Static Arbitrage Bounds on Basket Option Prices

Alexandre d'Aspremont

MS\&E Dept. \& I.S.L.
Stanford University

Joint work with Laurent EI Ghaoui, UC Berkeley

Introduction

- classic Black \& Scholes (1973) option pricing based on:
- a dynamic hedging argument
- model for the asset dynamics (geometric BM)
- sensitive to liquidity, transaction costs, model risk ...
- what can we say about option prices with a minimal set of assumptions?

Arbitrage pricing

Fundamental theorem of asset pricing states that:

$$
\text { Absence of Arbitrage } \quad \Leftrightarrow \quad \text { Price }=\mathbf{E}_{\pi}[\text { Payoff }]
$$

- here π is a probability measure
- the exact meaning of arbitrage opportunity will be specified later on...

Black-Scholes

The classic Black \& Scholes (1973) model:

- Lognormal asset dynamics:

$$
d S / S=r d t+\sigma d W_{t}
$$

- Pricing is based on self-financing perfect replication of the option payoff by trading continuously in stock and cash until maturity.

In particular, the distribution π of S at maturity is lognormal...

Static Arbitrage

Here instead, we rely on a minimal set of assumptions:

- no assumption on the asset distribution π
- one period model

Arbitrage in this simple setting:

- form a portfolio at no cost today with a strictly positive payoff at maturity
- no trading involved between today and the option's maturity

We note $C(K)$ the price of the call with payoff $(S-K)^{+}$

Simplest of all: put call parity

If we know the forward prices (price of the asset S at maturity T), then we can deduce call prices from puts, ...

Call spread

Here, Absence of Arbitrage implies that the price of a call spread be positive, hence call prices must be decreasing with strike

$$
C(K+\epsilon)-C(K) \leq 0
$$

Butterfly spread

Absence of Arbitrage implies that the price of a butterfly spread be positive, hence call prices must be convex with strike

$$
C(K+\epsilon)-2 C(K)+C(K-\epsilon) \geq 0
$$

Price constraints

Absence of Arbitrage implies that if $C(K)$ is a function giving the price of an option of strike K, then $C(K)$ must satisfy:

- $C(K)$ positive
- $C(K)$ decreasing
- $C(K)$ convex

With $C(0)=S$, we have a set of necessary conditions for the absence of arbitrage

Sufficient conditions

In fact, these conditions are also sufficient, see Breeden \& Litzenberger (1978), Laurent \& Leisen (2000) and Bertsimas \& Popescu (2002) among others

Suppose we have a set of market prices for calls $C\left(K_{i}\right)=p_{i}$, then there is no arbitrage iff there is a function $C(K)$:

- $C(K)$ positive
- $C(K)$ decreasing
- $C(K)$ convex
- $C\left(K_{i}\right)=p_{i}$ and $C(0)=S$

Source: reuters

Why?

data quality...

- all the prices are last quotes (not simultaneous)
- low volume
- some transaction costs

Problem: this data is used to calibrate models and price other derivatives...

Dimension n: basket options

- a basket call payoff is

$$
\left(\sum_{i=1}^{k} w_{i} S_{i}-K\right)
$$

where w_{1}, \ldots, w_{k} are the basket's weights and K is the option's strike price

- examples include: Index options, spread options, swaptions...
- basket option prices are used to gather information on correlation

We note $C(w, K)$ the price of such an option, can we get conditions to test basket price data?

Sufficient conditions

Similar to dimension one...

Suppose we have a set of market prices for calls $C\left(w_{i}, K_{i}\right)=p_{i}$, and there is no arbitrage, then the function $C(w, K)$ satisfies:

- $C(w, K)$ positive
- $C(w, K)$ decreasing
- $C(w, K)$ jointly convex in (w, K)
- $C\left(w_{i}, K_{i}\right)=p_{i}$ and $C(0)=S$

Is this tractable?

Tractable?

The problem can be formulated as:

$$
\begin{array}{ll}
\text { find } & z \\
\text { subject to } & A z \leq b, C z=d \\
& z=\left[f\left(x_{1}\right), \ldots, f\left(x_{k}\right), g_{1}^{T}, \ldots, g_{k}^{T}\right]^{T} \\
& g_{i} \text { subgradient of } f \text { at } x_{i} \quad i=1, \ldots, k \\
& f \text { monotone, convex }
\end{array}
$$

in the variables $f \in C\left(\mathbf{R}^{n}\right), z \in \mathbf{R}^{(n+1) k}, g_{1}, \ldots, g_{k} \in \mathbf{R}^{n}$

- discretize and sample the convexity constraints to get a polynomial size LP feasibility problem
- enforce the convexity and subgradient constraints at the points $\left(x_{i}\right)_{i=1, \ldots, k}$ (monotonicity is a simple inequality on g) to get:

$$
\begin{array}{ll}
\text { find } & z \\
\text { subject to } & C z=d, A z \leq b \\
& z=\left[f\left(x_{1}\right), \ldots, f\left(x_{k}\right), g_{1}^{T}, \ldots, g_{k}^{T}\right]^{T} \\
& \left\langle g_{i}, x_{j}-x_{i}\right\rangle \leq f\left(x_{j}\right)-f\left(x_{i}\right) \quad i, j=1, \ldots, k
\end{array}
$$

in the variables $f\left(x_{i}\right)_{i=1, \ldots, k}$ and g in $\mathbf{R}^{n} \times \mathbf{R}^{n \times k}$

- we note $z^{\mathrm{opt}}=\left[f^{\mathrm{opt}}\left(x_{1}\right), \ldots, f^{\mathrm{opt}}\left(x_{k}\right),\left(g_{1}^{\mathrm{opt}}\right)^{T}, \ldots,\left(g_{k}^{\mathrm{opt}}\right)^{T}\right]^{T}$ a solution to this problem
- from $z^{\text {opt }}$, we define:

$$
s(x)=\max _{i=1, \ldots, k}\left\{f^{\mathrm{opt}}\left(x_{i}\right)+\left\langle g_{i}^{\mathrm{opt}}, x-x_{i}\right\rangle\right\}
$$

- by construction, $s\left(x_{i}\right)$ solves the finite LP with:

$$
s\left(x_{i}\right)=f^{\mathrm{opt}}\left(x_{i}\right), \quad i=1, \ldots, k
$$

- $s(x)$ is convex and monotone as the pointwise maximum of monotone affine functions
- so $s(x)$ is also a feasible point of the original problem
this means that the price conditions remain tractable on basket options...

Sufficient?

key difference with dimension one, Bertsimas \& Popescu (2002) show that the exact problem is NP-Hard

- the conditions are only necessary...
- here however, numerical cost is minimal (small LP)
- we can show tightness in some particular cases
- how sharp are these conditions?

Full conditions

derived by Henkin \& Shananin (1990). A function can be written

$$
C(w, K)=\int_{\mathbf{R}_{+}^{n}}\left(w^{T} x-K\right)_{+} d \pi(x)
$$

with $w \in \mathbf{R}_{+}^{n}$ and $K>0$, if and only if:

- $C(w, K)$ is convex and homogenous of degree one;
- $\lim _{K \rightarrow \infty} C(w, K)=0$ and $\lim _{K \rightarrow 0^{+}} \frac{\partial C(w, K)}{\partial K}=-1$
- $F(w)=\int_{0}^{\infty} e^{-K} d\left(\frac{\partial C(w, K)}{\partial K}\right)$ belongs to $C_{0}^{\infty}\left(\mathbf{R}_{+}^{n}\right)$
- For some $\tilde{w} \in \mathbf{R}_{+}^{n}$ the inequalities: $(-1)^{k+1} D_{\xi_{1} \ldots D_{\xi_{k}}} F(\lambda \tilde{w}) \geq 0$, for all positive integers k and $\lambda \in \mathbf{R}_{++}$and all ξ_{1}, \ldots, ξ_{k} in \mathbf{R}_{+}^{n}.

Numerical example

- two assets: x_{1}, x_{2}, we look for bounds on the price of $\left(x_{1}+x_{2}-K\right)^{+}$
- simple discrete model for the assets:

$$
x=\{(0,0),(0, .8),(.8, .3),(.6, .6),(.1, .4),(1,1)\}
$$

with probability

$$
p=(.2, .2, .2, .1, .1, .2)
$$

- the forward prices are given, together with the following call prices:

$$
\begin{aligned}
& \left(.2 x_{1}+x_{2}-.1\right)^{+},\left(.5 x_{1}+.8 x_{2}-.8\right)^{+},\left(.5 x_{1}+.3 x_{2}-.4\right)^{+} \\
& \left(x_{1}+.3 x_{2}-.5\right)^{+},\left(x_{1}+.5 x_{2}-.5\right)^{+},\left(x_{1}+.4 x_{2}-1\right)^{+},\left(x_{1}+.6 x_{2}-1.2\right)^{+}
\end{aligned}
$$

Extensions (very briefly)...

formulate as a moment problem on the payoff semigroup (see Berg, Christensen \& Ressel (1984)):
$s=\left(1, x_{1}, \ldots, x_{n},\left|w_{0}^{T} x-K_{0}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots,\left|w_{m}^{T} x-K_{m}\right|^{N}\right)$
this is a semidefinite program

$$
\begin{array}{ll}
\text { find } & f: s \rightarrow \mathbf{R} \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(s_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=0}^{n+m} s_{k}\right) s\right)\right) \succeq 0 \\
& f\left(s_{j}\right)=p_{j}, \quad \text { for } j=0, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(s_{k} s\right)\right)_{i j}=f\left(s_{k} s_{i} s_{j}\right)$

Conclusion

Simple, tractable bounds to test basket option price data...

- conditions are only necessary
- but... very low numerical cost
- tightness in some particular cases, "good" in general

Related papers...

- A. d'Aspremont, L. El Ghaoui
"Static Arbitrage Bounds on Basket Option Prices."
ArXiv: math.OC/0302243.
- A. d'Aspremont
"A Harmonic Analysis Solution to the Static Basket Arbitrage Problem." ArXiv: math.OC/0309048.
both available on www.stanford.edu/~aspremon/

References

Berg, C., Christensen, J. P. R. \& Ressel, P. (1984), Harmonic analysis on semigroups : theory of positive definite and related functions, Vol. 100 of Graduate texts in mathematics, Springer-Verlag, New York.

Bertsimas, D. \& Popescu, I. (2002), 'On the relation between option and stock prices: a convex optimization approach', Operations Research 50(2).

Black, F. \& Scholes, M. (1973), 'The pricing of options and corporate liabilities', Journal of Political Economy 81, 637-659.

Breeden, D. T. \& Litzenberger, R. H. (1978), 'Price of state-contingent claims implicit in option prices', Journal of Business 51(4), 621-651.

Henkin, G. \& Shananin, A. (1990), 'Bernstein theorems and Radon transform, application to the theory of production functions', American

Mathematical Society: Translation of mathematical monographs 81, 189-223.

Laurent, J. \& Leisen, D. (2000), Building a consistent pricing model from observed option prices, in M. Avellaneda, ed., ‘Quantitative Analysis in Financial Markets', World Scientific Publishing.

