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Introduction

• classic Black & Scholes (1973) option pricing based on:

◦ a dynamic hedging argument
◦ model for the asset dynamics (geometric BM)

• sensitive to liquidity, transaction costs, model risk ...

• what can we say about option prices with a minimal set of assumptions?
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Arbitrage pricing

Fundamental theorem of asset pricing states that:

Absence of Arbitrage ⇔ Price = Eπ[Payoff]

• here π is a probability measure

• the exact meaning of arbitrage opportunity will be specified later on...
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Black-Scholes

The classic Black & Scholes (1973) model:

• Lognormal asset dynamics:

dS/S = rdt + σdWt

• Pricing is based on self-financing perfect replication of the option payoff
by trading continuously in stock and cash until maturity.

In particular, the distribution π of S at maturity is lognormal...
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Static Arbitrage

Here instead, we rely on a minimal set of assumptions:

• no assumption on the asset distribution π

• one period model

Arbitrage in this simple setting:

• form a portfolio at no cost today with a strictly positive payoff at maturity

• no trading involved between today and the option’s maturity
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IBM calls, Oct. 10 2003, maturity 1 week

We note C(K) the price of the call with payoff (S − K)+
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Simplest of all: put call parity

payoff

k

kk S

Put Call-

- =

= K-S

If we know the forward prices (price of the asset S at maturity T), then we
can deduce call prices from puts, ...
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Call spread

S

payoff

k k + ε

Here, Absence of Arbitrage implies that the price of a call spread be positive,
hence call prices must be decreasing with strike

C(K + ε) − C(K) ≤ 0
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Butterfly spread
payoff

k k + εk − ε S

Absence of Arbitrage implies that the price of a butterfly spread be positive,
hence call prices must be convex with strike

C(K + ε) − 2C(K) + C(K − ε) ≥ 0
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Price constraints

Absence of Arbitrage implies that if C(K) is a function giving the price of an
option of strike K, then C(K) must satisfy:

• C(K) positive

• C(K) decreasing

• C(K) convex

With C(0) = S, we have a set of necessary conditions for the absence of
arbitrage
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Sufficient conditions

In fact, these conditions are also sufficient, see Breeden & Litzenberger
(1978), Laurent & Leisen (2000) and Bertsimas & Popescu (2002) among
others

Suppose we have a set of market prices for calls C(Ki) = pi, then there is no
arbitrage iff there is a function C(K):

• C(K) positive

• C(K) decreasing

• C(K) convex

• C(Ki) = pi and C(0) = S
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IBM calls, Oct. 10 2003, maturity 1 week

Source: reuters
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Why?

data quality...

• all the prices are last quotes (not simultaneous)

• low volume

• some transaction costs

Problem: this data is used to calibrate models and price other derivatives...
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Dimension n: basket options

• a basket call payoff is
(

k
∑

i=1

wiSi − K

)

+

where w1, . . . , wk are the basket’s weights and K is the option’s strike
price

• examples include: Index options, spread options, swaptions...

• basket option prices are used to gather information on correlation

We note C(w, K) the price of such an option, can we get conditions to test
basket price data?
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Sufficient conditions

Similar to dimension one...

Suppose we have a set of market prices for calls C(wi, Ki) = pi, and there is
no arbitrage, then the function C(w, K) satisfies:

• C(w, K) positive

• C(w, K) decreasing

• C(w, K) jointly convex in (w, K)

• C(wi, Ki) = pi and C(0) = S

Is this tractable?
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Tractable?

The problem can be formulated as:

find z
subject to Az ≤ b, Cz = d

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , gT

k

]T

gi subgradient of f at xi i = 1, . . . , k
fmonotone, convex

in the variables f ∈ C (Rn), z ∈ R(n+1)k, g1, . . . , gk ∈ Rn

• discretize and sample the convexity constraints to get a polynomial size
LP feasibility problem
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• enforce the convexity and subgradient constraints at the points
(xi)i=1,...,k (monotonicity is a simple inequality on g) to get:

find z
subject to Cz = d, Az ≤ b

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , gT

k

]T

〈gi, xj − xi〉 ≤ f(xj) − f(xi) i, j = 1, . . . , k

in the variables f(xi)i=1,...,k and g in Rn × Rn×k

• we note zopt =
[

fopt(x1), . . . , f
opt(xk), (g

opt
1 )T , . . . , (gopt

k )T
]T

a solution
to this problem
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• from zopt, we define:

s(x) = max
i=1,...,k

{

fopt(xi) +
〈

gopt
i , x − xi

〉}

• by construction, s(xi) solves the finite LP with:

s(xi) = fopt(xi), i = 1, . . . , k

• s(x) is convex and monotone as the pointwise maximum of monotone
affine functions

• so s(x) is also a feasible point of the original problem

this means that the price conditions remain tractable on basket options...
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Sufficient?

key difference with dimension one, Bertsimas & Popescu (2002) show that
the exact problem is NP-Hard

• the conditions are only necessary...

• here however, numerical cost is minimal (small LP)

• we can show tightness in some particular cases

• how sharp are these conditions?
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Full conditions

derived by Henkin & Shananin (1990). A function can be written

C(w, K) =

∫

Rn
+

(wTx − K)+dπ(x)

with w ∈ R
n
+ and K > 0, if and only if:

• C(w, K) is convex and homogenous of degree one;

• limK→∞ C(w, K) = 0 and limK→0+
∂C(w,K)

∂K
= −1

• F (w) =

∫

∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞

0 (Rn
+)

• For some w̃ ∈ R
n
+ the inequalities: (−1)

k+1
Dξ1...Dξk

F (λw̃) ≥ 0, for all
positive integers k and λ ∈ R++ and all ξ1, . . . , ξk in R

n
+.
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Numerical example

• two assets: x1, x2, we look for bounds on the price of (x1 + x2 − K)+

• simple discrete model for the assets:

x = {(0, 0), (0, .8), (.8, .3), (.6, .6), (.1, .4), (1, 1)}

with probability
p = (.2, .2, .2, .1, .1, .2)

• the forward prices are given, together with the following call prices:

(.2x1 + x2 − .1)+, (.5x1 + .8x2 − .8)+, (.5x1 + .3x2 − .4)+,
(x1 + .3x2 − .5)+, (x1 + .5x2 − .5)+, (x1 + .4x2 − 1)+, (x1 + .6x2 − 1.2)+
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Extensions (very briefly)...

formulate as a moment problem on the payoff semigroup (see Berg,
Christensen & Ressel (1984)):

s = (1, x1, . . . , xn, |wT
0 x−K0|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . . , |w
T
mx−Km|N)

this is a semidefinite program

find f : s → R
subject to MN(f(s)) � 0

MN(f(sjs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=0 sk)s)
)

� 0

f(sj) = pj, for j = 0, . . . , n + m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(sks))ij = f(sksisj)
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Conclusion

Simple, tractable bounds to test basket option price data...

• conditions are only necessary

• but... very low numerical cost

• tightness in some particular cases, “good” in general
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Related papers...

• A. d’Aspremont, L. El Ghaoui
”Static Arbitrage Bounds on Basket Option Prices.”
ArXiv: math.OC/0302243.

• A. d’Aspremont
”A Harmonic Analysis Solution to the Static Basket Arbitrage Problem.”
ArXiv: math.OC/0309048.

both available on www.stanford.edu/vaspremon/
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