With probability $1-\sum_{j=1}^{N} P_{i j}$ it ends service and leaves the system at the end of the time slot.
- P is a sub-stochastic matrix (it has nonnegative elements and it's largest eigenvalue is strictly smaller than 1), which means that services ends in finite time w.p.1. and that $(I-P)$ is invertible.
-Let $\xi^{(k)}(n), k=1,2,3, \ldots, n=1,2,3, \ldots$ be i.i.d. random matrices of size $N \times N$. Each of its element can take values of 0 or 1 , and the elements are all independent.
- The $i j$ th element of $\xi^{(k)}(n)$ has the interpretation of the indicator that equals one if at time n, the k th customer among those present at service phase i moved to phase j.
- Obviously, $E\left[\xi_{i j}^{(k)}(n)\right]=P_{i j}$.
- Let $B_{n}=\left(B_{n}^{1}, \ldots, B_{n}^{N}\right)^{T}$ be a column vector for each integer n, where B_{n}^{i} is the number of arrivals at the nth time slot that start their service at phase i.
- B_{n} is a stationary ergodic sequence and has finite expectation.
- $Y_{n}^{i}:=$ number of customers in phase i at time n. Satisfies

$$
Y_{n+1}=A_{n}\left(Y_{n}\right)+B_{n}
$$

where the i th element of the column vector $A_{n}\left(Y_{n}\right)$ is given by

$$
\begin{equation*}
\left[A_{n}\left(Y_{n}\right)\right]_{i}=\sum_{j=1}^{N} \sum_{k=1}^{Y_{n}^{j}} \xi_{j i}^{(k)}(n) \tag{27}
\end{equation*}
$$

- Numerical example: Service times are geometrically distributed,
-The SRE becomes one dimensional. Y_{n} denotes the number of customers in the system.
$\bullet \xi_{n}^{(k)}$ is the indicator that the k th customer present at the beginning of time-slot n will still be there at the end of the time-slot.
-The probability that a customer in the system finishes its service within a time slot is precisely $p=1-\mathrm{A}=1-E\left[\xi_{n}\right]$.
- We consider a Markov chain with two states $\{\gamma, \delta\}$ with transition probabilities given by

$$
\mathcal{P}=\left(\begin{array}{lr}
1-\epsilon p & \epsilon p \\
\epsilon q & 1-\epsilon q
\end{array}\right)
$$

- As an example, consider the following parameters: $p=q=1$, at a given state there is at most one arrival with prob. $p_{\gamma}=1, p_{\delta}=0.5$. This gives:

$$
\operatorname{var}\left[Y^{*}\right]=\frac{1}{\left(1-\mathrm{A}^{2}\right)}\left(\frac{3}{16}+\frac{2 \mathrm{~A}}{1-\mathrm{A}+2 \epsilon \mathrm{~A}}+\frac{3}{4} \mathrm{~A}\right) .
$$

In Fig. 1 we plot the variance of the steady state number of customers, $\operatorname{var}\left[Y^{*}\right]$, while varying ϵ and A .

Figure 1: $\operatorname{var}[Y *]$ as a function of ϵ and of A

7 Example: Delay Tolerant Ad-hoc Networks

- Delay tolerant Ad-hoc Networks make use of nodes' mobility to compensate for lack of instantaneous connectivity.
- Information sent by a source to a disconnected destination can be forwarded and relayed by other mobile nodes.
- Let X_{n}^{+}be the number of nodes that have a copy of the packet at time n,
- Let X_{n}^{-}be the number of nodes that do not have a copy of the packet at time n.
- Mobility: a mobile present at time n may leave and other may arrive. Let B_{n} be the number of new arrivals.
- Let $\rho_{n}^{(i)}$ and $\hat{\rho}_{n}^{(i)}$ be the indicator that node i remains in the system for the next slot. ρ is used for nodes that have the packet and $\hat{\rho}$ for the others.
- Let $\xi_{n}^{(i)}$ be the indicator that the source meats mobile i at time slot n. These are i.i.d. Then

$$
\begin{gathered}
X_{n+1}^{+}=\sum_{i=1}^{X_{n}^{+}} \rho_{n}^{(i)}+\sum_{i=1}^{X_{n}^{-}} \hat{\rho}_{n}^{(i)} \xi_{n}^{(i)} \\
X_{n+1}^{-}=\sum_{i=1}^{X_{n}^{-}} \hat{\rho}_{n}^{(i)}\left(1-\xi_{n}^{(i)}\right)+B_{n}
\end{gathered}
$$

- Assume that the source limits the transmissions in order to save energy
- Let ζ_{n} be the indicator that the source intends to transmit a packet at time n. Assume ζ_{n} are i.i.d.

$$
\begin{aligned}
& X_{n+1}^{+}=\sum_{i=1}^{X_{n}^{+}} \rho_{n}^{(i)}+\zeta_{n} \sum_{i=1}^{X_{n}^{-}} \hat{\rho}_{n}^{(i)} \xi_{n}^{(i)} \\
& X_{n+1}^{-}=\sum_{i=1}^{X_{n}^{-}} \hat{\rho}_{n}^{(i)}\left(1-\zeta_{n} \xi_{n}^{(i)}\right)+B_{n}
\end{aligned}
$$

-This is a semi-linear process, not a branching process

Bibliography on 1-dim CB

Definition through a discrete process

-J. Lamperti, Continuous-state branching process, Bull. Amer. Math. Soc., 73, 382-386, 1967.
-D. R. Crey, "Asymptotic behaviour of continuous-time continuous state-space branching processes", J. Appl. Probab., 11:669-677, 1974.
-S. R. Adke and V. G. Gadag. "A new class of branching processes". In C.C. Heyde, editor, Branching Processes: Proceedings of the First World Congress, volume 99 of Springer Lecture Notes, pages 1-13, 1995.
-A. Lambert. The genealogy of continuous-state branching processes with immigration. Journal of Probability Theory and Related Fields, 122(1):42-70, 2002.

- Ibrahim Rahimov, "On stochastic model for continuous mass branching population", Mathematics and Computers in Simulation, 2007.

Relation with a 1-dim Lévy process

-J. Neveu, A continuous-state branching process in relation with the GREM model of spin glass theory, Rapport interne no 267, Ecole Polytechnique.
\bullet - Bertoin, Subordinators, Lévy processes with no negative jumps, and branching processes.
-W. Stannat, "Spectral properties for a class of continuous state branching processes with immigration", J. of Functional Analysis, Vol 201, Issue 1, pp 185-227, 2003.
-J. Bertoin and J. F. Le Gall, "The Bolthausen-Sznitman coalescent and the genealogy of continuous state branching processes", Probab. Theor. Rel. Fields 117, 249-266, 2000.

