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Préface et principaux résultats

Préface

Le modèle de Black & Scholes (1973) permet l’évaluation des options sur un seul actif dans un
modèle lognormal et établit ainsi une bijection entre la volatilité d’un actif et le prix d’une option
d’achat. Dans la pratique, les propriétés d’homogénéité de cette relation on fait de la volatilité im-
plicite l’instrument privilégié de cotation des prix d’options. La formule de Black & Scholes (1973)
n’a malheureusement pas d’équivalent simple dans le cas multivarié. Ainsi, la cotation des options
sur portefeuilles s’effectue en termes de volatilité implicte, mais il n’est pas possible de relier sim-
plement cette volatilité implicite de portefeuille à celle des actifs le composant. Le marché des
options sur portefeuille d’actions étant majoritairement composé d’options sur indices, les risques
d’incohérence dans la modélisation y sont très limités. La situation est cependant exactement in-
verse dans le marché des options sur taux d’intérêt.

L’activité de synthèse et de couverture des produits dérivés se décompose en trois phases. Dans
la première, le modèle est calibré aux conditions présentes du marché. Cette phase implique la
résolution d’un problème inverse, trivial dans le cas du modèle simple de Black & Scholes (1973),
beaucoup plus difficile dans les modèles de taux. La seconde phase est l’évaluation propremennt dite
des produits et de leur couverture. La troisième est la description et la gestion au quotidien du risque
induit par les portefeuilles de dérivés portés. L’obtention de solutions numériques performantes et
stables tout au long de cette chaîne de problèmes est indispensable au maintien d’une activité viable
d’agrégation-désagrégation des risques financiers.

La liquidité du marché des produits dérivés de taux se concentre massivement autour des caps
et swaptions, qui sont des options sur portefeuille. La modélisation jointe des taux et la possibilité
de pouvoir évaluer de manière cohérente l’ensemble de ces options y est donc un prérequis fon-
damental. Les swaptions sont des options d’achat sur une combinaison convexe de taux forward.
Les coéfficients de cette combinaison ont une variance très faible et les taux forwards ne sont pas
des martingales sous une même probabilité. La première contribution de ce travail est de mon-
trer que le prix des swaptions peut être approximé, sous une mesure martingale bien choisie (voir
Jamshidian (1997)), par celui d’une option sur un portefeuille de martingales lognormales, l’erreur
pouvant être bornée uniformément. Ceci réduit le problème de l’évaluation des swaptions dans les
modèles linéaires, gaussiens, markoviens (voir El Karoui & Lacoste (1992), Duffie & Kan (1996)
ou Musiela & Rutkowski (1997)) ou dans le modèle de marché (Brace, Gatarek & Musiela (1997)
ou Sandmann & Sondermann (1997)), à celui de l’évaluation d’options d’achat dans un modèle de
Black & Scholes (1973) multivarié.

Un deuxième chapitre s’intéresse donc a l’évaluation des options sur portefeuille dans le cadre
d’un modèle de Black & Scholes (1973) multivarié. Un développement en série du prix d’une option
d’achat est obtenu par des techniques d’approximation de diffusion similaires à celles utilisées dans
Fournié, Lebuchoux & Touzi (1997). En plus de l’important gain en précison et rapidité par rapport
aux méthodes de Monte-Carlo, les termes obtenus par cette méthode ont une interpretaion très
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naturelle. Le terme d’ordre zéro correspond a l’approximation classique d’une somme de variables
lognormales par une variable lognormale, le terme d’ordre un correspond à un terme correcteur égal
à l’espérance de l’erreur de couverture.

Cette approximation du prix des options permet d’écrire le problème de calibration d’un modèle
de taux comme celui de trouver une matrice semidéfinie positive qui vérifie une série de contraintes
linéaires. En d’autres termes, le problème de cablibration devient un programme semidéfini. Depuis
les travaux de Nesterov & Nemirovskii (1994) et Vandenberghe & Boyd (1996) entre autres, ces
programmes peuvent être résolus très efficacement, l’analyse et la preuve de la complexité polyno-
miale de ces problèmes étant similaire à celle obtenue pour les programmes linéaires (voir Nesterov
& Todd (1998)).

Dans ce cadre, le dual du programme de calibration a également une interprétation très naturelle
en termes de gestion des risques. Le cône des matrices semidéfinies positives étant symétrique, ce
programme est également un programme semidéfini et sa solution fournit, selon l’objectif choisi,
soit un portefeuille de couverture au sens de El Karoui & Quenez (1991) et Avellaneda & Paras
(1996), soit la sensibilité de la solution à un changement des conditions de marché.

L’instabilité numérique a un coût direct pour les opérateurs de marché qui se traduit par une
couverture imparfaite, des coûts de transaction et une description incomplète des risques. Par leur
capacité à stabiliser ce processus quotidien de calibration, couverture et gestion des risques, nous
espérons que les méthodes exposées dans ce travail vont réduire les coûts de transaction et améliorer
la fiabilité et la transparence de la gestion des risques liés aux opérations sur produits dérivés exo-
tiques.

Principaux résultats

Motivations, contributions et littérature associée

Les problèmes de calibration et de gestion des risques d’un modèles de taux ont comme paramètre
naturels un operateur de covariance. Les méthodes actuelles qui consistent à fortement paramétrer
cet opérateur ou a lui substituer des données historiques sont non convexes et donc intrinsèquement
instables et inefficaces.

Origine du problème

• Dans le cadre de l’analyse de Heath, Jarrow & Morton (1992), on sait qu’un modèle de taux
arbitré est entièrement paramétré par la donnée de la courbe des taux aujourd’hui et de leur
fonction de covariance.

• Si on discrétise, le paramètre naturel de la calibration d’un modèle de taux est une matrice
semidéfinie positive.

• Actuellement: la calibration est soit paramétrée par un ou deux facteurs, soit basée sur la
corrélation historique.

• Les programmes de calibrations actuels sont donc non convexes et intrinsèquement instables.

• Ces méthodes n’exploitent pas toute la richesse des modèles sous-jacents.

• De plus, ces approches ne fournissent pas de résultats fiables sur la sensibilité de la solution
à une variation des prix de marché. La technique la plus souvent utilisée est de modifier les
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données initiales et de recalibrer pour un certain nombre de scénarios précis. Cette technique,
coûteuse numériquement, amplifie l’instabilité des résultats.

Contributions

La clé de tous les résultats qui vont suivre se trouve dans le développement récent d’alogrithmes
de programmation linéaire sur l’espace des matrices semidéfinies, algorithmes dont la complexité
(polynomiale) est comparable a celle des programmes linéaires classiques.

• Dans l’évaluation du prix d’une swaption , on peut assimiler le taux swap a un panier de taux
forwards.

• Parce que la volatilité des zéros coupons est faible comparée à celle des forwards, on peut
supposer que les poids dans ce panier sont constants et que le swap et les forwards sont
traités comme des martingales sous une même mesure dans l’évaluation des swaptions.

• Le prix de ces options panier peut ensuite être calculé (en première approximation) en utlisant
la formule de Black-Scholes (formule de marché pour les swaptions) avec une variance bien
choisie.

• Les autres termes du développement peuvent être calculés explicitement, le terme d’ordre un
s’interprètant comme l’erreur moyenne de couverture.

• La ”variance de marché” est une forme linéaire sur la matrice de covariance des forwards.

• Si l’on choisit d’optimiser un objective linéaire en variance, le problème de la calibration peut
donc se résoudre comme un programme semidéfini canonique.

• Le dual de ce programme est un programme de couverture et fourni la sensibilité de la solu-
tion à une variation des prix de marchés.

• Enfin, l’optimisation du Gamma d’un portefeuille au moyen d’options vanille s’écrit égale-
ment comme un programme semidéfini.

Littérature associée

• Les travaux de Nesterov & Nemirovskii (1994) et Vandenberghe & Boyd (1996) sur la pro-
grammation semidéfinie, Nesterov & Todd (1998) pour un traitement général de la complexité
des programmes linéaires sur les cônes symétriques.

• Les résultats Rebonato (1998), Brace, Dun & Barton (1999) et Singleton & Umantsev (2001)
sur l’évaluation des swaptions comme paniers de forwards. Rebonato (1999) sur la calibration
du modèle de Brace et al. (1997) par paramétrisation des facteurs.

• Les travaux parallèles de Brace & Womersley (2000) sur la calibration du modèle de Brace
et al. (1997) par programmaion semidéfinie et l’impact du nombre de facteurs sur l’évaluation
de la Mid-Atlantique.

• Les articles de Fournié et al. (1997) et Lebuchoux & Musiela (1999) sur les approximations
de diffusions.

• L’article de Douady (1995) sur l’optimisation du Gamma.
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Première partie: évaluation des swaptions

Les modèles

On défini l’évolution de l’actif sans risque par βs = exp
(∫ s
t r(u, 0)du

)
(1 euro placé a la date zéro

au taux court) où r(u, 0) est le taux court spot a la date u. Dans l’analyse de Heath et al. (1992), et
si on note B(s, T ) le prix en s du zero-coupon de maturité T

B(s, T ) = EQ
s

[
exp

(
−
∫ t

t
r(u, 0)du

)]
l’absence d’arbitrage entre les différents Z.C. impose:

B(t, T )
βt

= B(0, T ) exp
(
−
∫ t

0
σB(s, T − s)dWs − 1

2

∫ t

0

∣∣σB(s, T − s)
∣∣2 ds)

où {σB(t, θ); θ ≥ 0} est la volatilité des Z.C. et W = {Wt, t ≥ 0} est un M.B. de dimension d
sous une probabilité risque-neutre Q. On définit ensuite le taux forward LIBOR de maturité δ (par
ex. 3 mois) à la date t par:

1 + δL(t, θ) = exp
(∫ θ+δ

θ
r(t, ν)dν

)

Le modèle de marché sur les LIBOR (lognormal en taux) Dans ce modèle, on suppose que le
taux forward LIBOR a une volatilité lognormale:

dL(s, θ) = (...)ds+ L(s, θ)γ(s, θ)dWs

avec γ : R
2
+ �−→ R

d
+ déterministe et si comme dans Brace et al. (1997) on impose γ(s, θ) = 0, ∀

θ ∈ [0, δ[, on a spécifié la volatilité des Z.C. comme:

σB(t, θ) =
�δ−1θ�∑
k=1

δL(t, θ − kδ)
1 + δL(t, θ − kδ)

γ(t, θ − kδ)

Le modèle affine (lognormal en prix) Dans ce modèle, on suppose que les prix des Z.C. ont une
dynamique lognormale et sont donnés par:

dB(s, T )
B(s, T )

= r(s, 0)ds+ σB(s, T − s)dWs

où σB(s, T−s) est ici déterministe (on obtient une dynamique lognormale shiftée sur les forwards).

Instruments de base: les swaptions

Taux swap Le swap est le taux qui équilibre les PV d’une branche fixe et d’une branche variable.
Il est défini par:

swap(t, T, Tn) =
B(t, T floating) −B(t, T floatingn+1 )

Level(t, T fixed, T fixedn )
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avec Level(t, T fixed, T fixedn ) =
∑n

i=iT
coverage(T fixedi , T fixedi+1 )B(t, T fixedi ) et TiT = T . On

peut encore écrire ce taux comme:

swap(t, T0, Tn) =
n∑

i=iT

ωi(t)K(t, Ti)

où

ωi(t) =
coverage(T floati , T floati+1 )B(t, T floati+1 )

Level(t, T fixed, T fixedn )
et K(t, T ) = L(t, T − t)

En pratique, les poids ωi(t) sont remarquablement stables. En pratique, on considère la fréquence
des payements flottants comme étant un multiple de celle des payements fixes.

Swaption (formule en taux) Si on suppose que les taux suivent la dynamique du modèle de
marché sur les taux LIBOR, on définit le prix de la swaption comme une somme de Calls sur le taux
swap prévalant a la date T :

Ps(t) = B(t, T )EQT
t

 N∑
i=iT

β(T )δcvg(i, b)
β(Ti+1)

(swap(T, T, TN ) − k)+


où QT est la probabilité forward en T . Si on défini une nouvelle probabilité martingale QLV L

associée au forward swap:

dQLV L

dQT
|t = B(t, T )β(T )

N∑
i=1

δcvg(i, b)β−1(Ti+1)
Level(t, T, TN )

on peut réécrire le prix de la swaption comme une option sur le taux swap:

Ps(t) = Level(t, T, TN )EQLV L
t

[
(swap(T, T, TN ) − k)+

]
ou encore comme une option sur un panier de forwards:

Ps(t) = Level(t, T, TN )EQLV L
t

[(
n∑
i=0

ωi(T )K(T, Ti) − k

)+]
Dans le modèle de marché sur les LIBOR, on constate que la stabilité empirique est bien reproduite
par le modèle. En effet, on a:

dswap(s, T, TN ) =
N∑
i=iT

ωi(s)K(s, Ti) (γ(s, Ti − s) + η(s, Ti)) dWLV L
s

où la contribution des poids est donnée par:

η(s, Ti) =

 N∑
k=iT

ωi(s)
(
σB(s, Ti − s) − σB(s, Tk − s)

)
où σB(t, θ) est la volatilité des Z.C. D’autre part le changement de probabilité se traduit en termes
de drift par:

dWLV L
s = dW T

s +
N∑
i=iT

ωi(s) i∑
j=1

δK(s, Tj)
1 + δK(s, Tj)

γ(s, Tj − s)

 ds
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En première approximation, avec en pratique:

δK(s, Tj) � 1%

et
N∑
i=iT

ωi(s)K(s, Ti)η(s, Ti) =
N∑
i=iT

ωi(s) (K(s, Ti) − swap(s, T, TN )) η(s, Ti)

avec
∑N

i=iT
ωi(s) = 1 et 0 ≤ ωi(s) ≤ 1, on peut considérer que la contribution des poids dans

la volatilité du swap peut être négligée face à celle des fowards. On peut également négliger le
drift introduit par le passage de la probabilité forward à la probabilité forward swap. La swaption
dans le modèle lognormal en taux peut donc être évaluée comme une option sur un panier de taux
lognormaux.

Swaption (formule en prix) On peut aussi écrire le prix de la Swaption de strike k et de maturité
T comme celui d’un put sur un panier de Z.C.:

Ps(t) = B(t, T )EQT
t

1 −B(t, TN+1) − kδ
N∑
i=iT

B(t, Ti)

+
les coefficients dans le panier sont ici constants. Dans le modèle lognormal en prix, la swaption
peut donc ici aussi être évaluée comme une option sur un panier d’actifs lognormaux.

Évaluation des options sur un panier d’actifs

La dynamique du forward Dans les deux types de modèles qui précèdent, on écrit le prix de
la swaption comme celui d’une option sur un panier d’actifs lognormaux. On va donc chercher à
approximer ce prix dans les cas général où ces n actifs on une corrélation de dimension a priori
égale à n, en utilisant les méthodes de développement du prix détaillées par Fournié et al. (1997)
et Lebuchoux & Musiela (1999). On se place directement dans le marché forward où la dynamique
des actifs sous-jacents (prix ou taux) est donnée par:

dF is = F isσ
i
sdWs

où Wt un QT -Brownien d-dimensionel et σs =
(
σis
)
i=1,...,n

∈ R
n×d est la matrice de volatilité.

Dans toute la suite on notera Γs ∈ R
n×n la matrice de covariance correspondante. On cherche à

calculer le prix d’un Call sur panier dont le payoff à maturité est donné par:

h (FωT ) =

(
n∑
i=1

ωiF
i
T − k

)+

avec
n∑
i=1

ωi = 1

Pour ce faire on commence par écrire la dynamique du sous-jacent Fωs sous forme lognormale:

dFωs = Fωs

(
n∑
i=1

ω̂i,sσ
i
s

)
dWs

avec

ω̂i,s =
ωiF

i
s∑n

i=1 ωiF
i
s
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La dynamique de ces poids est donc donnée par

dω̂i,s
ω̂i,s

=

 n∑
j=1

ω̂j,s
(
σis − σjs

)dWs +
n∑
j=1

ω̂j,sσ
j
sds


et on vérifie tres naturlellement que si les volatilités σis sont toutes identiques, la duynamique du for-
ward Fωs est exactement lognormale avec comme volatilité σωs , on définit donc la volatilité résiduelle
de chaque actif par rapport à cette volatilité centrale comme:

ξis = σis −
n∑
j=1

ω̂j,tσ
j
s avec σωs =

n∑
j=1

ω̂i,tσ
j
s

où σωs est Ft −mesurable.

Développement du prix En pratique, la volatilité résiduelle et les moyennes
∑n

j=1 ω̂j,sσ̃
j
s sont

supposées petites et on va donc développer la dynamique du forward en remplaçant
∑n

j=1 ω̂
ε
j,sξ

j
s

par ε
∑n

j=1 ω̂
ε
j,sξ

j
s pour un ε > 0 petit, pour écrire:

dFω,εs = Fω,εs

(
σωs + ε

∑n
j=1 ω̂j,sξ

j
s

)
dWs

dω̂εi,s = ω̂εi,s

(
ξis − ε

∑n
j=1 ω̂

ε
j,sξ

j
s

)(
dWs + σωs ds+ ε

∑n
j=1 ω̂j,sξ

j
sds

)
Comme dans Fournié et al. (1997) et Lebuchoux & Musiela (1999) on cherche donc a évaluer:

Cε = E
[(
Fω,εT − k

)+ | (Fωt , ω̂t)
]

en l’approximant par sont développement de Taylor autour de ε = 0:

Cε = C0 + C(1)ε+ C(2) ε
2

2
+ o(ε2)

Terme d’ordre zéro Le terme d’ordre zéro se calcule directement comme la solution de l’E.D.P.
limite: 

∂C0

∂s + ‖σωs ‖2 x2

2
∂2C0

∂x2 = 0

C0 = (x−K)+ for s = T

et on peut donc obtenir C0 par la formule de Black & Scholes (1973) avec comme variance ‖σωs ‖2:

C0 = BS(T, Fωt , VT ) = Fωt N(h(VT )) − κN
(
h(VT ) −

√
VT

)
avec

h (VT ) =

(
ln
(
Fω

t
κ

)
+ 1

2VT

)
√
VT

et VT =
∫ T

t
‖σωs ‖2 ds
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Terme d’ordre un On peut ensuite s’intéresser à l’E.D.P. vérifiée par ∂Cε/∂ε:{
Lε0C

ε = 0
Cε = (x− k)+ en s = T

où l’on a noté:

Lε0 =
∂Cε

∂s
+

∥∥∥∥∥∥σωs + ε
n∑
j=1

yjξ
j
s

∥∥∥∥∥∥
2

x2

2
∂2Cε

∂x2

+
n∑
j=1

〈ξjs , σωs 〉+ ε

n∑
k=1

yk

〈
ξjs − σωs , ξ

k
s

〉
− ε2

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
xyj

∂2Cε

∂x∂yj

+
n∑
j=1

∥∥∥∥∥ξjs − ε

n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
y2
j

2
∂2Cε

∂y2
j

+
n∑
j=1

〈ξjs , σωs 〉+ ε
n∑
k=1

yk

〈
ξjs − σωs , ξ

k
s

〉
− ε2

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
 yj

∂Cε

∂yj

on peut passer à la limite en ε = 0 (en s’accordant comme dans Fournié et al. (1997) un peu de
liberté avec les conditions de régularité), ce qui donne:{

L0
0C

(1) +
(∑n

j=1 yj

〈
ξjs , σωs

〉)
x2 ∂2C0

∂x2 = 0
Cε = 0 en s = T

Ceci permet de calculer C(1) en utilisant la représentation de Feynman-Kac:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t
〈
ξjs , σ

ω
s

〉
exp

(∫ s

t
−1

2

∥∥ξju − σωu
∥∥2
du

)

E

exp
(∫ s

t

(
σωu + ξju

)
dWu

)
√
Vs,T

n

(
ln Fω

t
K +

∫ s
t σ

ω
udWu − 1

2Vt,s + 1
2Vs,T√

Vs,T

) ds
pour obtenir:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t

〈
ξjs , σωs

〉
√
Vt,T

exp
(

2
∫ s

t

〈
ξju, σ

ω
u

〉
du

)

n

 ln Fω
t
K +

∫ s
t

〈
ξju, σωu

〉
du+ 1

2Vt,T√
Vt,T

 ds

Calcul du prix de l’option sur panier En résumé on peut donc obtenir une formule approximant
le prix de l’option sur panier:

Et
[
(FωT − k)+

]
= BS(T, Fωt , VT ) + C(1)

x



où

VT =
∫ T

t

∥∥∥∥∥
N∑
i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds

et

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t

〈
ξjs , σωs

〉
√
Vt,T

exp
(

2
∫ s

t

〈
ξju, σ

ω
u

〉
du

)

n

 ln Fω
t
K +

∫ s
t

〈
ξju, σωu

〉
du+ 1

2Vt,T√
Vt,T

 ds

Application aux swaptions Dans le cas de la swaption, la formule a l’ordre zéro s’écrit:

Level(t, T, TN )
(
swap(t, T, TN )N(h) − κN(h−

√
VT )

)
avec

h =

(
ln
(
swap(t,T,TN )

κ

)
+ 1

2VT

)
√
VT

et où

VT =
∫ T

t

∥∥∥∥∥
N∑
i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds avec ω̂i(t) = ωi(t)
K(t, Ti)

swap(t, T, TN )

Précision de la formule sur les paniers simples

On peut étudier la précision de cette approximation en comparant avec un Monte-Carlo (figure
3.2). Ces valeurs répliquent les paramètres utlisés pour une swaption (5 ans, 5ans). La matrice de
covariance est issue de données historiques sur la covariance des FRA.

Précisicion de la formule dans le modèle lognormal sur LIBOR.

On peut aussi tester la qualité de l’approximation à l’ordre zéro dans le cadre du modèle de marché
en comaprant encore une fois avec les résultats obtenus par Monte-Carlo (figure 3.1).

Deuxième partie: Calibration

Le programme de calibration

Comme on l’a vu dans la partie précédente, le prix de la swaption peut s’approximer par son prix
de Black calculé avec ue variance de marché bien choisie. Avec

ω̂i(t) = ωi(t)
K(t, Ti)

swap(t, T, TN )

où les ωi(t) proviennent de la décomposition du Swap en panier de FRA, cette variance variance
s’obtient comme:

VT =
∫ T

t

∥∥∥∥∥
N∑
i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds
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ou encore

VT =
∫ T

t
Tr (ΩtΓs) ds

ou on a noté
Ωt = ω̂(t)ω̂(t)T = (ω̂i(t)ω̂j(t))i,j∈[1,N ] 
 0

Si on se donne une série de varinaces de marché σ2
kTk correspondants à des Swaptions (ou Caplets)

de poids ω̂k et de maturité Tk et si on suppose que la covariance des LIBOR est constante par
morceaux, on peut écrire le programme de calibration comme:

Trouver Xi

avec
∑T

i=t δTr (Ωt,kXi) = σ2
kTk où k = 1, ...,M

Xi 
 0 pour i = 0, ..., T

ou encore, sous-forme bloc-diagonale:

Trouver X
avec Tr (ΩkX) = σ2

kTk où k = 1, ...,M
X 
 0 pour i = 0, ..., T

Le programme de calibration s’exprime donc comme un programme semidéfini (SDP) avec comme
inconnue la matrice de covariance des FRA.

La résolution simultanée de ce programme et de son dual donne une preuve de convergence
sous forme du gap de dualité, ou une preuve de non faisabilité si les prix sont incompatibles avec
les hypothèses du modèle.

Un programme convexe On peut comparer les deux types de paramétrage du problème de cal-
ibration sur un example simple. Dans les programmes paramétrés par facteurs de volatilité, si on
cherche a résoudre le programme suivant:

max Tr

([
1 −1
−1 1

]
X

)
avec Tr

([
1 0
0 1

]
X

)
= 1

X 
 0

et qu’on le paramètre comme dans Rebonato (1999), on obtient:

X(u, v) =
(

cos2(u) cos(v) cos(u) sin(u)
cos(v) cos(u) sin(u) sin2(u)

)
on peut représenter la fonction Tr([1,−1;−1, 1]X(u, v)): En général, le programme paramétré par
les facters revient a trouver une solution de rang minimal a un programme semidéfini. Ceci fait
apparaitre le programme de calibration comme NP-dur (et même NP-complet).

Par contre, la version SDP s’écrit comme l’optimisation d’une forme linéaire sur l’intersection
du cône des matrices semidéfinies positives. Ce cone est représenté ici par

X =
(
x y
y z

)

 0 ⇐⇒ min

i
λi(X) ≥ 0

ce qui donne: et le domaine d’un programme semidéfini, l’intersection de ce cône avec un plan peut
donc être représentée comme dans la figure 4.3.
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Figure 1: La fonction objectif paramétrée par facteurs.

Objectifs Comme l’ont souligné Nesterov & Nemirovskii (1994), la classe des objectifs représenta-
bles par SDP est très vaste. Elle inclut évidemment les objectifs linéaires mais aussi quadratiques
par complément de Schur:

‖x‖2 ≤ t pour x ∈ R
n

peut encore s’écrire (
tI xT

x 1

)

 0

On peut également représenter la norme spectrale en termes d’inégalités matricielles et donc de
SDP:

minimiser ‖X −A‖
pour Tr(XΩTi) =

(
σ2
market

)
i
Ti

X 
 0

devient:
minimiser t
pour Tr(XΩTi) =

(
σ2
market

)
i
Ti

X −A  tId
X −A 
 −tId
X 
 0 et t ≥ 0

Programme dual Le dual du SDP de calibration est un programme avec objectif linéaire, où les
contraintes sont données par une inégalité matricielle linéaire. Le cône des matrices semidéfinies
positives est autoadjoint, et on peut former le Lagrangien

L(X, y) = −Tr(CX) +
M∑
k=1

yk
(
Tr(ΩkX) − σ2

kTk
)

= Tr

(
M∑
k=1

(ykΩk − C)X

)
−

M∑
k=1

ykσ
2
kTk
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Figure 2: Le cône des matrices semidéfinies positives en dimension trois.

pour obtenir:
maximiser

∑M
k=1 ykσ

2
kTk

pour 0 
(∑M

k=1 ykΩk − C
)

Calcul des sensibilités On peut maintenant utiliser les résultats de Todd & Yildirim (1999) pour
calculer la sensibilité de la solution a un changement dans les conditions du marché. On note Xopt,
yopt et

Zopt =

(
C −

M∑
k=1

yoptk Ωk

)
la solution du programme de calibration. On note encore pour P,Q,X ∈ R

n×n:

(P �Q)K :=
1
2
(
PKQT +QKP T

)
et

A : SM −→ R
m A∗ : R

m −→ SM

X �−→ AX := (Tr (AiX))i=1,...,m y �−→ A∗y :=
∑m

i=1 yiΩi

On définit M = I (direction de recherche A.H.O.) ou M = Zopt (H.K.M.) et enfin les operateurs
E = Zopt �M , F = MXopt � I et leurs adjoints E∗ = Zopt �M and F ∗ = XoptM � I .

On suppose que ces données de marché σ2
kTk on été modifiées dans une direction donnée par

un vecteur u ∈ R
n petit, la nouvelle solution du programme de calibration devient:

∆X = E−1FA∗
[(
AE−1FA∗)−1

u
]

de plus, celle-ci est garantie valable si∥∥∥(Xopt
)− 1

2

(
E−1FA∗

[(
AE−1FA∗)−1

u
]) (

Xopt
)− 1

2

∥∥∥ ≤ 1
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On dispose donc d’une matrice donnée par

S = E−1FA∗
[(
AE−1FA∗)−1

]
qui permet de calculer directement la sensibilité de la solution à l’ensemble des scenarios de marché
possibles.

Bornes sur le prix On peut placer en objectif une matrice correpsondant au prix d’une autre
Swaption.

maximiser σ2
maxT = Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk for k = 1, ...,M

X 
 0

Le dual de ce programme peut s’interpréter à la Avellaneda & Paras (1996) comme un programme
de couverture, si on note BSk(v), le prix de Black Scholes de l’option k pour une variance v:

inf
λ

{
M∑
k=1

λkCk + sup
X�0

(
BS0(Tr(Ω0X)) −

M∑
k=1

λkBSk (Tr(ΩkX))

)}
ou encore

Prix = Min {Valeur de la couverture + Max (PV du résidu)}
Ce prix est donc calculé en introduisant dans la calibration les instruments de couverture et en
choisissant les paramètres de calibration les plus conservateurs possibles. L’addition d’instruments
dans la calibration améliore la diversification du risque (sous-additivité du max).

La figure 7.9 donne un exemple de bornes sur les prix (6 Novembre 2000). On calibre en utilisant
tous les caplets et les swaptions suivantes: 5Y into 5Y, 5Y into 2Y, 5Y into 10Y, 2Y into 2Y, 2Y
into 5Y, 7Y into 5Y, 10Y into 5Y, 10Y into 2Y, 10Y into 10Y, 7Y into 3Y, 4Y into 6Y, 17Y into 3Y.
Considérant la simplicité du modèle utilisé (covariance stationaire des FRA), il est surprenant de
constater que le modèle restitue bien la volatilité des swaptions de sous-jacent inférieur à dix ans.

Rang faible ou matrice régulière? Comme l’ont observé Fazel, Hindi & Boyd (2000), si on place
une matrice définie positive comme objectif on obtient en général une matrice de rang faible (figure
4.4) dont les valeurs propres sont rapidement décroissantes (figure 4.5). On constate que la matrice
est de rang deux. Cette méthode empirique donne d’excellents résultats en pratique mais aucune
garantie ne peut être obtenue quant au rang de la solution (le problème devient alors NP-complet).

Si on impose en plus des contraintes de lissage à la matrice de covariance, on obtient un résultat
plus intuitif (figure 4.6) mais cela se fait au prix d’une augmentation du rang de la solution (figure
4.7). Cependant, comme la minimisation de la surface de la matrice de covariance revient a min-
imiser une entropie (quadratique), on s’attend à ce que cette matrice varie moins au cours du temps
que celle obtenue par diminution du rang (on constate tout de même que cette matrice a uniquement
deux valeurs propres dominantes, conformément aux résultats empiriques).
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Preface

In the original Black & Scholes (1973) model, there is a one-to-one correspondence between the
price of an option and the volatility of the underlying asset. In fact, options are most often directly
quoted in terms of their Black & Scholes (1973) implied volatility. In the case of options on multiple
assets such as basket options, that one-to-one correspondence between market prices and covariance
is lost. The market quotes basket options in terms of their Black & Scholes (1973) volatility but
has no direct way of describing the link between this volatility and that of the individual assets
composing the basket. Today, this is not yet critically important in equity markets where most of
the trading in basket options is concentrated among a few index options, we will see however that it
is crucial in interest rate derivative markets where most of the volatility information is contained in
a rather diverse set of basket options.

Indeed, a large part of the liquidity in interest rate option markets is concentrated in European
caps and swaptions. In the first chapter of this work we will show how one can express the price of
swaptions (and caplets) as that of an option on a basket of zero-coupon bonds in one approach, or a
basket of forward Libor rates in another. This basket option representation is exact in the first case
and we will show how it provides an excellent pricing approximation in the second.

In particular, this will allow us to reduce the problem of pricing swaptions in both the Gaussian
H.J.M. model (see El Karoui & Lacoste (1992), Duffie & Kan (1996) or Musiela & Rutkowski
(1997)) and the Libor market model (see Brace et al. (1997), Miltersen, Sandmann & Sondermann
(1995) or Miltersen, Sandmann & Sondermann (1997)) to that of pricing swaptions in a multidimen-
sional Black & Scholes (1973) lognormal model. The second chapter is then focused on finding a
good pricing approximation for basket calls in this generic model. We derive price expansion where
the first term is computed as the usual Black & Scholes (1973) price with an appropriate variance
and the second term can be interpreted as the expected value of the tracking error obtained when
hedging with the approximate volatility.

Besides its radical numerical performance compared to Monte-Carlo methods, the formula we
obtain has the advantage of expressing the price of a basket option in terms of a Black & Sc-
holes (1973) covariance that is a linear form in the underlying covariance matrix. This sets the
multidimensional model calibration problem as that of finding a positive semidefinite (covariance)
matrix that satisfies a certain number of linear constraints. In other words, the calibration becomes a
semidefinite program. Recent advances in optimization (see Nesterov & Nemirovskii (1994) or Van-
denberghe & Boyd (1996)) have led to algorithms that solve these problems very efficiently, with
a complexity analysis that is comparable to that of linear programs (see Nesterov & Todd (1998)).
This means that the general multidimensional market covariance calibration problem can be solved
very efficiently.

Finally, we show that these same semidefinite programming techniques provide key sensitivity
and risk-management results together with the calibration solution. For instance, we show how all
sensitivities of the solution matrix to changes in market conditions can be directly obtained from the
optimal solution of the dual calibration problem.
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Numerical instability has a direct cost in both poor hedging and incomplete risk description.
By reducing the amount of numerical noise in the daily recalibration process and improving the
risk-management of interest rate models, we hope these methods will significantly reduce hedging
costs and improve the reliability of risk-management computations.
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Introduction
A robust and efficient calibration algorithm is a central element in the successful implementa-

tion of a derivatives pricing model. On one hand, the arbitrage-free price derived from a dynamic
hedging strategy à la Black & Scholes (1973) and Merton (1973) has now become a central refer-
ence in the pricing and risk-management of financial derivatives, on the other hand however, every
market operator knows that the data they calibrate on is not arbitrage free because of market imper-
fections. Beyond these discrepancies in the data, daily model recalibration and the non-convexity
of most current calibration methods only add further instability to the derivative pricing, hedging
and risk-management process by exposing these computations to purely numerical noise. One of
the crucial filters standing between those two sets of prices (market data and computed derivative
prices) is the model calibration algorithm.

Recent developments in interest rates modelling have led to a form of technological asymmetry
on this topic. The theoretical performance of models such as the Libor Market Model of Interest
Rates by Brace et al. (1997) or the affine models (see El Karoui & Lacoste (1992) or Duffie & Kan
(1996)) allows a very flexible modelling and pricing of the basic interest rate options (caps and
swaptions) at-the-money. However, due to the inefficiency and instability of the calibration proce-
dure, only a small part of the market covariance information that could theoretically be accounted
for in the model is actually exploited. To be precise, the most common techniques (see for example
Longstaff, Santa-Clara & Schwartz (2000)) perform a completely implicit fit on the caplet variances
while only a partial fit is made on the correlation information available in swaptions: the limitations
of these methods make it necessary to substitute a statistical estimate to the market information
on the forward Libors correlation matrix because the numerical complexity and instability of the
calibration process makes it impossible to calibrate a full market covariance matrix. As a direct
consequence, these calibration algorithms fail in one of their primary mission: they are very poor
market risk visualization tools. The forward rates covariance matrix plays an increasingly important
role in exotic interest rate derivatives modelling and there is a need for a calibration algorithm that
allows the retrieval of a maximum amount of covariance information in the market. This in turn will
improve the stability and robustness of the corresponding hedging strategies by reducing the need
for purely numerical hedge portfolio rebalancing. Our objective here is to provide a set of approx-
imations that leads to a simple, meaningful swaptions pricing formula under the Gaussian affine
model or the Libor market model and to exploit it to build a fast and robust calibration algorithm.

In the Libor market model, we write swaps as baskets of forwards. As already observed by
Rebonato (1998) among others, the weights in this decomposition are empirically very stable. In
this part, we first show that this key empirical fact is indeed accurately reproduced by the model. We
then show that the drift term coming from the change of measure between the forward and the swap
martingale measures can be neglected in the computation of the swaption price, thus allowing the
forward rate basket option to be priced using the lognormal approximations first detailed in Huynh
(1994) and Musiela & Rutkowski (1997).

As we also know from El Karoui & Lacoste (1992) that in the affine Gaussian model, swaptions
can be priced as Bond Puts, we notice that in the two models considered here, caplets and swaptions
are options on a basket of lognormal assets. In the second chapter, we compute a pricing approxima-
tion for these options. We use diffusion approximation techniques similar to those in Fournié et al.
(1997) to justify and improve the basket option pricing approximation in Huynh (1994) by account-
ing for the stochastic nature of the basket volatility. Using results from El Karoui, Jeanblanc-Picqué
& Shreve (1998), we get a very intuitive interpretation of the first order price correction as the ex-
pected value of the tracking error obtained when hedging with the approximate volatility computed
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above. Besides its simplicity, this swaption pricing approximation technique has the decisive ad-
vantage of expressing the resulting equivalent market variance as a linear function of the forward
rates covariance matrix. This means that the calibration problem can be reduced to that of finding
a positive semidefinite matrix subject to a set of linear market constraints. Since the pathbreaking
work of Nesterov & Nemirovskii (1994) and Vandenberghe & Boyd (1996), techniques derived
from interior point methods in linear programming solve this problem very efficiently.

The basket option representation was used in El Karoui & Lacoste (1992) where swaptions were
written as Bond Put options in the Linear Gauss Markov affine model. Rebonato (1998) and Rebon-
ato (1999) detail their decomposition as baskets of forwards in the Libor market model. In parallel
results, Brace & Womersley (2000) used the order zero lognormal approximation and semidefinite
programming to study the impact of the model dimension on Bermudan swaptions pricing. They
rely on simulation results dating back to Huynh (1994), Musiela & Rutkowski (1997) or more re-
cently Brace et al. (1999) in an equity framework to justify the lognormal volatility approximation
of the swap process. A big step in the same direction had also been made by Rebonato (1999)
where the calibration problem was reparametrized on a hypersphere. However, because it did not
recognize the convexity of the problem, this last method could not solve the key numerical issue. In
recent works, Singleton & Umantsev (2001) studied the effect of zero-coupon dynamics degeneracy
on swaption pricing in an affine term structure model while Ju (2002) use a Taylor expansion of the
characteristic function to derive basket and Asian option approximations.

This part is organized around three key contributions:

• In chapter one, we detail the basket decomposition of swaps and recall some important results
on the market model of interest rates. We show that the weight’s volatility and the contribution
of the forward vs. swap martingale measure change can be neglected when pricing swaptions
in that model.

• In chapter two, we justify the classical lognormal basket option pricing approximation and
compute additional terms in the price expansion. We also study the implications in terms of
hedging and the method’s precision in practice.

• In a third chapter, we explicit the general calibration problem formulation and discuss its nu-
merical performance versus the classical methods. We specifically focus on the rank issue and
its implications in derivatives pricing. We show how the calibration result can be stabilized in
the spirit of Cont (2001) to reduce hedging transaction costs.

The results detailed here should greatly improve the amount of covariance information that
can retrieved from market prices. On the other hand, their simple geometric nature should help
visualize the structure itself of that information. Finally, the possibility of stabilizing the solution to
the calibration problem given a specific convex objective will vastly improve the day-to-day stability
of the calibration procedure, avoiding some of the infamous P&L swings that were only the result
of numerical instability and non-convexity.



Chapter 2

Interest Rate Market dynamics

2.1 Zero-coupon bonds and the H.J.M. framework

2.1.1 Zero-coupon bonds

In a first key difference with the standard derivative framework à la Black & Scholes (1973), all
interest rate models have as their fundamental underlying an infinite dimensional variable describing
the structure of the interest rate curve at any given date. Historically, because all the interest rate
trading activity (hence the information) was first concentrated on bonds, the fundamental underlying
of choice was the set of discount factors for various maturities. We note these discount factors
B(t, T ) and they represent the price in t (today) of one euro paid at time T .

B(t, T ) = price in t of 1 euro paid at time T

At any date t, the price of these discount factors is, in general, not directly quoted by the market but
can be inferred from that of the various coupon bonds. In that spirit, the discount factors B(t, T )
are often called zero-coupon bonds (Z.C.).

2.1.2 Arbitrage free dynamics

Suppose now that in addition to the various available discount factors, we can invest in a savings
account that is continuously compounded with the short rate rs. We note βT the value at time T of
one euro invested in this account at t. We have

βT = exp
(∫ T

t
rsds

)
To preclude arbitrage between this savings account and an investment in the Z.C. we have to impose
that at time t, an investment of B(t, T ) in a Z.C. of maturity T and an investment of this same
amount B(t, T ) in the continuous savings account produce the same payoff of one euro. As the
short rate is stochastic, this absence of arbitrage condition between two portfolios can be written in
its dual form:

B(t, T ) = EQ
t

[
exp

(
−
∫ T

t
rsds

)]
(2.1)

where Q is some risk-neutral probability measure (see Harrison & Kreps (1979) and Harrison &
Pliska (1981)).

28
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We can associate to those discount factor prices a continuous zero coupon rate that we note
R(t, T ), such that:

B(t, T ) = exp (−(T − t)R(t, T ))

To complete this instrument set, we need to describe the prices of all the forward contracts, i.e.
the price at time t of contracts that begin at a certain date T1 > t in the future. In particular, we can
describe the forward zero coupon contracts Bt(T1, T2) as the value in t of the amount that has to be
paid in T1 to be guaranteed one euro in T2. By absence of arbitrage, this can be computed as:

Bt(T1, T2) =
B(t, T2)
B(t, T1)

To these forward prices, we can associate a forward zero coupon rate Ft(T1, T2) such that:

Bt(T1, T2) = exp (−(T − t)Ft(T1, T2))

or again

Ft(T1, T2) = −(lnB(t, T2) − lnB(t, T1))
T2 − T1

To describe the dynamics of the interest rate curve it is sometimes useful to introduce the instanta-
neous version of the forward rates Ft(T1, T2) obtained by letting T2 − T1 go to zero:

f(t, T ) = lim
u→0

−1
u

(lnB(t, T + u) − lnB(t, T )) (2.2)

=
∂ lnB(t, T + u)

∂u
|u=0

The other rates and prices can be computed from these elementary rates using:

B(t, T ) = exp
(
−
∫ T

t
f(t, s)ds

)
(2.3)

In all the quantities described above, the products have some fixed maturity T in the future. This
means for example that a zero coupon B(t, T ) with maturity five years today will have two years
from now a residual maturity of three years. If we want to study the empirical dynamics of the
interest rate curve and try to maintain as much stationarity as possible, we need to use variables that
remain consistent over time. For this reason, the model dynamics are most often described using
rates of constant time to maturity r(t, θ) with

r(t, θ) = f(t, t+ θ) for θ ≥ 0 (2.4)

Hence, in what follows, we will use the Musiela parametrization of the Heath et al. (1992) setup
and the fundamental rate r(t, θ) will be the continuously compounded instantaneous forward rate at
time t, with duration θ. The dynamics of r(t, θ) are sometimes called sliding maturity (constant time
to maturity) while the dynamics of f(t, T ) are called converging. We will see that the converging
dynamics will represent the natural underlying of options and are quoted by the market as forward
Rate Agreements, while the sliding rates are supposed to be somewhat more stationary and are used
to perform statistical analysis.

Notation 1 To avoid any confusion, Roman letters will be used for maturity dates (in converging
dynamics) and Greek ones for time to maturity (in sliding dynamics).
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We suppose that the zero coupon follow a diffusion process driven by a d dimensional Brownian
motionW = {Wt, t ≥ 0} and because of the arbitrage argument developed in (2.1) above, we know
that the drift term of this diffusion must be equal to rs and we can write the zero coupon dynamics
as:

dB(s, T )
B(s, T )

= rsds+ σB(s, T − s)dWs (2.5)

where for all θ ≥ 0 the zero-coupon bond volatility process {σB(t, θ); θ ≥ 0} is Ft-adapted with
values in R

d. We assume that the function θ �−→ σB(t, θ) is absolutely continuous and the derivative
τ(t, θ) = ∂/∂θ(σB(t, θ)) is bounded on R

2 ×Ω. All these processes are defined on the probability
space (Ω, {Ft; t ≥ 0},Q) where the filtration {Ft; t ≥ 0} is the Q-augmentation of the natural
filtration generated by the d dimensional Brownian motion W = {Wt, t ≥ 0}.

Remark 2 This construction is the essence of the Heath et al. (1992) framework: because of the no
arbitrage conditions between the Z.C. and the savings account, the yield curve dynamics are entirely
parametrized by the curve today B(t, T ) and the zero coupon volatility function σB(s, T − s).

The zero-coupon at time t with maturity T can also be written:

B(t, T ) = exp
(
−
∫ T−t

0
r(t, θ)dθ

)
And the adapted process {r(t, θ); t, θ ≥ 0} satisfies:

dr(s, θ) =
∂

∂θ

[(
r(s, θ) +

1
2

∣∣σB(s, θ)
∣∣2) dt+ σB(s, θ)dWs

]
(2.6)

The short rate process r(t, 0) satisfies:

drs =
(
∂

∂θ
r(s, θ)

)
θ=0

ds+
(
∂

∂θ
σB(s, θ)

)
θ=0

dWs (2.7)

and is not Markov in general. The absence of arbitrage condition between all zero-coupons and the
savings account then amounts to impose to the process:

B(t, T )
βt

= B(0, T ) exp
(
−
∫ t

0
σB(s, T − s)dWs − 1

2

∫ t

0

∣∣σB(s, T − s)
∣∣2 ds) (2.8)

to be a martingale under some measure Q for all T > 0.

2.1.3 The Gaussian H.J.M. model

One of the simplest assumptions that can be made to further specify the dynamics above is to impose
that the volatility σB(t, θ) be deterministic. Because the pricing and calibration of these models is
relatively well understood, we only present a very succinct description of these dynamics here and
refer the reader to El Karoui & Lacoste (1992), Musiela & Rutkowski (1997) and the work on affine
models detailed in Duffie & Kan (1996) for a more complete analysis. In this case the forward rates
are Gaussian and the zero coupon follow lognormal dynamics:

dB(s, T )
B(s, T )

= rsds− σB(s, T − s)dWs (2.9)
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We also suppose that the deterministic volatility function σB(x, y) is twice differentiable with re-
spect to the second variable. We can get the dynamics of the short rate from (2.7):

rt = r(0, t) +
∫ t

0
σB(s, T − s)∂2σ

B(s, T − s)ds+
∫ t

0
∂2σ

B(s, T − s)dWs

where we have note ∂2 the derivative with respect to the second variable. This specification of
the volatility is not sufficient to guarantee that the short rate will be Markovian, which can lead
to computational difficulties in the simulation and pricing. One way to solve this problem (see for
example Musiela & Rutkowski (1997)) is to assume that the volatility is separable and exponentially
decreasing with the time to maturity, setting for example:

∂2σ
B(s, T − s) =

d∑
i=1

σi(s) exp (−λi(u− s))

with σi(s) in R
d. This can be seen as a multidimensional generalization of the original Vasicek

(1977) model. One of the key characteristics of this class of models (see Duffie & Kan (1996)) is
that the instantaneous forward rates r(t, θ) can all be obtained as an affine function of the short rate
rt:

r(t, θ) = α(t, θ)rt + β(t, θ)

Remark 3 In the dynamics above, we have included the correlation directly in the volatility defini-
tion by letting σi(s) be vector valued instead of assuming that the Brownian motions are correlated.
This is somewhat different from the usual specification in Musiela & Rutkowski (1997) for example
and it supposes that the mean-reverting factors driving the curve movements are not instantaneous
forwards but linear combinations of them. The reasons for this unorthodox setup will be made clear
when we discuss the calibration method.

2.2 Libor rates, swap rates and the Libor market model

2.2.1 Libor rates and swaps

Although initially driven by bonds, interest rate markets have seen a significant shift in activity and
market depth in the 80’s with the introduction of swaps. This shift has seen swap and Libor rates
defined below replace the traditional zero coupon rates as reference instruments.

Libor rate

To define these fundamental derivatives we start by remarking that although the market quotes zero
coupon prices via bond prices, there is no direct trading in the instantaneous forwards defined above.
Instead, the market quotes linearly compounded short rates for maturities starting at three months
in general. These rates are often called Libor rates from London Interbank Offered Rates and we
note them Lδ(t, 0) with:

1
1 + δLδ(t, 0)

= B(t, t+ δ)

where δ less than one year (3 or 6 months in practice). We note Lδ(t, θ) the forward Libor rate
associated with the forward zero coupon Bt(t+ θ, t+ θ + δ). Because of the absence of arbitrage,
this is given by:

1
1 + δLδ(t, θ)

=
B(t, t+ δ + θ)
B(t, t+ θ)
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or again:
B(t, t+ δ + θ)δLδ(t, θ) = B(t, t+ θ) −B(t, t+ δ + θ)

Notation 4 To clearly distinguish between the sliding and converging dynamics of the Libor rates,
we will note K(t, T ) = L(t, T − t) the converging Libor.

Unless clearly specified otherwise, we will pick a certain underlying maturity δ (for ex. 3
months) for the forward and we will write Lδ(t, θ) instead of L(t, θ).

Swap rate

A swap rate is then defined as the fixed rate that zeroes the present value of a set of periodical
exchanges of fixed against floating coupons on a Libor rate of given maturity at future dates T fixedi

and T floatingi . This means that the swap rate swap(t, T, Tn) (which will also be called swap in what
follows) is computed as:

swap(t, T, Tn)PV fixed = PV floating

which is, with iT such that TiT = T :

swap(t, T, Tn)

 n∑
i=iT

coverage(T fixedi , T fixedi+1 )B(t, T fixedi+1 )


= PV

 n∑
i=iT

coverage(T fixedi , T fixedi+1 )Lδ(T
floating
i , 0)


or again, because we know the PV of the floating leg is equal to B(t, T floating) −B(t, T floatingn+1 ) :

swap(t, T, Tn) =
B(t, T floating) −B(t, T floatingn+1 )

Level(t, T fixed, T fixedn )

where, with coverage(Ti, Ti+1) the coverage (time interval) between Ti−1 and Ti computed with
the appropriate basis (different for the floating and fixed legs), B(t, T floati ) the discount factor with
maturity T floati we have defined Level(t, T fixed, T fixedn ) as the average of the discount factors for
the fixed calendar of the swap weighted by their associated coverage:

Level(t, T fixed, T fixedn ) =
n∑

i=iT

coverage(T fixedi , T fixedi+1 )B(t, T fixedi )

which is the sum value of the fixed coupons paid (or fixed leg of the swap). Here (T floati , ...) is
the calendar for the floating leg of the swap and (T fixedi , ...) is the calendar for the fixed leg (this
notation is there to highlight the fact that they don’t match in general). In a representation that will
be critically important in the pricing approximations that follow, we remark that we can write the
swaps as baskets of forward Libors (see for ex. Rebonato (1998)).

Lemma 5 We can write the swap as a basket of forwards:

swap(t, T, Tn) =
n∑

i=iT

ωi(t)K(t, T floati ) (2.10)
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with the weights given by:

ωi(t) =
coverage(T floati , T floati+1 )B(t, T floati+1 )

Level(t, T fixed, T fixedn )
(2.11)

with 0 ≤ ωi(t) ≤ 1.

Proof. This is because we can write

swap(t, T, Tn) =

∑n
i=iT

B(t, T floatingi ) −B(t, T floatingi+1 )

Level(t, T fixed, T fixedn )

or again

swap(t, T, Tn) =

∑n
i=iT

coverage(T floati , T floati+1 )B(t, T floati+1 )K(t, T floati )

Level(t, T fixed, T fixedn )

which is the desired representation. As the corresponding forward Libor rates are positive, we have
B(t, Ti+1) ≤ B(t, Ti) ≤ B(t, Ti−1) for i ∈ [iT + 1, N − 1] hence

0 ≤ cvg(i, b)B(t, Ti)
level(t, T, TN )

≤ 1

which means 0 ≤ ωi(t) ≤ 1, i.e. the weights are positive and bounded by one.

In practice, the weights ωi(t) prove to have very little variance compared to their respective
FRA. Besides Rebonato (1998), p.18, this has been studied by Hamy (1999) of which we report
here, with the author’s permission, a sample of summary statistics. Here is for example a study
of the ratio of the vol(FRA)/vol(weights) ratio in various markets, computed using the standard
quadratic variation estimator with exponentially decaying weights (market data courtesy of BNP-
Paribas London):

Currency USD USD GBP GBP EUR EUR
swap 2Y 5Y 2Y 5Y 2Y 5Y
Min ratio 712 842 885 981 148 333
Max ratio 7629 7927 6575 3473 5006 4322
Variance .023 .020 .017 .007 .005 .004

Sample ratio of volatility between weights and corresponding forwards.

where Min ratio and Max ratio are the minimum (resp. maximum) volatility ratio among the weights
of a particular swap. We see that in this sample, the volatility of the weights is always several orders
of magnitude lower than the volatility of the corresponding forward. This approximation of swaps as
baskets of forwards with constant coefficients is the key factor behind the swaption pricing methods
that we detail here.

2.2.2 The Libor market model

As Libor rates and swaps were gaining importance as the fundamental variables on which the market
activity was concentrated, a set of options was created on these market rates: the caps and swap-
tions. Adapting the common practice taken from equity markets and the Black & Scholes (1973)
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framework, market operators looked for a model that would set the dynamics of the Libors or the
swaps as lognormal processes. Intuitively, the lognormal assumption on prices can be justified as
the effect of a central limit theorem on returns because the prices are seen as driven by a sequence
of independent shocks on returns. That same reasoning cannot be applied to justify the lognormal-
ity of Libor or swap rates, which are rates of return themselves. The key justification behind this
assumption must then probably be found in the legibility and familiarity of the pricing formulas
that are obtained: the market quotes the options on Libors and swaps in terms of their Black (1976)
volatility by habit, it then naturally tries to model the dynamics of these rates as lognormal.

Everything works fine when one looks at these prices and processes individually, however some
major difficulties arise when one tries to define yield curve dynamics that jointly reproduce the
lognormality of Libors and swaps. In fact, it is not possible to find arbitrage free dynamics à
la Heath et al. (1992) that make both swaps and Libors lognormal under the appropriate forward
measures (see Musiela & Rutkowski (1997) or Jamshidian (1997) for an extensive discussion of
this). Here we choose to adopt the Heath et al. (1992) model structure defined in Brace et al. (1997)
(see also Miltersen et al. (1995), Miltersen et al. (1997) or Sandmann & Sondermann (1997)) where
the Libor rates are specified as lognormal under the appropriate forward measures but we will see
in a last section that for the purpose of pricing options on swaps, one can in fact approximate the
swap by a lognormal diffusion in this setup. Hence in a very reassuring conclusion, as observed
empirically in Brace et al. (1999), we notice that it is in fact possible to specify Heath et al. (1992)
dynamics that are reasonably close to the market practice, i.e. lognormal on forwards and close to
lognormal on swaps. In particular, we verify that the key assumption in this approximation, namely
the stability of the weights ωi(t), is indeed accurately reproduced by the Libor market model.

To build the model, we start from the key assumption that for a given maturity δ (for ex. 3
months) the associated forward Libor rate process {L(t, θ); t ≥ 0} defined by

1 + δL(t, θ) = exp
(∫ θ+δ

θ
r(t, ν)dν

)
(2.12)

has a log-normal volatility structure:

dL(t, θ) = (...)dt+ L(t, θ)γ(t, θ)dWt (2.13)

where the deterministic function γ : R
2
+ �−→ R

d
+ is bounded by some γ̄ ∈ R+ and piecewise

continuous.
Although the spirit of the market model is to directly define the evolution of forward rates

that are actually quoted by the market, its dynamics are still shaped by the classical no-arbitrage
conditions between zero-coupon bonds as detailed in Heath et al. (1992) and as for all Heath et al.
(1992) based models, these dynamics are fully specified by the definition of the volatility structure
and the forward curve today. With that in mind, we recall here the Libor Market Model setup
defined in Brace et al. (1997) to derive the appropriate zero-coupon volatility expression. Using the
Ito formula combined with 2.6 we get as in Brace et al. (1997):

dL(t, θ) =
(
∂L(t, θ)
∂θ

+
(1 + δL(t, θ))

δ
σB(t, θ + δ)(σB(t, θ + δ) − σB(t, θ))

)
dt

+
1
δ

(1 + δL(t, θ)) (σB(t, θ + δ) − σB(t, θ))dWt

Again, in order to avoid possible confusion, we will call this the sliding dynamics of the forward
Libors, referring to the fact that the time to maturity of the Libor considered does not vary. Then to
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get the right volatility structure we have to impose in (2.5):

σB(t, θ + δ) − σB(t, θ) =
δL(t, θ)

1 + δL(t, θ)
γ(t, θ) (2.14)

The Libor process becomes:

dL(t, θ) =
(
∂

∂θ
L(t, θ) + γ(t, θ)σB(t, θ + δ)L(t, θ)

)
dt+ L(t, θ)γ(t, θ)dWt

As in Musiela & Rutkowski (1997), we set σB(t, θ) = 0 for all θ ∈ [0, δ[ and we get, together
with the recurrence relation 2.14 and for θ ≥ δ :

σB(t, θ) =
�δ−1θ�∑
k=1

δL(t, θ − kδ)
1 + δL(t, θ − kδ)

γ(t, θ − kδ) (2.15)

which is stochastic.

Remark 6 This assumption made in Brace et al. (1997) to set σB(t, θ) = 0 for all θ ∈ [0, δ[ is not
very intuitive at first sight as one would expect the volatility of short discount factors to be set quite
high. In practice however, this volatility has no impact on the changes of forward measure that
will be made because these only involve differences of zero-coupon volatilities. Furthermore, this
zero coupon volatility is very small compared to the dominant forward Libor volatility and we can
neglect it in because we focus on the pricing of options on forwards. Hence, although incoherent
with econometric intuition, this assumption has a minimal impact on option pricing.

Finally the δ−Libor process can also be written as:

dL(t, θ) =
(
∂L(t, θ)
∂θ

+ γ(t, θ)σB(t, θ)L(t, θ) +
δL(t, θ)2

1 + δL(t, θ)
|γ(t, θ)|2

)
dt

+ L(t, θ)γ(t, θ)dWt

with the volatility of the zero coupon defined above and the value of the forward curve today, we
have fully specified the yield curve dynamics.

2.3 Interest rate options: caps and swaptions

The shift in activity from bonds towards swaps has naturally been accompanied by the apparition
of options on swap and Libor rates. These options, namely caps and swaptions, are now the most
liquid recipients of volatility information in interest rate markets.

2.3.1 Caps

Let us note again β(t), the value of the savings account. In a forward cap on principal 1 settled in
arrears at times Tj , j = 1, ..., n, the cash-flows are (L(Tj−1, 0) −K)+δ paid at time Tj . The price
of the cap at time t is then computed as:

capt =
n∑
1

Et

[
βt
βTj

(L(Tj−1, 0) −K)+ δ
]

(2.16)

=
n∑
1

B(t, Tj)E
Tj

t

[
(L(Tj−1, 0) −K)+ δ

]
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The cap can be seen as a sum of caplets where each individual caplet price computed as that of a
Call on the corresponding forward Libor:

Et

[
βt
βTj

(L(Tj−1, 0) −K)+ δ
]

2.3.2 Swaptions

To simplify the notations, in what follows we will consider that the calendars described above for
the floating and the fixed legs of the swap are set by T floati = iδ and T fixedi = ibδ, in the common
case where the fixed coverage is a multiple of the floating coverage (for ex. quarterly floating leg,
annual fixed leg). For simplicity, we will note the coverage function for the fixed leg of the swap as
a function of the floating dates, allowing the floating dates to be used as reference in the entire swap
definition. From now on (Ti)i∈[1,N ] = (T floati )i∈[1,N ] and we define the coverage function for the
fixed leg as cvg(i, b)δ = 1{imod b=0}bδ. We set iT = �δ−1T �. We are now in position to write the
forward swap rate as:

swap(t, T, TN ) =
B(t, T ) −B(t, TN+1)
Level(t, T, TN )

with

Level(t, T, TN ) =
N∑
i=iT

δcvg(i, b)B(t, Ti+1)

The price of a payer swaption with maturity T and strike k, written on this swap is then given at
time t ≤ T by:

swaptiont = B(t, T )EQT
t

 N∑
i=iT

β(T )
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+

 (2.17)

The expression above computes the price of the swaption as the sum of the corresponding swaplet
prices. We first notice that we can think of a caplet as an option on a particular one period swap,
hence caplet and swaption prices can be computed in the same fashion. In the two sections that
follow, we will also show how to rewrite this pricing expression to describe the swaption (and the
caplet) as a basket option.

2.4 Cap and swaption prices in the Gaussian H.J.M. model

We suppose now that the dynamics of the zero-coupon prices are given as in (2.9) by a lognormal
process:

dB(s, T )
B(s, T )

= rsds+ σB(s, T − s)dWs

where σB(s, T −s) ∈ R
d is deterministic and bounded. We will now compute the price of caps and

swaptions as options on a basket of zero coupon bonds.

2.4.1 Caps

The cap price can be computed as:

capt =
n∑
j=1

Et

[
βt
βTj

δ (L(Tj−1, 0) − k)+
]
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or again

capt =
n∑
j=1

B(t, Tj)E
Tj

t

[
δ (L(Tj−1, 0) − k)+

]
where ETj is the expectation under the forward martingale measure QTj defined by:

dQTj

dQ
= βt[B(0, T )βTj ]

−1

= εTj(σB(·, Tj − ·))

where we have noted εTj (·) the lognormal martingale defined by (σB(s, Tj − s) is deterministic):

εTj(σB(·, Tj − ·)) = exp
(∫ Tj

t
σB(s, Tj − s)dWs − 1

2

∫ Tj

t

∥∥σB(s, Tj − s)
∥∥2
ds

)
As before, we define the forward Libor process (or FRA) as the underlying K(t, T ) = L(t, T − t)
of the caplet paid at time T + δ. In the Gaussian H.J.M. framework we can write the cap as an
option on a bond, with:

L(t, 0) =
1
δ

(
B(t, t+ δ)−1 − 1

)
the cap price can be computed as:

capt =
n∑
j=1

B(t, Tj−1)E
Tj−1

t

[
δB(Tj−1, Tj) (L(Tj−1, 0) − k)+

]
=

n∑
j=1

B(t, Tj−1)E
Tj−1

t

[
B(Tj−1, Tj)

(
B(Tj−1, Tj)−1 − 1 − δk

)+]
or finally

capt =
n∑
j=1

B(t, Tj−1)E
Tj−1

t

[
(1 −B(Tj−1, Tj) − δkB(Tj−1, Tj))

+]
This sets the cap as a sum of Puts on zero coupon bonds with coupon equal to 1 + kδ and each
caplet is a Put on a zero-coupon bond.

Remark 7 If we look at the definition of the forwards

L(t, 0) =
1
δ

(
B(t, t+ δ)−1 − 1

)
we notice that the rate K(t, T ) have shifted lognormal dynamics under PT+δ.

2.4.2 Swaptions

With the price of a payer swaption with maturity T and strike k, written on this swap is then given
at time t ≤ T by:

swaptiont = B(t, T )EQT
t

 N∑
i=iT

β(T )
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+
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we can write:

EQT
t

 N∑
i=iT

β(T )
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+


= EQT

t

 N∑
i=iT

Level(T, T, TN )δ
(

1 −B(T, TN+1)
Level(T, T, TN )

− k

)+


= EQT
t

 N∑
i=iT

δ (1 −B(T, TN+1) − kLevel(t, T, TN ))+


hence finally:

swaptiont = B(t, T )EQT
t

 N∑
i=iT

δ

1 −B(T, TN+1) −
N∑
i=iT

kδcvg(i, b)B(T, Ti+1)

+
Hence in the Gaussian H.J.M. model, swaptions can be seen as a options on a basket of lognormal
zero coupon bonds.

2.5 Caps and swaptions in the Libor market model

As above in (2.14), we now specify the Heath et al. (1992) volatility so that the Libor rates have a
lognormal volatility structure:

dL(t, θ) = (...)dt+ L(t, θ)γ(t, θ)dWt

we will now show how to compute the price of caps and swaptions under these assumptions.

2.5.1 Caps and the forward martingale measure

Again, with the cap price computed as:

capt =
n∑
j=1

Et

[
βt
βTj

δ (L(Tj−1, 0) −K)+
]

which can be written

capt =
n∑
j=1

B(t, Tj)E
Tj

t

[
(L(Tj−1, 0) −K)+ δ

]
where ETj is the expectation under the forward martingale measure defined by:

dQTj

dQ
= βt[B(0, T )βTj ]

−1

= εT (σB(·, Tj − ·))
where we have noted εTj (·) the exponential martingale defined by:

εTj (σ
B(·, Tj − ·)) = exp

(∫ Tj

t
σB(s, Tj − s)dWs − 1

2

∫ Tj

t

∥∥σB(s, Tj − s)
∥∥2
ds

)
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Let us now define the forward Libor process (or FRA), the underlying K(t, T ) = L(t, T − t) of the
caplet paid at time T + δ, which is given in the Libor market model setup in (2.13) by:

dK(t, T ) = γ(t, T − t)K(t, T )
[
σB(t, T − t+ δ)dt+ dWt

]
or again:

dK(t, T ) = γ(t, T − t)K(t, T )dW T+δ
t (2.18)

hence K(t, T ) is lognormally distributed under QT+δ. The pricing of caplets can be done using the
Black (1976) formula with variance VT such that:

VT =
∫ T

t
‖γ(s, T − s)‖2 ds

Let us note that the caplet variance used in the Black (1976) pricing formula is a linear form in the
covariance matrix Γs. Recovering the same kind of result in the swaption pricing approximation
will be the key to the calibration algorithm design.

2.5.2 Swaptions and the forward swap martingale measure

Again, with the price of a payer swaption with maturity T and strike k, written on the above swap
is then given at time t ≤ T by:

Ps(t) = B(t, T )EQT
t

 N∑
i=iT

β(T )
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+

 (2.19)

The expression above computes the price of the swaption as the sum of the corresponding
swaplet prices, however its format is not the most appropriate for our pricing purposes. There-
fore, using again a change of equivalent probability measure, we will now find another expression
that is more suitable for our analysis.

Definition 8 As in Musiela & Rutkowski (1997) or Jamshidian (1997), we can define the forward
swap martingale probability measure QLV L equivalent to QT , with:

dQLV L

dQT
|t =

∑N
i=iT

cvg(i, b)β(T )/β(Ti+1)

EQT
t

[∑N
i=iT

cvg(i, b)β(T )/β(Ti+1)
]

= B(t, T )β(T )
N∑
i=iT

δcvg(i, b)β−1(Ti+1)
Level(t, T, TN )

this equivalent probability measure corresponds to the choice of the ratio of the level payment over
the savings account as a numeraire and the above relative bond prices are QT−local martingale.

The change of measure is identified with an exponential (local) QT−martingale and we define
the process ht such that:

εTN
(h•) = B(t, T )β(T )

∑N
i=iT

δcvg(i, b)β−1(Ti+1)
Level(t, T, TN )
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which imposes:

ht =
N∑
i=iT

δcvg(i, b)B(t, Ti+1)
Level(t, T, TN )

 i∑
j=iT

δK(t, Tj)
1 + δK(t, Tj)

γ(t, Tj − t)

 (2.20)

and because the volatility is bounded, we verify that εTN
(h•) is in fact a martingale. Again as in

Musiela & Rutkowski (1997) we can apply Girsanov’s theorem to show that the process:

dWLV L
t = dW T

t +
N∑
i=iT

δcvg(i, b)B(t, Ti+1)
level(t, T, TN )

i∑
j=1

δK(t, Tj)
1 + δK(t, Tj)

γ(t, Tj − t)

 dt (2.21)

is a QLV L-Brownian motion.

Proposition 9 We can rewrite the swaption price as:

swaptiont = Level(t, T, TN )EQLV L
t

[
(swap(T, T, TN ) − k)+

]
(2.22)

where the swap rate is a martingale under the new probability measure QLV L.

Proof. From the definition of the swaption price

swaptiont = B(t, T )EQT
t

 N∑
i=iT

β(T )
β(Ti+1)

cvg(i, b)δ (swap(T, T, TN ) − k)+


we get:

swaptiont = Level(t, T, TN )EQT
t

[
εTN

(h•) (swap(T, T, TN ) − k)+
]

which is also, by construction of the probability measure QLV L:

swaptiont = Level(t, T, TN )EQLV L
t

[
(swap(T, T, TN ) − k)+

]
Because the swap is defined by:

swap(t, T, TN ) =
B(t, T ) −B(t, TN+1)
Level(t, T, TN )

as the ratio of a difference of zero-coupon prices over the level payment, by construction the swap
will be a (local) martingale under the new probability measure QLV L (below, we will see that the
swap rate is in fact a QLV L−martingale).

This change of measure first detailed by Jamshidian (1997), allows to price the swaption as a
classical Call option on a swap, under an appropriate measure.

2.5.3 Swap dynamics

In a previous section, we have seen that the swaption could be written as an option on a basket of
zero-coupon bonds. Here we will try to show that the same swaption can also be seen as an option
on a basket of forward Libor rates. In that spirit, we now study the dynamics of the swap rate under
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the new QLV L probability, looking first for an appropriate representation of the volatility function
by expressing the swap rate volatility under QLV L in its ”basket of forwards” decomposition:

swap(t, T, TN ) =
N∑
i=iT

(
δB(t, Ti+1)

level(t, T, TN )

)
K(t, Ti)

=
N∑
i=iT

ωi(t)K(t, Ti)

We start by detailing the weights’ dynamics. Again, we note

σB(t, Ti − t) =
i−1∑
j=iT

δK(s, Tj)
1 + δK(s, Tj)

γ(s, Tj − s)

the forward zero coupon volatility defined in (2.5).

Lemma 10 The weights ωk(s) in the swap decomposition follow:

dωk(s) = ωk(s)
N∑
i=iT

ωi(s)
(
σB(s, Tk+1 − s) − σB(s, Ti+1 − s)

)
Proof. The weights ωi(t) are defined by:

ωi(t) =
δcvg(i, b)B(t, Ti+1)
level(t, T, TN )

as the ratio of a zero coupon bond on the level payment. By construction of QLV L, these weights
ωi(t) have to be QLV L−martingales (they are also positive bounded). Using the definition of the
forward zero-coupon dynamics we get:

d

(
B(s, Tk)

Level(t, T, TN )

)
= (...)ds+

B(t, Tk)
Level(t, T, TN )

σB(s, Tk − s)dW T
s

− B(t, Tk)
Level(t, T, TN )

N∑
i=iT

δcvg(i, b)B(t, Ti+1)
Level(t, T, TN )

σB(s, Ti+1 − s)dW T
s

where W T
s is a QT -Brownian motion.

We can then use this result to decompose the swap volatility.

Lemma 11 We can decompose the swap volatility as the sum of the weights volatility term and a
term that mimics a basket volatility (the volatility of a basket of with constant coefficients):

dswap(s, T, TN ) = (bweights(s) + bbasket(s)) dWLV L
s (2.23)

where the weight’s contribution is given by:

bweights(s) =
N∑

k=iT

ωk(s)K(s, Tk)

σB(s, Tk+1 − s) −
N∑
i=iT

ωi(s)σB(s, Ti+1 − s)
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and the basket volatility term is:

bbasket(s) =
N∑
i=iT

ωi(s)K(s, Ti)γ(s, Ti − s)

i.e. a ωi(s) weighted average of the forward volatilities.

Proof. We can compute the weight’s contribution in the swap volatility as:

bweights(s) =
N∑

k=iT

K(s, Tk)ωk(s)
N∑
i=iT

ωi(s)
(
σB(s, Tk+1 − s) − σB(s, Ti+1 − s)

)
where as above, σB(t, Ti − t) is the zero-coupon volatility. We can then get the contribution of the
forwards to the volatility as:

bbasket(s) =
N∑
i=iT

δB(s, Ti+1)K(s, Ti)γ(s, Ti − s)
Level(s, T, TN )

=
N∑
i=iT

ωi(s)K(s, Ti)γ(s, Ti − s)

hence the desired result.

The empirical stability of the weights ωi(t) discussed in a previous section is the key finding at
the origin of the swaption pricing approximations that will follow and one of our goals below will
be to show that this stability is accurately predicted by the model.

2.5.4 The forwards under the forward swap measure

We study here the dynamics of the forward Libors under the forward swap measure. For purely
technical purposes, we start by bounding under QLV L the variance of the forward rates K(s, Tk),
we will then be able to bound the contribution of the weights to the total swap variance.

Lemma 12 With m > 1, we can bound the L2 norm of K(u, Tk) under QLV L by:

E[K(s, Tk)m] ≤ K(t, Tk)mMm
m (s) (2.24)

where Mm(s) = exp
(
(s− t)

(
mγ̄2/2 +mγ̄2δ(N − iT )

))
.

Proof. Using (2.21) we can write:

K(s, Tk) = K(t, Tk) exp
(∫ s

t
γ(u, Tk − u)dWLV L

u +
∫ s

t
α(u, Tk)γ(u, Tk − u)du

)
where

α(s, Tk) = −
N∑
i=iT

ωi(s)

 i∑
j=iT

φj(s)γ(s, Tj − s)

+
k∑

i=iT

φi(s)γ(s, Ti − s)
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with φi(t) = δK(s, Ti)/(1 + δK(s, Ti)). The corresponding forward Libor rates are positive and
we have 0 ≤ φi(t) ≤ 1 and as in Brace et al. (1997) remark 2.3, we can bound the forwards by a
lognormal process:

K(s, Tk) ≤ K(t, Tk) exp
(∫ s

t
γ(u, Tk − u)dWLV L

u +
∫ s

t
ᾱ(u, Tk)du

)
for s ∈ [t, T ]

where we can use a convexity inequality on the norm ‖.‖2 to obtain:∥∥∥∥∥∥
N∑
i=iT

ωi(s)

 i∑
j=iT

φj(s)γ(s, Tj − s)γ(s, Tk − s)

∥∥∥∥∥∥
2

≤ δ2(N − iT )2γ̄4

because
∥∥∥∑k

i=iT
φi(t)γ(s, Ti − s)γ(s, Tk − s)

∥∥∥2 ≤ δ2(k−iT )2γ̄4, hence ᾱ(s, Tk) = δ(N−iT )γ̄2,

which shows the desired result.

We can now use this bound to study the dynamics of the weights ωi(t) in the swap decomposi-
tion.

2.5.5 Swaps as baskets of forwards

For simplicity, in what follows we will suppose that T floati = T fixedi and hence b = 1. The swaption
pricing formula that will be derived in the next chapter relies on two fundamental approximations:

• The weights ωi(s) for s ∈ [t, T ] (which are QLV L-martingales) will be approximated by their
value today ωi(t).

• We will neglect the change of measure between the forward martingale measures QT ,...,
QTN+1 and the forward swap martingale measure QLV L.

This is possible here because the weights in (2.10) are positive, monotone and sum to one. In
this section, we quantify the error created by these approximations. Because the payoff of the Call
options under consideration are Lipschitz, we approximate the swap and forward Libor dynamics
in L2 under the QLV L swap martingale measure. First, let us recall that because they are defined
as the ratio of a zero-coupon bond and the level payment, the weights ωi(u) must be martingales
under the QLV L probability. We also recall the swap dynamics found above:

dswap(s, T, TN ) =
N∑
i=iT

ωi(s)K(s, Ti) (γ(s, Ti − s) + η(s, Ti)) dWLV L
s

where

η(s, Ti) =

σB(s, Ti − s) −
N∑

j=iT

ωj(s)σB(s, Tj − s)


is the volatility contribution coming from the weights.

Remark 13 If the forward rate curve is flat (K(s, Ti) = K(s, Tj) for i, j = iT , ..., N ) we have:

N∑
i=iT

ωi(s)K(s, Ti)η(s, Ti) = K(s, Ti)
N∑
i=iT

ωi(s)

σB(s, Ti − s) −
N∑

j=iT

ωj(s)σB(s, Tj − s)


= 0 (2.25)
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In light of this fact, we will study the size of the weights’ contribution to the swap volatility in
terms of the slope of the forward rate curve within the maturity range of the swap’s floating leg. In
the development below, we will rewrite the weight’s part in the swap’s volatility :

ELV L

∥∥∥∥∥∥
N∑
i=iT

ωi(s)K(s, Ti)η(s, Ti)

∥∥∥∥∥∥
2

= ELV L

∥∥∥∥∥∥
N∑
i=iT

ωi(s) (K(s, Ti) − swap(s, T, TN )) η(s, Ti)

∥∥∥∥∥∥
2

This sets the weight’s contribution as the average product of a difference of forwards with a differ-
ence of ZC bond volatilities. We can naturally expect this later term to be negligible relative to the

basket volatility term in (2.23). We note ‖·‖n =
(
ELV L [‖·‖n]) 1

n , the Ln norm and we first show
that the weights ωi(s) are bounded.

Lemma 14 The weights ωi(s) defined in (2.10) are bounded above with:

ωi(s) ≤ 1
N − iT

+ δswap(s, T, TN )

and satisfy ‖ωi(s)‖n ≤ ωi(t) for s ∈ [t, T ].

Proof. Because the weights ωi(s) satisfy
∑N

i=iT
ωi(t) = 1, 0 ≤ ωi(t) ≤ 1 and are decreasing

with i because the forward rates are always positive. With:

|ωj(s) − ωi(s)| ≤ δswap(s, T, TN ) for i, j = iT , ..., N

we get:

ωi(s) ≤ 1
N − iT

+ δswap(s, T, TN ) for s ∈ [t, T ]

and ‖ωi(s)‖n ≤ ‖ωi(s)‖1 = ωi(t) because the weights are positive QLV L−martingales.

This result provides a bound on the variance contribution of the weights inside the swap rate
volatility.

Lemma 15 The L2 norm of the weight’s contribution in the swap volatility (2.23) is bounded by:

ELV L

∥∥∥∥∥∥
N∑
i=iT

ωi(s)K(s, Ti)η(s, Ti)

∥∥∥∥∥∥
2 (2.26)

≤ max
j

‖(K(s, Tj) − swap(s, T, TN ))‖2
8M

2
4 γ̄

2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

Proof. Let us note again swap(s, T, TN ) =
∑N

i=iT
ωi(s)K(s, Ti), the swap rate, which we see

here as the average level of the forward rate curve between T and TN . The squared L2 norm of the
weights’ contribution is bounded above by:

ELV L

 N∑
i=iT

ωi(s) ‖(K(s, Ti) − swap(s, T, TN )) η(s, Ti)‖2
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using a convexity inequality with
∑N

i=iT
ωi(t) = 1, 0 ≤ ωi(t) ≤ 1. To bound η(s, Tk) in this

expression, we use the definition of σB(s, Tk − s) in (2.15) and the fact that the forwards K(s, Tj)
are always positive, we get:

ELV L
[
‖η(s, Ti)‖4

]
≤ ELV L

∥∥∥∥∥∥
N∑
i=iT

ωi(s)

 k∑
j=i

δK(s, Tj)γ(s, Tj − s)

∥∥∥∥∥∥
4

with the convention
∑k

j=i = −∑i
j=k if i > k. If we recall that γ(s, Tk − s) : R

2
+ → R

d
+ is a

bounded input parameter with E
[
‖γ(s, Tk − s)‖2

]
≤ γ̄2, we use (2.24) to get:

ELV L
[
‖η(s, Tk)‖4

]
≤M4

4 γ̄
4δ4maxj∈[iT ,N ]K(t, Tj)4(N − iT )4

With these bounds we can rewrite the original inequality, using two successive Cauchy inequalities:

ELV L

 N∑
i=iT

ωi(s) ‖(K(s, Ti) − swap(s, T, TN ))‖2 ‖η(s, Ti)‖2


≤

N∑
i=iT

‖ωi(s)‖4 ‖(K(s, Ti) − swap(s, T, TN ))‖2
8 ‖η(s, Ti)‖2

4

≤ max
j

‖(K(s, Tj) − swap(s, T, TN ))‖2
8M

2
4 γ̄

2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

Which gives the desired result.

With δK(t, Tk) � 10−2 and (K(t, Ti) −K(t, Tj))
2 � 10−3 in practice, we notice that the

contribution of the weights to the swap volatility is several orders of magnitude below that of the
basket volatility and we neglect it in the swaptions pricing approximations that follow. Beyond that,
the squared norm of the difference between the particular swap rate under consideration and one of
its forward rates can be interpreted as the covariance of a spread. As the forward rate covariance has
in practice a ”spread” factor with a variance that is one order of magnitude below that of the ”level”
factor, we can again expect this term to be very small. Before detailing the key approximation result,
we introduce some preliminary notations.

Notation 16 We define KLV L(s, Ti) such that:

dKLV L(s, Ti) = KLV L(s, Ti)γ(s, Ti − s)dWLV L
s

with KLV L(t, Ti) = K(t, Ti). We also define the following residual volatilities:

ξk(s) = KLV L(s, Tk)γ(s, Tk − s) − γw(s)

with γw(s) =
∑N

i=iT
ωi(t)KLV L(s, Ti)γ(s, Tk − s).

We now approximate the swap rate with a basket of martingales with volatilities matching the
forward rate volatilities γ(s, Tk − s) and initial value K(t, Ti), the weights in this decomposition
being equal to ωi(t).
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Proposition 17 We can replace the swap process by a basket Ys of lognormal martingales weighted
by constant coefficients, with:

E

( sup
t≤s≤T

(swap(s, T, TN ) − Ys)

)2


≤ 3 max
j∈[iT ,N ]

‖ξj(s)‖2
4 + 3

(
KLV L(t, Tk) (N − iT ) δγ̄2

)2
exp

(
(T − t)

(
δγ̄2 (N − iT ) + γ̄2/2

))
+3 max

j∈[iT ,N ]
‖(K(s, Tj) − swap(s, T, TN ))‖2

8M
2
4 γ̄

2δ2maxj∈[iT ,N ]K(t, Tj)2(N − iT )2

where

dYs =
N∑
i=iT

ωi(t)KLV L(s, Ti)γ(s, Ti − s)dWLV L
s

with Yt = swap(t, T, TN ).

Proof. With the swap rate dynamics computed as in (2.23), we get:

d(swap(s, T, TN ) − Ys) =
N∑

k=iT

(ωk(s) − ωk(t))KLV L(s, Tk)γ(s, Tk − s)dWLV L
s

+
N∑

k=iT

ωk(s)
(
K(s, Tk) −KLV L(s, Tk)

)
γ(s, Tk − s)dWLV L

s

+
N∑

k=iT

ωk(s)K(s, Tk)η(s, Tk)dWLV L
s

Using the result in (2.26) we can bound the norm of the last term in this decomposition. If we look
at the first term and note ∆k,s = K(s, Tk) −KLV L(s, Tk) with ∆k,t = 0 we have:

d∆k,s = ∆k,s

 N∑
i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)


+KLV L(s, Tk)

 N∑
i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)

 ds

+∆k,sγ(s, Tk − s)dWLV L
s

hence:

∆k,T = KLV L(T, Tk)
∫ T

t

(
µk,s exp

(∫ s

t
µk,udu

)
ds

)
where

µk,s =
N∑
i=iT

ωi(s)
(
σB(s, Tk − s) − σB(s, Ti − s)

)
γ(s, Tk − s)

With ‖µk,s‖2 ≤ (N − iT ) δγ̄2 we can bound the norm of ∆k,T by:

‖∆k,T ‖2 ≤ K(t, Tk) (N − iT ) δγ̄2 exp
(
(T − t)

(
δγ̄2 (N − iT ) + γ̄2/2

))
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Focusing on the second term, as in (2.25) with this time
∑N

i=iT
ωi(s) − ωi(t) = 0 and ξk(s) =

KLV L(s, Tk)γ(s, Tk − s) − γw(s), we can write:∥∥∥∥∥∥
N∑

k=iT

(ωk(s) − ωk(t))KLV L(s, Tk)γ(s, Tk − s)

∥∥∥∥∥∥
2

2

≤ max
j∈[iT ,N ]

‖ξj(s)‖2
4

The bound obtained is a function of the norm of the residual volatilities ‖ξi(s)‖2
4 and of the spread

term ‖(K(s, Ti) − swap(s, T, TN ))‖2
8. We conclude using Doob’s inequality.

The term ‖ξi(s)‖2
4 being equivalent to the variance contribution of the second factor in the

covariance matrix and ‖(K(s, Ti) − swap(s, T, TN ))‖2
8 being a spread of rates, we can neglect

both terms compared to the central volatility term γw(s) and we will approximate the swaption by
an option on the basket Ys. We can notice that because we approximate one martingale by another,
the error is in fact uniformly bounded in L2. Because of these properties, in the Libor Market Model
swaption price approximations that follow, we will be treating swaptions as options on a basket of
lognormal forwards. In fact, to summarize this first chapter, in both the Gaussian H.J.M. model and
the Libor Market Model, we have written the swaption price as that of a basket option on lognormal
processes.



Chapter 3

Basket pricing

Basket options, i.e. options on a basket of goods, have become a pervasive instrument in financial
engineering. Besides the swaptions described in the previous chapter, this class of instruments
includes index options and exchange options in the equity markets, or yield curve options and spread
options in fixed income markets. In these key markets, baskets provide raw information about the
correlation between instruments, which is central to the pricing of more complex derivatives. In this
work, we detail an efficient pricing approximation technique that leads to very natural closed-form
basket pricing formulas with excellent precision results.

In a first section, we show how to quickly recover the classical ”noise addition in decibels” order
zero lognormal approximation studied by Huynh (1994), Musiela & Rutkowski (1997) and Brace
et al. (1999) when the underlying instruments follow a Black & Scholes (1973) like lognormal
diffusion.

In a second section we approximate the price of a basket using the stochastic expansion tech-
niques exploited by Fournié et al. (1997) and Lebuchoux & Musiela (1999) or Fouque, Papanicolaou
& Sircar (2000) on other stochastic volatility problems. This provides a theoretical justification for
the classical price approximation and allows us to compute additional terms better accounting for
the stochastic nature of the basket volatility. The order zero term in this expansion matches the
classical lognormal approximation while the order one correction can be interpreted as a first order
approximation of the hedging tracking error, as defined in El Karoui et al. (1998).

Finally, we test the quality of the basket pricing approximation on swaptions by comparing the
approximate prices obtained with Monte-Carlo simulations.

3.1 Basket price approximation

We suppose that the market is composed of n risky assets Sit , i = 1, . . . , n plus one riskless asset
Mt. We assume that these processes are defined on a probability space (Ω,F ,Q) and are adapted to
the natural filtration {Ft, 0 ≤ t ≤ T}. We suppose that there exists a forward martingale measure
Q as defined in El Karoui, Geman & Rochet (1995) (the notation Q is left voluntarily non specific
for our purposes here because it can either be associated with the forward market of maturity T and
constructed by taking the savings account as a numeraire or it could be the level payment induced
measure as in the swaption pricing formulas treated in the first chapter). In this market, the dynamics
of the forwards F it are given by:

dF is = F isσ
i
sdWs and Ms = 1 for s ∈ [t, T ]

48
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where Wt is a d-dimensional Q-Brownian motion adapted to the filtration {Ft, 0 ≤ t ≤ T} and
σs =

(
σis
)
i=1,...,n

∈ R
n×d is the volatility matrix and we note Γs ∈ R

n×n the corresponding

covariance matrix defined as (Γs)i,j =< σis, σ
j
s >.

Remark 18 We use the notations Sit and F it to keep our discussion generic and highlight the fact
that the product range here includes equity baskets in the classical Black & Scholes (1973) frame-
work, but the link with the previous chapter and swaption pricing can easily be made explicit by
setting F it = K(t, Ti) and σis = γ(s, Ti − s).

We study the pricing of an option on a basket of forwards given by

Fωt =
n∑
i=1

ωiF
i
t

where ω = (ωi)i=1,...,n ∈ R
n. The terminal payoff of this option at maturity T is computed as:

h (FωT ) =

(
n∑
i=1

ωiF
i
T − k

)+

for a strike price k. The key observation at the origin of the following approximations is that the
basket process dynamics are close to lognormal. The simple formula for basket prices that we will
get is specifically based on a deterministic approximation of the lognormal basket volatility in:

dFωs = Fωs

(
n∑
i=1

ω̂i,sσ
i
s

)
dWs (3.1)

where we have defined:

ω̂i,s =
ωiF

i
s∑n

i=1 ωiF
i
s

Here, we compute a first simple approximation using Wiener chaos expansion. We then look for
an extra term using an approximation of the volatility dynamics and small noise expansion. This
first has its origin in the electrical engineering literature as a classic problem in signal processing
where it represents, for example, the addition of noise in decibels (see Schwartz & Yeh (1981)
among others). The same approximations were then used in finance by Huynh (1994), Musiela &
Rutkowski (1997) for equity baskets or Brace et al. (1999) for swaptions.

3.1.1 The classical approximation

We try here to give a straightforward justification of the classical order zero approximation. Intu-
itively, the forward basket follows a lognormal diffusion with a (mildly) stochastic volatility. We
look here for the ”best” possible lognormal approximation to the basket dynamics in (3.1). As
already pointed out by Lacoste (1996), the direct expansion of (3.1) in the successive chaos of a
lognormal martingale, although it seems to be a very natural approximation technique, does not
lead to workable approximations in practice. This is because the key orthogonal decomposition
property: L2(Ω, G,Q) = ⊕∞

n=0Hn (where G is the σ−field generated by
{∫

σisdWs

}
i=1,...,n

) is

lost when the volatilities σis of the fundamental martingales are stochastic. In fact, as the lognormal
martingales subspace is not convex, there exists no natural metric to describe the ”lognormality” of
a process.
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Let us first detail the dynamics of the weights ω̂i,s, we have:

dω̂i,s
ω̂i,s

=

Tr (Γsω̂sω̂Ts ) ds− σis

n∑
j=1

ω̂j,sσ
j
s

 ds

+

σis − n∑
j=1

ω̂j,sσ
j
s

 dWs

where we have noted Γs = σsσ
T
s and ω̂s = (ω̂j,s)j=1,...,n. This is again:

dω̂i,s
ω̂i,s

=

 n∑
j=1

ω̂j,s
(
σis − σjs

)dWs +
n∑
j=1

ω̂j,sσ
j
sds


because

∑n
j=1 ω̂j,s = 1 for s ∈ [t, T ]. If the relative volatility variations

∥∥∥σis − σjs

∥∥∥ / ‖Γs‖ are

small, then the contribution of the weights volatility given by the above dynamics to the total
basket volatility can be neglected relative to that of the forwards. This means that we can com-
pute E [ω̂i,s] = ω̂i,t and get the first order chaos expansion of

∫ ∑n
i=1 ω̂i,sσ

i
sdWs using the Taylor

Stroock formula as in Nualart (1995) p.33:∫ n∑
i=1

ω̂i,sσ
i
sdWs �

∫ n∑
i=1

ω̂i,tσ
i
sdWs

which gives the following lognormal basket dynamics:

dFωs = Fωs

(
n∑
i=1

ω̂i,tσ
i
s

)
dWs

This method helps to understand the origin of the classical approximation of a basket of log-
normal processes as another lognormal process by moments matching. It has however two severe
shortcomings. First, it approximates the process itself, hence it is by definition a suboptimal approx-
imation of the price of any nonlinear security. Secondly, it does not easily allow for the computation
of subsequent terms in the approximation. The approximation technique detailed in the next section
corrects both deficiencies.

3.1.2 Diffusion approximation

We can now look for an extra term that better accounts for the (mildly) stochastic nature of the
lognormal basket volatility and improves the pricing approximation outside of the money. The
approximation above simply expresses the fact that if all the forward volatility vectors were equal
then the basket diffusion would then be exactly lognormal. It is then quite natural to look for
an extra term by developing the above approximation around the central first-order volatility vector∑n

j=1 ω̂i,tσ
j
s . We first define the residual volatility ξis as the difference between the original volatility

σis and the central basket volatility
∑n

j=1 ω̂j,tσ
j
s:

Notation 19 We set for s ∈ [t, T ]:

ξis = σis −
n∑
j=1

ω̂j,tσ
j
s for i = 1, ..., n
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and we note:

σωs =
n∑
j=1

ω̂j,tσ
j
s

notice that σωs is Ft −measurable.

We can then write the dynamics of the basket Fωs in terms of ω̂i,s and the residual volatilities ξis.
From 

dFωs = Fωs

(
σωs +

∑n
j=1 ω̂j,sξ

j
s

)
dWs

dω̂i,s = ω̂i,s

(∑n
j=1 ω̂j,s(ξ

i
s − ξjs)

)(
dWs + σωs ds+

∑n
j=1 ω̂j,sξ

j
sds

) (3.2)

Remember that for s ∈ [t, T ] we have ω̂j,s ≥ 0 with
∑n

j=1 ω̂j,s = 1, hence σωs is a convex

combination of the σjs and
∑n

j=1 ω̂j,sξ
j
s is a convex combination of the residual volatilities ξjs with∑n

j=1 ω̂j,tξ
j
t = 0. As this last term tends to be very small, we will now compute the small noise

expansion of the basket Call price around such small values of
∑n

j=1 ω̂j,sξ
j
s . We first write

dFω,εs = Fω,εs

(
σωs + ε

∑n
j=1 ω̂j,sξ

j
s

)
dWs

dω̂εi,s = ω̂εi,s

(
ξis − ε

∑n
j=1 ω̂j,sξ

j
s

)(
dWs + σωs ds+ ε

∑n
j=1 ω̂j,sξ

j
sds

)
and develop around small values of ε > 0. From now on, we implicitly set

ε =

∥∥∥∥∥∥
n∑
j=1

ω̂j,sξ
j
s

∥∥∥∥∥∥
and substitute ω̂j,s/ε to ω̂j,s. As in Fournié et al. (1997) and Lebuchoux & Musiela (1999), we want
to evaluate the following expectation:

Cε = E
[(
Fω,εT − k

)+ | (Fωt , ω̂t)
]

and develop its Taylor series in ε around 0:

Cε = C0 + C(1)ε+ C(2) ε
2

2
+ o(ε2)

We can now get the order zero term as the classical basket approximation, which corresponds to
that in Huynh (1994), Musiela & Rutkowski (1997) or Brace & Womersley (2000).

Proposition 20 The first term C0 is given by the Black & Scholes (1973) formula. In this simple
approximation, the basket call price is given by:

C0 = BS(T, Fωt , VT ) = Fωt N(h(VT )) − κN
(
h(VT ) −

√
VT

)
(3.3)

where

h (VT ) =

(
ln
(
Fω

t
κ

)
+ 1

2VT

)
√
VT
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with the variance computed as:

VT =
∫ T

t
‖σωs ‖2 ds

which is again

VT =
∫ T

t
Tr (ΩtΓs) ds with Ωt = ω̂tω̂

T
t

this later format will be useful in the calibration program design.

Proof. Because for s ∈ [t, T ] we have ω̂j,s ≥ 0 with
∑n

j=1 ω̂j,s = 1, as in Lebuchoux &
Musiela (1999) or Fouque et al. (2000) we can compute C0 by solving the limiting P.D.E.:

∂C0

∂s + ‖σωs ‖2 x2

2
∂2C0

∂x2 = 0

C0 = (x−K)+ for s = T

hence the above result. Finally

Tr (ΩtΓs) =
n∑
i=1

n∑
j=1

ω̂i,tω̂j,t
〈
σjs, σ

i
s

〉
= ‖σωs ‖2

allows us to rewrite the variance as the inner product of Ωt Γs.

We have recovered the classical order zero approximation, we can now look for an extra term
by solving for C(1).

Lemma 21 Suppose that the underlying dynamics are described by (3.2). The first order term
C(1)(s, x, y) can be computed by solving:

0 =
∂C(1)

∂s
+ ‖σωs ‖2 x

2

2
∂2C(1)

∂x2
+

n∑
j=1

〈
ξjs , σ

ω
s

〉
xyj

∂2C(1)

∂x∂yj
(3.4)

+
n∑
j=1

∥∥ξjs∥∥2 y
2
j

2
∂2C(1)

∂y2
j

+
n∑
j=1

〈
ξjs , σ

ω
s

〉
yj
∂C(1)

∂yj
+

n∑
j=1

〈
ξjs , σ

ω
s

〉
yjx

2∂
2C0

∂x2

0 = C(1) for s = T

with C0 = BS(s, x, Vs) given by the Black & Scholes (1973) formula as in (3.3).

Proof. Let us first detail explicitly the P.D.E. followed by the price process. With the dynamics
given by: 

dFω,εs = Fω,εs

(
σωs + ε

∑n
j=1 ω̂j,sξ

j
s

)
dWs

dω̂εi,s = ω̂εi,s

(
ξis − ε

∑n
j=1 ω̂

ε
j,sξ

j
s

)(
dWs + σωs ds+ ε

∑n
j=1 ω̂j,sξ

j
sds

)
as in Karatzas & Shreve (1991) we get for

Cε = E
[(
Fω,εT − k

)+ | (Fωt , ω̂t)
]
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the corresponding P.D.E. : {
Lε0C

ε = 0
Cε = (x− k)+ for s = T

where Lε0 is given by (with x and yi associated to Fω,εs and ω̂i,s respectively):

Lε0 =
∂Cε

∂s
+

∥∥∥∥∥∥σωs + ε
n∑
j=1

yjξ
j
s

∥∥∥∥∥∥
2

x2

2
∂2Cε

∂x2

+
n∑
j=1

〈ξjs , σωs 〉+ ε
n∑
k=1

yk

〈
ξjs − σωs , ξ

k
s

〉
− ε2

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
xyj

∂2Cε

∂x∂yj

+
n∑
j=1

∥∥∥∥∥ξjs − ε
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
y2
j

2
∂2Cε

∂y2
j

+
n∑
j=1

〈ξjs , σωs 〉+ ε
n∑
k=1

yk

〈
ξjs − σωs , ξ

k
s

〉
− ε2

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
 yj

∂Cε

∂yj

as in Fournié et al. (1997) and Lebuchoux & Musiela (1999) we can differentiate this P.D.E. with
respect to ε to get:

0 = Lε0C
(1),ε +

2
n∑
j=1

yj
〈
ξjs , σ

ω
s

〉
+ 2ε

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
 x2

2
∂2Cε

∂x2

+
n∑
j=1

 n∑
k=1

〈
ξjs − σωs , ξ

j
s

〉− 2ε

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
xyj

∂2Cε

∂x∂yj

+
n∑
j=1

−2
n∑
k=1

yk

〈
ξjs , ξ

k
s

〉
+ 2ε

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
 y2

j

2
∂2Cε

∂y2
j

+
n∑
j=1

 n∑
k=1

yk

〈
ξjs − σωs , ξ

k
s

〉
− 2ε

∥∥∥∥∥
n∑
k=1

ykξ
k
s

∥∥∥∥∥
2
 yj

∂Cε

∂yj

0 = C(1),ε for s = T

and again as in Lebuchoux & Musiela (1999) or Fouque et al. (2000) we take the limit as ε → ∞
and compute C(1) as the solution to:{

L0
0C

(1) +
(∑n

j=1 yj

〈
ξjs , σωs

〉)
x2 ∂2C0

∂x2 = 0
Cε = 0 for s = T

which is again, with C0 = BS(T, Fωt , VT ) given by (3.3):

0 =
∂C(1)

∂s
+ ‖σωs ‖2 x

2

2
∂2C(1)

∂x2
+

n∑
j=1

〈
ξjs , σ

ω
s

〉
xyj

∂2C(1)

∂x∂yj

+
n∑
j=1

∥∥ξjs∥∥2 y
2
j

2
∂2C(1)

∂y2
j

+
n∑
j=1

〈
ξjs , σ

ω
s

〉
yj
∂C(1)

∂yj
+

n∑
j=1

〈
ξjs , σ

ω
s

〉
yjx

2∂
2C0

∂x2

0 = C(1) for s = T
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which is the desired result.

We can now compute a closed-form solution to the equation verified by C(1) using its Feynman-
Kac representation.

Proposition 22 Suppose that the underlying dynamics are described by (3.2).

The derivative C(1)
(
t, Fωt , (ω̂j,t)j=1,...,n

)
can be computed as:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t

〈
ξjs , σωs

〉
√
Vt,T

exp
(

2
∫ s

t

〈
ξju, σ

ω
u

〉
du

)
(3.5)

n

 ln Fω
t
K +

∫ s
t

〈
ξju, σωu

〉
du+ 1

2Vt,T√
Vt,T

 ds

Proof. The limiting diffusions are given by:

Fω,0s = Fωt exp
(∫ s

t
σωudWu − 1

2

∫ s

t
‖σωu‖2 du

)
ω̂0
j,s = ω̂j,t exp

(∫ s

t
σ̃judWu +

∫ s

t

(〈
ξju, σ

ω
u

〉− 1
2

∥∥σ̃ju∥∥2
)
du

)
and because C(1) solves the P.D.E. (3.4) in the above lemma, with

∂2C0
s

∂x2
=
n(h(x, Vs,T ))
x
√
Vs,T

where we have noted

n(x) =
1√
2π

exp
(
−1

2
x2

)
we can write the Feynman-Kac representation of the solution to (3.4) with terminal condition zero
as:

C(1) =
∫ T

t
E

 n∑
j=1

〈
ξjs , σ

ω
s

〉
ω̂0
j,sF

ω,0
s

n(h(Vs,T , F
ω,0
s ))√

Vs,T

 ds
where

h (u, v) =

(
ln
(
v
κ

)
+ 1

2u
)

√
u

with Vs,T =
∫ T

s
‖σωu‖2 du

Hence we can directly compute C(1) as:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t
〈
ξjs , σ

ω
s

〉
exp

(∫ s

t
−1

2

∥∥ξju − σωu
∥∥2
du

)

E

exp
(∫ s

t

(
σωu + ξju

)
dWu

)
√
Vs,T

n

(
ln Fω

t
K +

∫ s
t σ

ω
udWu − 1

2Vt,s + 1
2Vs,T√

Vs,T

) ds
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which is, using the Cameron-Martin formula:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t

〈
ξjs , σωs

〉
exp

(
2
∫ s
t

〈
ξju, σωu

〉
du
)

√
Vs,T

E

n
 ln Fω

t
K +

∫ s
t σ

ω
udWu +

∫ s
t

〈
ξju, σωu

〉
du+ 1

2Vt,T√
Vs,T

 ds
and because for g = N(a, b2) :

E[n(g)] =
1√
b2 + 1

n

(
a√
b2 + 1

)
we get:

C(1) = Fωt

∫ T

t

n∑
j=1

ω̂j,t

〈
ξjs , σωs

〉
√

(Vt,s + Vs,T )
exp

(
2
∫ s

t

〈
ξju, σ

ω
u

〉
du

)

n

 ln Fω
t
K +

∫ s
t

〈
ξju, σωu

〉
du+ 1

2Vt,T√
(Vt,s + Vs,T )

 ds

which is the desired result.

We will show below that this result can be interpreted as a correction accounting for the mis-
specification of the volatility induced.

3.1.3 Robustness interpretation

The basket dynamics are essentially that of an almost lognormal process with a mildly stochastic
volatility. By approximating these dynamics with a true lognormal process, we will make a small
”tracking error” in the computation of the replicating portfolio by computing the delta using an
incorrect specification of the volatility. As in El Karoui et al. (1998), we can compute this tracking
error almost explicitly. Suppose that Πσω

s ,s is the value at time s of a self-financing delta hedging
portfolio computed using the approximate volatility σωs . As the volatility in this delta computation
is only approximately equal to the volatility driving the underlying assets, there will be a small
hedging tracking error es computed as:

es = Pσω
s ,s − Πσω

s ,s

where Pσω
s ,s is the price of the option at time s, computed using the approximate volatility σωs .

Of course, we know that Pσω
s ,T = (Fωt −K)+ and we can understand E[es] as a price correction

accounting for the volatility misspecification. From El Karoui et al. (1998) we know that we can
compute this (exact) tracking error explicitly as:

eT =
1
2

∫ T

t

∥∥∥∥∥
n∑
i=1

ω̂i,sσ
i
s

∥∥∥∥∥
2

− ‖σωs ‖2

 (Fωs )2
∂2C0(Fωs , Vt,T )

∂x2
ds (3.6)
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From the computation of C(1) in the previous part we know:

C(1) =
∫ T

t
E

 n∑
j=1

〈
ξjs , σ

ω
s

〉
ω̂j,sF

ω
s

n(h(Vs,T , Fωs ))√
Vs,T

 ds
With σis = σωs + ξis, and because

∑n
i=1 ω̂i,s = 1, we rewrite (3.6) as:

eT =
∫ T

t

(〈
n∑
i=1

ω̂i,sσ
i
s − σωs , σ

ω
s

〉)
(Fωs )2

∂2C0(Fωs , Vt,T )
∂x2

ds

+
1
2

∫ T

t

∥∥∥∥∥
n∑
i=1

ω̂i,sσ
i
s − σωs

∥∥∥∥∥
2
 (Fωs )2

∂2C0(Fωs , Vt,T )
∂x2

ds

or again:

eT =
∫ T

t

〈
n∑
i=1

ω̂i,sξ
i
s, σ

ω
s

〉
(Fωs )2

∂2C0(Fωs , Vt,T )
∂x2

ds

+
1
2

∫ T

t

∥∥∥∥∥
n∑
i=1

ω̂i,sξ
i
s

∥∥∥∥∥
2
 (Fωs )2

∂2C0(Fωs , Vt,T )
∂x2

ds

The first order expansion of eT for small values of ξis gives:

e
(1)
T =

∫ T

t

〈
n∑
i=1

ω̂i,sξ
i
s, σ

ω
s

〉
(Fωs )2

∂2C0(Fωs , Vt,T )
∂x2

ds

writing the value of the Gamma explicitly, we get:

e
(1)
T =

∫ T

t

n∑
i=1

〈
ξis, σ

ω
s

〉
ω̂i,sF

ω
s

n(h(Vs,T , Fωs ))√
Vs,T

ds

and finally:

C(1) = E
[
e
(1)
T

]
(3.7)

This means that the first order correction in the basket price approximation can also be interpreted
as the expected value of the first order tracking error approximation for small values of the residual
volatility ξis. This validates the price approximation in terms of both pricing and hedging perfor-
mance. To make the link with chapter one explicit, we now write the order zero approximation in
the particular case of swaption pricing.

3.1.4 Swaption price approximation

If we go back to the particular swaption pricing problem developed in chapter one, the result above
allows us to compute the price of a swaption today if for example in the Libor market model we
approximate the forward swap rate by:

dswap(s, T, TN ) =
N∑
i=1

ω̂i(t)γ(s, Ti − s)dWLV L
s
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where we can compute the weights ω̂i(t)

ω̂i(t) =
B(t, Ti+1)δK(t, Ti)∑N
i=iT

B(t, Ti+1)δK(t, Ti)

which can be written:

ω̂i(t) = ωi(t)
K(t, Ti)

swap(t, T, TN )
(3.8)

as the product of the weights in the swap decomposition by the forward/swap ratio.
This means that we can price the corresponding swaption using the lognormal Black formula

with the cumulative variance set to VT . If we use a piecewise constant γ, this last formula has
the advantage of computing the market variance of a particular instrument (cap or swaption) as a
quadratic form on the γ function and the weights ω̂i(t). Furthermore, as the weights ω̂i(t) are not
very volatile (this is especially true when the forward curve is close to flat), the quadratic form used
in the variance computation is almost constant over time. We can now conclude this section on the
first order approximation of swaption prices as a direct consequence of the development above.

Proposition 23 Using the above approximations, the price of a payer swaption with maturity T
and strike κ, written on a forward swap starting at T with maturity TN is given at time t ≤ T by
the Black formula plus a correction term:

swaptiont = Level(t, T, TN )
(
swap(t, T, TN )N(h) − κN(h−

√
VT )

)
+ Level(t, T, TN )C(1)

(3.9)
with

h =

(
ln
(
swap(t,T,TN )

κ

)
+ 1

2VT

)
√
VT

where swap(t, T, TN ) is the market value of the forward swap today and

VT =
∫ T

t
‖γω(s)‖2 ds

with

ω̂i(t) = ωi(t)
K(t, Ti)

swap(t, T, TN )
and γω(s) =

N∑
i=1

ω̂i(t)γ(s, Ti − s)

and

C(1) =
∫ T

t

n∑
j=1

ω̂j(t)
〈γ̃(s, Tj − s), γω(s)〉√

Vt,T
exp

(
2
∫ s

t
〈γ̃(s, Tj − s), γω(s)〉 du

)

n

(
ln Level(t,T,TN )

K +
∫ s
t 〈γ̃(s, Tj − s), γω(s)〉 du+ 1

2Vt,T√
Vt,T

)
ds

where
γ̃(s, Ti − s) = γ(s, Ti − s) − γω(s)

We will now study the practical precision of this approximation by comparing the price obtained
using the formulas above with the price given by Monte-Carlo simulations in both the Libor Market
model and in the generic multidimensional Black & Scholes (1973) model.
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3.2 Approximation precision

To assess the practical performance of the lognormal swap rate approximation in the pricing of
swaptions, we will compare the prices obtained for a large set of key liquid swaptions using Monte-
Carlo simulation and the lognormal forward swap approximation. We begin by recalling the key
characteristics of the Libor Market Model by Brace et al. (1997) and how the model is discretized
for simulation purposes. We then compare the swaption prices obtained by simulation with those
provided by the approximated swaption pricing formula above.

3.2.1 Discretization

We have used the classic Euler discretization scheme as developed for example in Sidenius (1998),
a less traditional technique can also be found Glasserman & Zhao (2000). We discretize the
δ−forward process above over a time interval ∆t as:

K(t+ ∆t, T ) = K(t, T )
(
1 + γ(t, T − t)ε

√
∆t+ γ(t, T − t)σ̃(t, T − t+ δ)dt

)
where ε ∈ R

d is a vector of independent normalized Gaussian random variables. Now if Ti are the
forward calendar dates, we divide each interval [Ti, Ti+1] in nr steps with:

tjnr = Tj and ∆ti = ti+1 − ti

hence, if we note Ki,j = K(ti+1, Tj), we can compute the forward rate evolution as:

Ki+1,j

Ki,j
=
(
1 + γ(ti, Tj − ti)ε

√
∆ti + γ(ti, Tj − ti)σ̃(ti, Tj − ti + δ)dt

)
(3.10)

having set σ̃(ti, u) = 0 for u < δ to maintain the absence of arbitrage property between Zero
Coupon bonds and the Money Market account. The value of this account process is here computed
directly from the forwards using:

βT =

(
1 + δK(TjT , TjT )(T−Tj)/δ

)∏jT−1
j=0 (1 + δK(Tj , Tj))

to simplify the procedure.

3.2.2 Numerical results

In the first figure (3.1), we present a plot of the difference between two distinct sets of swaption
prices in the Libor Market Model. One is obtained by Monte-Carlo simulation using enough steps
to make the 95% confidence margin of error always less than 1bp. The second set of prices is
computed using the order zero approximation formula above. We can notice that the absolute error
is increasing in the underlying maturity of the swaption and that its sign is not constant. This plot
is based on the prices obtained by calibrating the model to EURO swaption prices on November 6
2000. We have used all cap volatilities and the following swaptions: 2Y into 5Y, 5Y into 5Y, 5Y
into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y, 1Y into 9Y (the motivation
behind this choice of swaptions is liquidity, all swaptions in the 10Y diagonal or in 2Y, 5Y, 7Y,
10Y are supposed to be more liquid). The absolute error is always less than 4 bp which is very
significantly lower than the Bid-Ask spreads.
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Figure 3.1: Absolute error in the order zero price approximation versus the Libor market model
prices estimated using Monte-Carlo simulation, for various ATM Swaptions.
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Figure 3.2: Order zero (dashed) and order one (plain) absolute approximation error versus the mul-
tidimensional Black-Scholes basket prices obtained by simulation for various strikes.
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Figure 3.3: Order zero (dashed) and order one (plain) absolute approximation error versus the mul-
tidimensional Black-Scholes basket prices obtained by simulation for various strikes. (Diagonal
covariance matrix.)

In the second figure (3.2), we plot the error in the basket pricing formula for a basket of assets,
having supposed that the forwards are all martingale under the same probability measure (hence we
test the precision of the approximations without the error from the forward measures). The reference
is given by a Monte-Carlo estimate with 40000 steps.

The numerical values used here are F i0 = {0.7, 0.5, 0.4, 0.4, 0.4}, ωi = {0.2, 0.2, 0.2, 0.2, 0.2},
T = 5 years, and the covariance matrix is given by:

11
100


0.64 0.59 0.32 0.12 0.06
0.59 1 0.67 0.28 0.13
0.32 0.67 0.64 0.29 0.14
0.12 0.28 0.29 0.36 0.11
0.06 0.13 0.14 0.11 0.16


This covariance comes from an historical estimate and has the typical level, spread, convexity

eigenvector structure. These values are meant to replicate the pricing of a 5Y into 5Y swaption
without the change in measure. We can see that the pricing error is less than 2bp with the order zero
approx. and the additional order one term does not provide a significant benefit. In fact, the order
zero term reaches an excellent precision near the money, a feature that is constantly observed when
the covariance matrix has the structure given above, where the first level eigenvector accounts for
around 90% of the volatility and the model is close to univariate (as noted in Brace et al. (1997)).
However, we observe (in figure (3.3) below, for example) that the order one approximation does
provide a significant precision improvement when the rates are less correlated or the underlying
used is not significantly smaller than one (in equity basket options for example). More details and
numerical examples are given at the end of this work.



Chapter 4

Market Model Calibration

In this part, we detail the calibration problem and its numerical characteristics. Let us start by
observing one of the key features of the swaption pricing approximation formula obtained in the
last chapter. We write the market variance as the scalar product of the forward rates covariance
matrix and a matrix computed from market data on the swap weights:

VT =
∫ T

t

∥∥∥∥∥
N∑
i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds

=
∫ T

t

 N∑
i=1

N∑
j=1

ω̂i(t)ω̂j(t) 〈γ(s, Ti − s), γ(s, Tj − s)〉
 ds

=
∫ T

t
Tr (ΩtXs) ds

where Ωt, Xt ∈ R
N×N , t ∈ [0, T ] are positive semidefinite symmetric matrixes defined by:

Ωt = ω̂(t)ω̂(t)T = (ω̂i(t)ω̂j(t))i,j∈[1,N ] 
 0

and
Xs = (〈γ(s, Ti − s), γ(s, Tj − s)〉)i,j∈[1,N ] 
 0

the covariance matrix of the forward rates (Gram matrix of the γ(s, Ti − s) vectors).
This shows that the cumulative market variance of a particular swaption can be written as a

linear functional of the forward rates covariance matrix. This fact will be the cornerstone of the
calibration algorithm that follows.

The market quotes prices for caps and swaptions in terms of implied Black volatility. We can
compute the market cumulative variance for the swaption of maturity Tk as σ2

market,kTk, the fun-
damental parameter in the model calibration. For simplicity, we discretize the volatility function
yearly to make it piecewise constant. We are now ready to formulate the calibration problem in an
efficient way.

Proposition 24 The general calibration problem can written as an infinite-dimensional linear ma-
trix inequality (L.M.I.) :

Find Xs

s.t. Tr
(
Ωt

(∫ T
t Xsds

))
= σ2

market,kTk for k = (1, ...,M)
Xs 
 0

61
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in the variable Xs : R+ → Sn, where we have set

Ωt = ω̂(t)ω̂(t)ᵀ = (ω̂i(t)ω̂j(t))i,j∈[1,N ] 
 0

as quoted by the market today.

Proof. From the market option prices, we can get the implied cumulative variances σ2
market,kTk

for k = (1, ...,M) by inverting the pricing formulas found in the last section (which are always
strictly increasing in variance). With the key parameter being now the p.s.d. matrix valued Xs :
R+ → Sn, from the development above the problem of matching the model price with the market

price can be reduced to Tr
(
Ωt

(∫ T
t Xsds

))
= σ2

market,kTk for k = (1, ...,M).

Because the market variance constraints are linear with respect to the underlying variable Xs

and the set of positive semidefinite matrixes is a convex cone, we find that the general calibration
problem is convex and given a convex objective function, it has a unique global solution. We will
further detail the advantages of this formulation later on.

Remark 25 With Xs = (〈γ(s, Ti − s), γ(s, Tj − s)〉)i,j∈[1,N ] , the volatilities γ(s, Tj − s) are
extracted by Cholesky decomposition.

4.1 The calibration constraints

We will discuss the most general calibration problem implementation in the next part on risk-
management. For simplicity now and to keep the focus on the problem geometry, we discretize with
a δ frequency. We also make the common assumption that although the forward rates volatilities
are not stationary, their instantaneous correlation is and hence the volatility function take a quasi-
stationary form γ(s, x) = σ(s)η(x) with σ and η such that σ(s) = σ(1

δ �δs�), η(u) = η(1
δ �δu�)

and σ(s) = η(s) = 0 when s ≤ 0. The expression of the market cumulative variance then becomes

VT =
T∑
i=t

δTr (ΩtXi)

and with Ωt being quoted by the market today, calibrating the model to the swaptions k = (1, ...,M)
can be written as:

Find Xi

s.t.
∑T

i=t δTr (Ωt,kXi) = σ2
kTk for k = 1, ...,M

Xi 
 0 for i = 0, ..., T
(4.1)

where Ωt,k is the matrix computed as in (3.9) from the particular ω̂i,k(t) weights in the underlying
swap of the swaption k. We can account for Bid-Ask spreads in the market data by relaxing the
constraints as:

Find Xi

s.t. σ2
Bid,kTk ≤ ∑T

i=t δTr (Ωt,kXi) ≤ σ2
Ask,kTk for k = 1, ...,M

Xi 
 0 for i = 0, ..., T
(4.2)

Here again we have

Xi =
(
σ2(s) 〈η(Ti − s), η(Tj − s)〉)

i,j∈[1,N ]

 0
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keeping in mind that the vectors η(Ti − s) creating this matrix ”shift” from period to period.
Although there is substantial empirical evidence to contradict the stationarity assumption, the

fact that it is the simplest model parametrization which is coherent with a day-to-day recalibration
procedure makes it an interesting case study and a central reference. Furthermore, we will see in a
later part that the non-stationary calibration program has the exact same format as the stationary one
except that the matrixes have a block-diagonal structure instead of being dense. For this reason, we
will keep the stationary case here as our central example and we refer the reader to the next part on
risk-management for the nonstationary program implementation details. With γ(s, x) discretized
yearly and stationary, we note:

γ(s, x) = γ�x�

and the model cap cumulative variance is given by:

σ2
marketT =

�T �∑
i=1

γ2
i for caps

For the swaptions, using the simple approximated pricing formula computed above we get:

σ2
marketT0 = Tr(XΩT0)

where ΩT0 is the sum of the matrix Ωk for k = (1, .., . �T0�) with Ωk the matrix with submatrix
ϕϕT starting at element (k, k) and all other blocks equal to zero. The formula for caps is then
quite naturally seen as the scalar product of the matrix Γ with a matrix with 1 on the diagonal up to
element �T � and zero elsewhere. Hence the calibration problem can be seen as:

find X
s.t. Tr(XΩTk

) =
(
σ2
market

)
k
Tk

X 
 0
(4.3)

or again
find X
s.t. σ2

Bid,kTk ≤ Tr(XΩTk
) ≤ σ2

Ask,kTk
X 
 0

(4.4)

accounting for spreads in the market data. The matrix X is found as a particular solution to this
convex problem given a particular convex objective.

4.2 A convex problem

The calibration constraints above define the set of calibrated matrixes as the intersection of the
semi definite cone with a polyhedra. As such the set of market calibrated matrixes is convex. The
calibration problem then becomes that of finding the ”best possible” matrix in this set and this is
best done by minimizing a convex function (usually a linear functional) over this set. With a linear
objective, the class of problems such as the one above are called a Semi Definite Programs (SDP).

In many ways, this represents a shift in paradigm from the usual calibration procedures. Let us
describe the key differences between the non-convex procedures such as the factor parametrization
based algorithms Rebonato (1999) and the SDP formulation to illustrate why the convex SDP can
very significantly improve the stability of the calibration results. As pointed out by Rockafellar
(1970), the great divide between ”easy” and ”hard” does not stand between linear and non-linear
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Figure 4.1: Plot of the objective function in the factor parametrized problem

but between convex and non-convex. The SDP program is minimizing a convex functional under
linear constraints over a convex set, hence is convex whereas the rotation based methods is not, as
we will see below. The consequence of this is that the SDP has an unique global optimum where the
rotation algorithm has multiple local ones. Because of that, an insignificant daily variation in the
market prices can make the solution of non-convex calibration algorithm shift from local optimum
to local optimum provoking subsequent ”jumps” in the P&L and dangerous errors in the Greeks
computation. On the contrary, the same shock will only slightly shift the global optimum of the
SDP program. Furthermore, as we will see in the next part, a lot can be said about the direction and
amplitude of this shift, as for example in Todd & Yildirim (1999), so the convex SDP calibration
program formulation avoids the P&L variations that were only caused by numerical instability
between local optima.

4.2.1 Non convex example

Let us illustrate this on a simple example in R
2×2. Suppose that using the factor parametrization

based algorithm we are looking to solve the following simple calibration program:

max Tr
([

1 −1
−1 1

]
X

)
s.t. Tr

([
1 0
0 1

]
X

)
= 1

X 
 0

The problem is then fully parametrized by the following definition of X:

X(u, v) =
(

cos2(u) cos(v) cos(u) sin(u)
cos(v) cos(u) sin(u) sin2(u)

)
In the figure (4.1) we plot the objective value as a function of (u, v) where we can see that the
function obtained is non-convex and has two distant local maxima.
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Figure 4.2: The semidefinite cone in dimension 3.

4.2.2 Convex example

The equivalent SDP algorithm on the other hand is optimizing a linear functional under linear con-
straints within a convex set.

Although the boundaries of this set are defined by a non-linear function, namely:

X =
(
x y
y z

)

 0 ⇐⇒ min

i
λi(X) ≥ 0

where λi(X) are the eigenvalues of X , the overall problem can be solved very efficiently (see
Nesterov & Nemirovskii (1994), Vandenberghe & Boyd (1996)) because both the feasible set and
the objective are convex and a barrier function with excellent numerical properties can be computed.
This frontier is plotted in figure (4.2) on the (x, y, z) space, together with figure (4.3) showing a cut
of the cone, orthogonal to the (−.15, .1, 1.2) direction.

Of course, all these examples are limited by the necessity to obtain a three-dimensional repre-
sentation and figure (4.2) can also be seen as a rotated second-order (or Lorentz) cone. Another
result of the recent progress in convex optimization is that the calibration above can be solved in
polynomial time (usually less than a second for a typical problem size), with an upper bound on
the absolute error (distance to the optimum and constraints). Furthermore, the practical complexity
of those methods is also very well understood. In all the numerical tests that follow, the computing
time on a standard 500 MHz workstation was close to a second on average.
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Figure 4.3: Plot of a typical feasible domain, a planar cut of the semidefinite cone.

4.3 Algorithm Implementation

The general form of the problem to be solved is given by:

min Tr(CX)
s.t. Tr(XΩTi) = σ2

market,kTk, k = 1, ...,M
X 
 0

where X is a block-matrix. For a general overview of Semi-definite programming algorithms see
Vandenberghe & Boyd (1996), Nesterov & Nemirovskii (1994) or Alizadeh, Haeberly & Overton
(1998). The algorithm we used in most of the numerical results that follow can be defined as
HMPCAHO, which stands for the Potra-Sheng homogeneous formulation of the Mehrotra type
predictor-corrector algorithm using the Alizadeh, Haeberly, Overton search direction Alizadeh et al.
(1998). The homogeneous formulation Potra & Sheng (1995) allows certain detection of primal or
dual infeasibility which in our case corresponds to market prices incompatible with a stationary
positive semi-definite market covariance matrix for the forward Libors. The MPCAHO algorithm
is the slowest of all formulations but it’s reputation is to be the most robust. For a typical problem
dimension of 20 (discretized yearly and stationary), the average number of steps is around 15 using
an absolute precision goal on the market variance of 10−8. The calibration time is less than a second
for a full size implicit market covariance calibration. We followed the implementation structure
given in Toh, Todd & Tutuncu (1996), having adapted in C the Mathematica algorithm by Brixius,
Potra & Sheng (1996). Some more recent libraries including a more efficient formulation of the
SOCP (quadratic: smoothness, euclidean distance ...) and L.P. constraints are becoming available.
These include the MATLAB package by Sturm (1999) for symmetric cone programming, which we
have extensively used here as well.
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4.3.1 Simple objective

The problem with the above methods of smoothing and distance minimization is that they multiply
the dimension of the problem, thus slowing down the process. We have found that in practice, setting
directly the objective matrix C to a target covariance matrix provided good results. Intuitively, this
is explained by the fact that a linear objective will force the solution to be a vertex of the feasible
set, i.e. a p.s.d. matrix of low rank (see Fazel et al. (2000) for details). We can also understand this
by remarking that the more constrained problem:

max Tr (CX)
s.t. TrX = n

X 
 0
[X,C] = 0

is in fact a simple L.P. in the eigenvalues because C and X can be simultaneously diagonalized. It
is explicitly solved by a rank one matrix e∗ (e∗)T where e∗ is the eigenvector associated with the
largest eigenvalue of C as an application of the Perron-Frobenius theorem. This shows why this
kind of objective tends to lead to low rank matrixes that are close to the target covariance main
factor, it has proved to be very efficient in practice.

4.3.2 Applications

In general, the calibration problem gives an entire set of solutions. The choice of the objective
matrix C is a function of the ultimate objective of the calibration. We consider different choices of
C:

Bounds on other swaptions

One of the most simple choices of objective matrix C is to set it to another swaptions associated
matrix ΩTi . The calibration problem finds the parameters for the Market Model that gives either
a minimum or a maximum arbitrage-free price (within the BGM framework) to the considered
swaption while matching a certain set of market prices on other caps and swaptions. We will show
some examples of this in the next section.

Spread Options. Baskets

The swaption pricing approximation given above can be seen as a pricing formula for baskets and
we can set ω to reflect the difference of two forwards ω = (0, ..., 0,−a, b, 0, ..., 0), the difference of
two swap rates ω = aω1−bω2 or in fact any basket of swaps and forwards (if we look at the shifted
price). The calibration program using an objective matrix C computed from the above weights
would then produce bounds on the price of a certain Spread Option as implied by the current market
price of the calibration instruments.

Spectral distance to a target covariance

Let A be a target covariance matrix (for example, a previous calibration result or an historical
estimate). The key point here is the choice of the matrix distance to be used. The norm that is most
naturally adapted to semi definite programming settings is the spectral norm, i.e. with λk(X) the
eigenvalues of X .

‖X‖ = max
k

|λk(X)|



CHAPTER 4. MARKET MODEL CALIBRATION 68

This norm ‖X‖ can also be computed using Weil’s characterization of eigenvalues:

max
k

|λk(X)| = sup
‖u‖=1

‖Xu‖

with ‖.‖2 the euclidean norm.

Lemma 26 The solution of the calibration problem that is ‖.‖ closest to A can then be computed
by solving:

min t
s.t. Tr(XΩTi) =

(
σ2
market

)
i
Ti

X −A  tId
X −A 
 −tId
X 
 0 and t ≥ 0

Proof. As in Vandenberghe & Boyd (1996). We know that X − A  tId⇐⇒ maxk λk(X −
A) ≤ t, hence in the above problem we have maxk |λk(X −A)| = ‖X −A‖ ≤ t.

The result given by this kind of norm minimization is then ”vectorwise uniformly” close to the
targeted covariance matrix.

In general however, one would also like to use the euclidean norm on the set of matrixes:

‖X‖ =
√

Tr(X2)

This is a quadratic function of the underlying matrix and is not immediately a linear objective.
We can however design a semidefinite program to solve for this minimization as in Nesterov &
Nemirovskii (1994) §6.4.2 or use a symmetric cone formulation as in Nesterov & Todd (1997) or
Sturm (1999).

4.4 Multiobjective calibration problem

Here, we extend the general calibration problem to incorporate the minimum rank and smoothness
requirements. Those two necessary features of the calibrated matrix arise from very different prob-
lems. The rank minimization is a purely technical issue and is a consequence of the limitations of
the pricing algorithms. Because most of the time the calibrated matrix will be used to generate paths
in a Monte-Carlo simulation, a low rank matrix is necessary there to maintain acceptable computing
times. A low rank solution is also critical for the pricing of products with American features where
only trees and dynamic programming can be used. In the later case, the rank of the matrix must be
kept to at most one or two for computations to be possible. The smoothness constraint is of course
not as critical, it only reflects the belief that a market operator’s pricing of the variance at one point
in the covariance matrix will not be radically different from its input at an adjacent point in the
matrix. The smoothness maximization is intended to produce realistic matrixes in that sense.

We then study how it is possible to combine those objectives inside a general calibration problem
an we examine the resulting trade-offs. In particular, we show that it is possible to find a solution
of rank two to a calibration problem based on actual market data, but that this rank result quickly
deteriorates with the addition of a smoothness constraint. We will see that the same result holds for
robustness.
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4.4.1 Rank Minimization

Because the calibrated model will be used to compute prices of other derivatives using mostly
Monte-Carlo techniques or trees, it is highly desirable to get a low rank solution. In general, the
matrix solution to the calibration problem will lie on a vertex of the semidefinite cone and hence
will be singular but there is no guarantee that the rank will remain below a certain level. The
general problem of finding the calibrated matrix of lowest rank can be identified as part of a wider
class of combinatorial problems and is hard. In practice, as we will see below, the market constraints
always tend to produce results with very rapidly decreasing eigenvalues and some very good convex
heuristics can enhance this feature significantly (see for example Fazel et al. (2000)) hence it is
always possible to find a good approximated solution of rank two or three. We will see that in
practice and in accordance with prior empirical studies, all solutions (even those with a high rank)
tend to have only one or two dominant eigenvalues with the rest of the spectrum several orders of
magnitude smaller, hence the rank issue is only fueled by the numerical limitations of derivative
pricing techniques.

The trace heuristic

In the recent years, a lot of work has been focused on the problem of minimizing the rank of a matrix
over a convex set (see Fazel et al. (2000) for a review of recent works). In general, as showed in
Davis (1994) or Vandenberghe & Boyd (1996), this problem is NP-Hard, i.e. the key difference with
all the other programs detailed in this paper is that there is provably (if P �= NP ) no polynomial-
time algorithm to find a global solution to the minimum rank problem. In this case however, a lot of
very efficient heuristical methods have been developed and we will use here the trace minimization
technique detailed in Fazel et al. (2000). The particular instance of this class of problems we focus
on here is the minimum rank calibration problem, which can be stated as:

minimize rank(X)
subject to σ2

Bid,kTk ≤ Tr(ΩkX) ≤ σ2
Ask,kTk for k = 1, ...,M

X 
 0
(4.5)

in the variable X ∈ Sn with parameters Ωk, C ∈ Sn and σ2
Bid,kTk, σ2

Ask,kTk ∈ R+, for k =
1, ...,M . A very common heuristic for solving the above problem is to substitute to the rank function
the scalar product of the matrix X with another matrix C 
 0:

minimize Tr(CX)
subject to σ2

Bid,kTk ≤ Tr(ΩkX) ≤ σ2
Ask,kTk for k = 1, ...,M

X 
 0
(4.6)

As pointed out by Mesbahi & Papavassilopoulos (1997), for some specific feasible set geometries,
this produces exact solutions. In the general case, Fazel et al. (2000) show that this heuristic can
be seen as the first iterate of an algorithm to find some local minimum of the logarithm of the
determinant of X , which always lies at a low rank solution. This method finds a local optimum to
the minimum rank problem and in practice, requires a few iterations. All the algorithm steps are
trace minimization problems such as the one in (4.6) with the first one usually producing a low rank
solution and the next iterations improving it by one or two zero eigenvalues.

Truncating the solution

The heuristic methods produce low rank solutions to the calibration problem but it is often the case
that the rank of the solution can be decreased a little bit more by setting to zero all the eigenvalues
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of the solution that are below a preset precision level. This is a numerically very simple step, the
only difficulty being to ensure that the solution remains feasible. As we show below, using the fact
that all the matrixes Ωk are p.s.d., this can in fact be done optimally, i.e. we can maximize the value
below which the solution can be truncated and still remain feasible.

Proposition 27 The semidefinite program:

max α
subject to σ2

Bid,kTk + αTr (Ωk) ≤ Tr(ΩkX) ≤ σ2
Ask,kTk for k = 1, ...,M

X 
 0

in the variables X ∈ Sn and α ∈ R, with parameters Ωk, C ∈ Sn and σ2
Bid,kTk, σ2

Ask,kTk ∈ R+,
has a unique optimal solution (X,α) with α the greatest value such that Xα remains feasible for
the original calibration problem:

find X
subject to σ2

Bid,kTk ≤ Tr(ΩkX) ≤ σ2
Ask,kTk for k = 1, ...,M

X 
 0

where Xα is the truncated matrix obtained by setting to zero all the eigenvalues of the matrix X
inferior to α.

Proof. For A ∈ Sn, A 
 0, let us first recall the following classical result:

βTr(A) = max Tr(XA)
subject to ‖ X‖ ≤ β

X 
 0

where ‖X‖ is the spectral norm (maximum eigenvalue) of the variable X ∈ Sn. Let (X∗, α∗)
be the solution to the above problem, we can now write the truncated matrix X∗

α∗ = X − ∆X
with ∆X 
 0 and ‖∆X‖ ≤ α∗. Now because Tr(ΩkX) ≤ σ2

Ask,kTk for k = 1, ...,M and
∆X 
 0 we know that Tr(ΩkX

∗
α∗) ≤ σ2

Ask,kTk for k = 1, ...,M . Now, using the result above, with
Tr(Ωk∆X) ≤ αTr (Ωk) for k = 1, ...,M,we know that σ2

Bid,kTk ≤ Tr(ΩkX
∗
α∗) for k = 1, ...,M

and the matrix X∗
α∗ is feasible for the general calibration problem.

We can combine the two methods above to get a low rank solution to the calibration problem
that can be truncated and is guaranteed to remain feasible. This is solved by the program

min −α+ γTr(CX)
subject to σ2

Bid,kTk + αTr (Ωk) ≤ Tr(ΩkX) ≤ σ2
Ask,kTk, k = 1, ...,M

X 
 0

where the weight γ is an input and is set to optimally balance the two programs. On the same Nov.
6 2000 data set, the above heuristics allow us to find a rank two solution of the calibration problem.
The calibration set is again formed by using all caps and the following swaptions: 2Y into 5Y, 5Y
into 5Y, 5Y into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y, 1Y into 9Y.
The calibrated forward rates covariance matrix we obtain is showed in the first figure.

The second figure shows its ten biggest eigenvalues in a semilog graph.
The above results above clearly underline the need to introduce smoothness constraints in the

calibration procedure. This is detailed in what follows.
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Figure 4.4: Truncated low rank solution matrix.
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Figure 4.5: Semilog plot of the truncated solution matrix eigenvalues.
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4.4.2 Smoothness constraints

As discussed above, it is sometimes desirable to impose smoothness objectives on the calibration
problem to reflect the fact that market operators will tend to price similarly the variance of two
products with close characteristics. A common way of smoothing the solution is to minimize the
surface of the covariance matrix that we approximate here by:

S =
∑

i,j∈[2,n]

‖∆i,jX‖2

where

∆i,jX =
(
Xi,j −Xi−1,j

Xi,j −Xi,j−1

)
The calibration program then becomes:

min t

subject to
∑

i,j∈[2,n] ‖∆i,jX‖2 ≤ t

σ2
Bid,kTk ≤ Tr(ΩkX) ≤ σ2

Ask,kTk, k = 1, ...,M
X 
 0

in the variablesX ∈ Smaxi Ni and t ∈ R, with parameters Ωk, C ∈ Smaxi Ni and σ2
Bid,kTk, σ

2
Ask,kTk ∈

R+, which is a symmetric cone program as defined by Nesterov & Todd (1997), among oth-
ers. These programs can be solved very efficiently by the same numerical methods used to solve
semidefinite programs. Some very efficient numerical packages such as the one developed by Sturm
(1999) are already available.

4.4.3 The robustness versus low rank trade-off

By combining all the different program requirements above, namely the robustness, smoothness and
low rank objectives, we can form a general calibration program as follows:

minimize Tr(CX) + αt1 − βt2 + γt3
subject to

∑
i,j∈[2,n] ‖∆i,jX‖2 ≤ t1

Tr(ΩkX) ≥ σ2
Bid,kTk + t2 Tr (Ωk) + t3

Tr(ΩkX) ≤ σ2
Ask,kTk − t3, k = 1, ...,M

X 
 0

which is a symmetric cone program in the variables X ∈ Sn and t1, t2, t3 ∈ R, with parameters
Ωk, C ∈ Sn and σ2

Bid,kTk, σ
2
Ask,kTk ∈ R+, where we can determine the relative importance of

each objective by adjusting the weights (α, β, γ) ∈ R
3
+. This last form highlights the trade-offs that

exists between the various calibration objectives detailed above. Perhaps the most important one is
the trade-off between the rank minimization and the robustness.

This shows how much the rank limitations in the pricing techniques impact the stability of
the calibration solution. As these limitations force us to look for a fixed rank solution (in fact, a
solution of rank at most two), the calibration problem becomes NP-Hard and we have to choose
between two radically different approximate numerical approaches. One is to use the traditional
low rank parameterizations of the covariance matrix such as the one detailed in Rebonato (1999).
As discussed in the previous section, these approaches are non-convex, which means that there
is no guarantee that a global solution can be found in polynomial time and that the solution, if
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Figure 4.6: Solution to the calibration problem with smoothness constraints

found, can be extremely unstable. On the other hand, we can use the heuristics detailed here which
can be seen as convex relaxations of the low rank calibration problem. They are guaranteed to
provide a low rank solution, together with sensitivity results in polynomial-time, however, there is
no guarantee that a particular rank objective can be reached. It is also important to keep in mind
that because the fixed rank calibration problem is NP-Hard, there is provably no algorithm with
reasonable (polynomial) complexity that can solve it globally. It appears then that the only way
to stabilize the calibration procedure is to find pricing methods that can accommodate covariance
matrixes with a rank bigger than simply one or two. Monte-Carlo methods provide an answer to this
problem for the pricing of European type derivatives and the remaining fundamental difficulty lies
in pricing American derivatives. Recent advances in American Monte-Carlo methods (see Longstaff
& Schwartz (1998) among others) and quantization algorithms (see Bally & Pages (2000)) where it
is possible to evaluate options in with a model dimension closer to the one we obtain in the stable
solutions.

Below we show the impact of the smoothness constraints on the minimum rank heuristic results.
The corresponding forward rates covariance matrix is plotted in the first figure.

We have significantly improved the matrix smoothness. The price to pay for this regularity is an
increase in the rank of the solution as can be seen in the second figure We observe that the solution
has a much higher rank than the one obtained with the rank minimization heuristic alone. This
illustrates the central trade-off curve along which the calibration is performed: smoothness versus
rank.
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Figure 4.7: Semilog plot of the smooth matrix solution eigenvalues.

4.4.4 Calibration stabilization: a Tikhonov regularization

Along the lines of Cont (2001), we can explore more rigorously the impact of the smoothness
constraints introduced above. Intuitively, one can look at the smoothness criterion as the minimiza-
tion of a quadratic entropy, hence we can expect it to stabilize the calibration solution trough the
minimization of the mutual information with a (flat) prior. As suggested by Cont (2001), we can
think of the calibration as an ill-posed inverse problem and write the smooth calibration program
as a Tikhonov (1963) regularization of the original problem. We are trying to solve the calibration
problem:

A(X) =
(
σ2
kTk

)
k=1,...,M

(4.7)

where

A : SN −→ R
M

X �−→ AX := (Tr (AiX))i=1,...,M

with the additional constraint that X be semidefinite positive. We can replace this hard constraint
with a relaxed one together with an additional constraint on the norm of X and solve:

minimize
∥∥A(X) − (

σ2
kTk

)∥∥2 + α ‖X‖2

which, if we omit the positivity constraint, has a solution computed as:

X = (A∗A+ αI)−1A∗b

where

A∗ : R
M −→ SN

y �−→ A∗y :=
M∑
i=1

yiΩi

and because all the eigenvalues of the operator A∗A+ αI are greater than α, the condition number
of the problem is improved and we can expect the sensitivity of the calibrated solution to be signifi-
cantly reduced. Hence we see that the introduction of a smoothness constraint directly improves the
stability of the calibration problem.
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Figure 4.8: Historical evolution of the empirical volatility versus rate ratio over time (Red is the
past and blue the present, JPY 1Y into 2Y forward Swap rate in 1998).

4.4.5 A word on stochastic volatility

All the calibration programs detailed up to now have at least one significant drawback: the model
used don’t allow any degree of freedom in the smile modelling. Is it possible to keep all the nu-
merical advantages of the convex programming calibration techniques above while allowing some
flexibility in the smile shape description? The answer here is a partial yes. First, we can remem-
ber that as the Gaussian HJM model can be seen as a shifted lognormal model on Libors and by
letting the size of the shift vary we obtain a class of dynamics that includes both the Libor Market
Model and the Gaussian HJM. We can write the discrete Tenor dynamics (see Musiela & Rutkowski
(1997)) of this skewed market model by specifying the forward volatility:

dK(s, Ti) = (ai +K(s, Ti)) γ(s, Ti − s)dW T+δ
s

This setup includes the classical Libor Market model with ai = 0 and the Gaussian HJM with
ai = 1/δ. With swap(s, T, TN ) =

∑N
i=1 ωiK(s, Ti) and (ai +K(s, Ti)) lognormal, the swap is a

shifted sum of lognormal processes and can be approximated by a shifted lognormal process:

swap(s, T, TN ) =
N∑
i=1

ωi(ai +K(s, Ti)) −
N∑
i=1

ωiai

This means that we can use the swaption pricing formulas above by simply adjusting the strike to
account for the shift

∑N
i=1 ωiai. Each ai allows an additional degree of freedom in calibrating the

skewness. Finally, to accommodate some adjustment in the smile convexity, we can suppose for
example that the volatility follows a Markov process with two states (and for example exponentially
distributed interarrival times). This very basic setup models the regime switching in volatility that
is often observed in practice (see figure 4.8). If we further suppose that the switch in regime is
independent of the dynamics of the underlying rate, we can price the swaption by conditioning on
the path of the volatility, computing the expected value of the approximation formulas found above
for the two volatility states:

Pswaption = phighBS
(
V high
t,T

)
+ (1 − phigh)BS

(
V low
t,T

)
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We have created some additional flexibility in the smile shape but a simultaneous calibration of
the smile and the covariance is impossible. The calibration must then be performed in two steps:
first the smile shape and level (ahighi , V high

t,T , alowi and V low
t,T ) is fitted on market data on caplets or

swaptions, then the covariance in each regime is calibrated using the ATM vol. levels from the
calibrated smile.
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Introduction
In the previous part we showed how under the market model of interest rates, the forward swap

can be successfully approximated by a lognormal diffusion, allowing swaptions to be priced consis-
tently with the market practice of using the Black (1976) pricing formula. The variance used in this
approximation was computed as a linear form on the covariance matrix of the forward rates, which
cast the calibration problem as that of finding a positive semidefinite matrix verifying a set of linear
constraints, in other words, solving a semidefinite program. Recent optimization techniques solve
these problems with very low practical complexity and excellent stability.

Here, we exploit some natural by-products of the calibration procedure which provide an ex-
cellent description of the solution sensitivity to a change in the market constraints. In fact, because
the algorithms used to solve the calibration problem jointly solve the problem and its dual, the sen-
sitivity of the optimal objective value is readily available as the dual solution to the calibration
program. Further analysis allows us to deduce in the same way the sensitivity of the calibrated
covariance matrix itself. We can, for example, compute the sensitivity of a particular swaption with
respect to another swaption price, or estimate the sensitivity of the entire calibrated matrix with
respect to a given change in market conditions. This completes the set of fast and stable algorithms
for calibrating the market model of interest rates by another set of equally fast and stable methods
for the model risk-management.

We then show how the calibration problem can be designed so that its solution is optimally
robust to a given change in market conditions. We detail various problem formulation for different
market movement models. Finally, we show how these same optimization techniques can be used
to efficiently solve the problem of managing the Gamma exposure of a basket portfolio, as it was
posed by Douady (1995).

The lognormal approximation for basket pricing dates back to Huynh (1994) and Musiela &
Rutkowski (1997). Brace et al. (1999) also tested the validity of its application to swaption pricing.
Two papers, Rebonato (1998) and Rebonato (1999), highlight the importance of jointly calibrating
the volatility and the correlation matrix. They also detail some of the most common non-convex
calibration techniques, based on the parametrization of the forward rates covariance factors on a
hypersphere. The idea of exploiting the dual solution to the approximate calibration problem to
improve hedging can be traced back to the work by Avellaneda, Levy & Paras (1995) and Avellaneda
& Paras (1996) on the equity market.

This part is organized around two key contributions:

• In a first chapter, we show how the dual solution to the calibration program directly provides
all the sensitivities of the calibrated covariance to small changes in market conditions. We
also show how to make the calibration optimally robust to these changes.

• In a second chapter, we write a primal-dual pair of semidefinite programs giving the upper
(or lower) bound on swaption prices that has a direct interpretation as a hedging program à la
Avellaneda & Paras (1996). We then revisit a related result of Romagnoli & Vargiolu (2000)
in the light of semidefinite programming.

The results we obtain here underline the key advantages of applying symmetric cone program-
ming methods to the calibration problem: besides their radical numerical performance, they nat-
urally provide some central results on the sensitivity and risk-management of the solution. They
also avoid the numerical errors in the sensitivity computations that were caused by the instability of
the classical non-convex calibration solution. This should greatly improve the pricing and hedging
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process of exotic interest rate derivatives by reducing the part of hedge portfolio rebalancing that
was only caused by the calibration program instability.



Chapter 5

Risk Management and Sensitivity
analysis

5.1 The generic calibration program

We start by recalling the basic results from part one. We know that for option pricing purposes, we
can approximate the forward swap by a lognormal process defined by:

dswap(s, T0, TN )
swap(s, T0, TN )

=
N∑
i=1

ω̂i,sγ(s, Tj − s)dWs (5.1)

where ω̂i is defined by:

ω̂i,t =
ωi(t)K(t, Ti)∑n
j=1 ωj(t)K(t, Tj)

which can be computed from the market data today. We can use the first order basket pricing ap-
proximation in Huynh (1994) and compute the price of a payer swaption starting at T with maturity
at TN and strike κ using the Black (1976) pricing formula:

Level(t, T, TN )
(
swap(t, T, TN )N(h) − κN

(
h−

√
VT

))
(5.2)

where

h =

(
ln
(
swap(t,T,TN )

κ

)
+ 1

2VT

)
√
VT

with swap(t, T, TN ), the value of the forward swap today and

VT =
∫ T

t

∥∥∥∥∥
N∑
i=1

ω̂i(t)γ(s, Ti − s)

∥∥∥∥∥
2

ds

=
∫ T

t
Tr (ΩtΓs) ds (5.3)

which is a linear form on the forward rates covariance. Having constructed Ωt and Γs ∈ SN such
that:

Ωt = ω̂ω̂ᵀ = (ω̂iω̂j)i,j∈[1,N ] 
 0

80
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and
Γs = (〈γ(s, Ti − s), γ(s, Tj − s)〉)i,j∈[1,N ] 
 0

which is the covariance matrix of the forward rates (or the Gram matrix of the γ(s, Ti− s) volatility
function defined above). We have here neglected a term coming from the volatility of the weights,
because as δK(t, Ti) << 1, we observe that this last term can be discarded without significant
precision loss and that the swaption can be priced as a basket with constant coefficients.

Our objective here is to show how Lagrangian duality will allow us to use the primal and dual
solutions produced by the solver to collect information on the sensitivity of the calibrated solution
to a change in the given market prices. For simplicity, we discretize the volatility function yearly
and make it piecewise constant. We start by quickly recalling the practical implementation of the
calibration program using the swaption pricing approximation detailed above. This is done by
discretizing in s the covariance matrix Γs. We note Sn the set of symmetric matrixes of size n× n.
We suppose that the calibration data set is made of m swaptions with option maturity TSk

written
on swaps of maturity TNk

− TSk
, with market volatility given by σk.

5.1.1 A simple example

Let S = maxk=1,...,m Sk and M be the maximum number of periods covered by all the input
instruments. In the very simple case where the volatility of the forwards is of the form γ(s, T−s) =
γ(T − s) with γ piecewise constant over intervals of length δ, the calibration problem becomes:

find X
s.t. Tr(ΩkX) = σ2

kTSk
for k = 1, ...,m

X 
 0
(5.4)

which is a semidefinite feasibility problem in the covariance matrix X ∈ SM (X 
 0 meaning
X p.s.d.). As above, σ2

kTk ∈ R+ is the Black (1976) cumulative variance of swaption k written
on swap(t, TSk

, TNk
) and Ωk =

∑Sk
j=1 δϕk,j with ϕk,j ∈ SM the rank one matrix with submatrix

ω̂kω̂
T
k starting at element (j, j) and all other blocks equal to zero. Note that ω̂k is here the vector of

weights associated to swaption k with ω̂k = (ω̂i,k)i=Sk,...,Nk
.

5.1.2 The general case

Here we show that for general volatilities γ(s, T −s), the format of the calibration problem remains
similar to that of the simple example above, except that X will be block-diagonal. In the general
non-stationary case where γ is of the form γ(s, T − s) and piecewise constant on intervals of size
δ, the expression of the market cumulative variance becomes

σ2
kTSk

=
TSk∑
i=0

δTr (Ωk,iXi)

where Ωk,i ∈ SM−i is a block-matrix with submatrix ω̂kω̂Tk starting at element (Sk − i, Sk − i)
and all other blocks equal to zero if Sk − i ≥ 0 and is zero otherwise. Calibrating the model to the
swaptions k = (1, ...,m) can then be written as the following semidefinite feasibility problem.:

find Xi i = i, ..., TM

s.t.
∑TSk

i=0 δiTr (Ωi,kXi) = σ2
kTk for k = 1, ...,m

Xi 
 0 for i = 0, ..., TS
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and the variables here are the matrixes Xi ∈ SM−i. We can write this general problem in the exact
same format used in the simple stationary case. Let X be the block matrix

X =


X1 0 . 0
0 . . .
. . . 0
0 . 0 XTM


then the calibration program can be written in the same format as (5.4):

find X
s.t. Tr(Ω̄kX) = σ2

kTk for k = 1, ...,m
X 
 0, X band-diagonal

(5.5)

except that Ω̄k and X ∈ SM−i are here ”block-diagonal”. We can also replace the equality con-
straints in (5.4) with Bid-Ask spreads. The new calibration problem is then written as the L.M.I.:

find X
s.t. σ2

Bid,kTSk
≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
for k = 1, ...,m

X 
 0

in the variable X ∈ SM , with parameters Ωk, σ
2
Bid,k, σ

2
Ask,k, TSk

. Let us note that we can rewrite
this problem as the L.M.I.:

find X

s.t. Tr

 Ωk 0 0
0 I 0
0 0 0

 X 0 0
0 U1 0
0 0 U2

 = σ2
Ask,kTSk

Tr

 Ωk 0 0
0 0 0
0 0 −I

 X 0 0
0 U1 0
0 0 U2

 = σ2
Bid,kTSk

for k = 1, ...,m

X,U1, U2 
 0

which is a standard form L.M.I. and can be summarized as

find X̃

s.t. Tr(Ω̃Ask,kX̃) = σ2
Ask,kTSk

Tr(Ω̃Bid,kX̃) = σ2
Bid,kTSk

for k = 1, ...,m
X̃ 
 0, X̃ block-diagonal

(5.6)

with X̃, Ω̃k ∈ S3M . Because of these transformations and to simplify the analysis, we will always
handle the stationary case with equality constraints in the following section, knowing that all results
can be directly extended to the general case (non-stationary covariance with Bid-Ask constraints) by
embedding them in a larger standard form semidefinite program. Furthermore, the common practice
of daily model recalibration makes the calibration of a model as close to stationary as possible a
central requirement to ensure the risk-management’s coherence.
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5.2 Semidefinite duality

We very briefly summarize here the duality theory for semidefinite programming. We refer the
reader to Nesterov & Nemirovskii (1994) orVandenberghe & Boyd (1996) for a complete analysis.
As we have seen in the previous section, the calibration problem can be written as a standard form
primal semidefinite program:

maximize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTSk
for k = 1, ...,m

X 
 0
(5.7)

in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTSk

∈ R+, where, for example, we
can set C as a target covariance matrix. For X 
 0, y ∈ R

m, we form the following Lagrangian:

L(X, y) = −Tr(CX) +
m∑
k=1

yk
(
Tr(ΩkX) − σ2

kTSk

)
= Tr

(
m∑
k=1

(ykΩk − C)X

)
−

m∑
k=1

ykσ
2
kTSk

and because the semidefinite cone is self-dual, we find that L(X, y) is bounded below in X 
 0 iff:

0 
m∑
k=1

ykΩk − C

hence the dual semidefinite problem becomes:

minimize −∑m
k=1 ykσ

2
kTSk

s.t. 0  (
∑m

k=1 ykΩk − C)
(5.8)

All modern solvers (see for example Sturm (1999)) produce both primal and dual solutions to this
problem as well as a certificate of optimality for the solution in the form of the associated duality
gap:

µ = Tr

(
X

(
m∑
k=1

ykΩk − C

))
which is an upper bound on the absolute error. We now show how this dual solution can be used for
risk-management purposes.

5.3 Sensitivity Analysis

Let us suppose that we have solved both the primal and the dual calibration problems above with
market constraints σ2

i and let us note Xopt and yopt the optimal solutions. Suppose also that the
market price constraints in the original calibration problem are modified by a small amount u ∈ R

m.
The new calibration problem becomes the following semidefinite program:

maximize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTk + uk for k = 1, ...,m
X 
 0
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in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTk ∈ R+ for k = 1, ...,m and if we

note popt(u) the optimal solution to the revised problem and assume that it is differentiable, we get
the sensitivity to a change in market condition as:

∂popt(0)
∂uk

= −yoptk (5.9)

where yopt is the optimal solution to the dual problem. As we will see below, this has various
interpretations depending on the objective function.

5.3.1 Sensitivity of price bounds

In the spirit of El Karoui & Quenez (1991) and El Karoui et al. (1998), let us suppose that the
market rate dynamics are exactly that of the Libor Market Model above. In this case, the ”real”
prices of caps and swaptions are given by an unknown covariance matrix V r. We observe a set of
cap/swaption prices given by their Black-Scholes implied volatility σk. Given those prices, we are
interested in computing the maximum and minimum price of another swaption. To do this, we can
set the objective matrix C to be an instrument matrix Ω0 and solve the calibration problem. We
obtain the upper (resp. lower) bound on another swaption price as a semidefinite program, solving
for the covariance matrix that maximizes (resp. minimizes) the objective:

pup = max Tr(Ω0X)
s.t. Tr(ΩkX) = σ2

kTk + uk for k = 1, ...,m
X 
 0

and
pdown = min Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk + uk for k = 1, ...,m

X 
 0

in the variableX ∈ SM with parameters Ωk, C ∈ SM and σ2
kTk ∈ R+, for uk = 0 and k = 1, ...,m.

In this case we can directly compute the sensitivity of the product’s price bounds to a change
in the cap/swaption price data. As above, let us suppose that the dual solutions to the Max. (resp.
Min.) problems are given by yup and ydown and that the market prices have been modified by some
small quantities (ui) ∈ R

M . We can compute (at least formally here) the sensitivity of the upper
and lower bounds as:

∂poptup (0)
∂uk

= −yoptup,k and
∂poptlow(0)
∂uk

= −yoptlow,k (5.10)

respectively. In fact, as we will now show, the dual solution allows to compute the sensitivity of
the optimal covariance matrix itself to a change in market conditions. Besides giving a rigorous
computation of the above sensitivities, we will also be able to compute the exposure of a given
product to actual market scenarios.

Remark 28 Intuitively, we expect the dual solution to represent the coefficients of a hedging port-
folio. As we detail in a the next section, this is indeed the case and the yoptk represent the optimal
number of swaptions k to hold the superreplicating portfolio defined in Avellaneda & Paras (1996).

5.3.2 Solution sensitivity

We now study the variation in the matrix solution itself, given a small change in the market condi-
tions.
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The Newton step

Here we study the impact of a change in market conditions on the solution itself. Let us suppose
that we have solved the general calibration problem:

maximize Tr(CX)
s.t. Tr(ΩkX) = σ2

kTk + uk for k = 1, ...,m
X 
 0

(5.11)

X ∈ SM with parameters Ωk, C ∈ SM and σ2
kTk ∈ R+, for uk = 0 and k = 1. Here C is, for

example, an historical estimate of the covariance matrix).

Notation 29 We introduce here a set of standard semidefinite programming notations. Let us call
Xopt and yopt the primal and dual solutions to the above problem. We note

Zopt =

(
C −

M∑
k=1

yoptk Ωk

)

the dual solution matrix. As in the paper by Alizadeh et al. (1998), we also set the symmetric
Kronecker product:

(P �Q)K :=
1
2
(
PKQT +QKP T

)
As in (4.7), we note A the linear operator defined by:

A : SM −→ R
m

X �−→ AX := (Tr (AiX))i=1,...,m

and its dual

A∗ : R
m −→ SM

y �−→ A∗y :=
m∑
i=1

yiΩi

We will now use the results in Todd & Yildirim (1999) to compute the impact ∆X on the
solution of a small change in the market price data (uk)k=1,..,m, i.e. given u small enough we
will compute the next Newton step ∆X . Each solver implements one particular search direction to
compute this step and some of the most common ones are the A.H.O. search direction based on the
work by Alizadeh et al. (1998), the H.K.M. direction by Helmberg, Rendl, Vanderbei & Wolkowicz
(1996), Kojima, Shindoh & Hara (1997) and Monteiro (1997) and finally the N.T. direction detailed
in Nesterov & Todd (1997) and Nesterov & Todd (1998). Depending on the choice of the search
direction, we define a matrix P such that:

• P = I for the A.H.O. direction

• P = Zopt for the H.K.M. direction

• P =
(
Xopt 1

2

(
Xopt 1

2ZoptXopt 1
2

)−1
2
Xopt 1

2

)−1

for the N.T. direction
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we can then define the linear operators:

E = Zopt � P and F = PXopt � I

and their adjoints
E∗ = Zopt � P and XoptP � I

and provided the strict feasibility and nonsingularity conditions in §3 of Todd & Yildirim (1999)
hold, we can compute the Newton step ∆X as:

∆X = E−1FA∗
[(
AE−1FA∗)−1

u
]

(5.12)

and we know that this will lead to a feasible pointXopt+∆X 
 0 iff the market variation movement
u is such that: ∥∥∥(Xopt

)− 1
2

(
E−1FA∗

[(
AE−1FA∗)−1

u
]) (

Xopt
)− 1

2

∥∥∥
2
≤ 1 (5.13)

We remark that if A,B ∈ SMcommute, with eigenvalues α, β ∈ R
M and common eigenvectors vi

for i = 1, ...,M , then A � B has eigenvalues (αiβj + αjβi) for i, j = 1, ...,M and eigenvectors
viv

T
i if i = j and (vivTj + vjv

T
i ) if i �= j for i, j = 1, ...,M . The matrix in (5.12) produces a direct

method for updatingX which we can now use to compute price sensitivities for any given portfolio.
This illustrates how a semidefinite programming based calibration allows to test various realistic
scenarios at a minimum numerical cost by improving on the classical non-convex methods that
either had to ”bump the market data and recalibrate” the model for every scenario with the risk of
jumping from one local optimum to the next, or simulate unrealistic market movements by directly
adjusting the covariance matrix. One key remaining question is that of stability: the calibration
program in (5.4) has a unique solution, but this optimum can be very unstable and the matrix in
(5.12) badly conditioned. In the spirit of the work by Cont (2001) on volatility surfaces, we now
look for a way to stabilize the calibration result.

5.4 Robustness

The previous sections were focused on how to compute the impact of a change in market conditions.
Here we will focus on how to anticipate those variations and make the calibrated matrix optimally
robust to a given set of scenarios. Depending on the way the perturbations are modelled, this
problem can remain convex and be solved very efficiently. Let us suppose here that we want to
solve the calibration problem on a set of market Bid-Ask spreads data defined by the following
L.M.I.:

find X
s.t. σ2

Bid,kTSk
≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
for k = 1, ...,m

X 
 0

in the variable X ∈ SM with parameters Ωk, C ∈ SM and σ2
Bid,kTSk

, σ2
Ask,kTSk

∈ R+ for k =
1, ...,m. In the absence of any information on the uncertainty in the market data, we can simply
maximize the distance between the solution and the market bounds to ensure that it remains valid in
the event of a small change in the market variance input. As the robustness objective is equivalent to
a maximization of the distance between the solution and the constraints (or Chebyshev centering),
the input of assumptions on the movement structure is equivalent to a choice of norm. Without any
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particular structural information on the volatility market dynamics, we can use the l∞ norm and the
calibration problem becomes:

maximize t
s.t. σ2

Bid,kTSk
+ t ≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
− t for k = 1, ...,m

X 
 0

or, using the l1 norm instead:

maximize
∑m

i=1 tk
s.t. σ2

Bid,kTSk
+ tk ≤ Tr(ΩkX) ≤ σ2

Ask,kTSk
− tk for k = 1, ...,m

X 
 0

The problems above optimally center the solution within the Bid-Ask spreads, which makes it robust
to a change in market conditions given no particular information on the nature of that change. In the
same vein, Ben-Tal, El Ghaoui & Lebret (1998) also show how to design a program that is robust
to a change in the matrixes Ωk. However, because the matrixes Ωk are computed from ratios of
zero-coupon bonds, their variance is negligible compared to that of σ2

k.
Suppose now that V is a statistical estimate of the daily covariance of the changes in σ2

kTSk

(the mid-market volatilities in this case) and let us assume that these volatilities have a Gaussian
distribution, we adapt the method used by Lobo, Vandenberghe, Boyd & Lebret (1998) for robust
L.P. Let η be a given confidence level, we require that each price constraint should hold with a
probability exceeding η. We suppose that the matrix V is of full rank. We can then construct the
following program:

maximize Tr(CX)
s.t. Tr (ΩkX) − σ2

kTSk
= vk for k = 1, ...,m∥∥∥V − 1

2 v
∥∥∥
∞

≤ Φ−1(µ)

X 
 0

where ‖·‖∞ is the l∞ norm and Φ(x) is given by

Φ(x) = 1 − 1√
2π

∫ x

−x
exp(−u2/2)du

This ensures that each price constraint will hold with a probability exceeding η. There is no guar-
antee that this program is feasible and we can solve instead for the best confidence level by forming
the following program:

minimize t
s.t. Tr (ΩkX) − σ2

kTSk
= vk for k = 1, ...,m∥∥∥V − 1

2 v
∥∥∥
∞

≤ t

X 
 0

The optimal confidence level is then η = Φ(t) and ”centers” the calibrated matrix with respect to
the uncertainty in σ2

kTSk
. This is a symmetric cone program, i.e. a program mixing LP, second-

order and semidefinite cone constraints, and can be solved very efficiently using the code by Sturm
(1999) for example.



Chapter 6

Hedging

Here, we show how the programs solved above can be used to build superreplicating portfolios, pro-
viding an upper and lower hedging prices in the sense of El Karoui & Quenez (1991) and El Karoui
& Quenez (1995). An efficient technique for computing those price bounds with general non-convex
payoffs on a single asset with univariate dynamics was introduced by Avellaneda et al. (1995) and
we adapt it here to the approximate basket pricing problem. Recent work on this topic by Romagnoli
& Vargiolu (2000) provided closed-form solutions for the prices of exchange options and options
on the geometrical mean of two assets. Gozzi & Vargiolu (2000) applied this technique to caps and
Floors.

We start from the approximate pricing PDE to compute the price of a particular option and use
it to compute arbitrage bounds on the price of a basket using the method developed by Avellaneda
et al. (1995) in the one-dimensional case. We then provide approximate (to within 1-2%) closed-
form solutions for these arbitrage bounds based on the semidefinite programs detailed in the last
section and show how one can built an optimal hedging portfolio in the sense of Avellaneda & Paras
(1996), using the derivative securities from the calibration set.

Finally, we show how these same optimization techniques can also be used to efficiently solve
the problem of managing the Gamma exposure of a basket portfolio, as it was posed by Douady
(1995).

6.1 The approximate basket pricing PDE

We suppose that the market is composed of n risky assets Sit , i = 1, . . . , n plus one riskless asset
Mt. We assume that these processes are defined on a probability space (Ω, F, P ) and adapted to a
filtration {Ft, 0 ≤ t ≤ T}. We suppose that there exists a forward martingale measure Q as defined
in El Karoui et al. (1995), which can be either the Level forward market for swaption pricing or
the standard forward measure of maturity T in the general basket case. For simplicity we will
note F it the forward rates and Fωt the forward swap (which in what follows could be any basket of
forwards). We note γi = γ(t, Tj− t) and for simplicity, we drop the time dependency the extension
of what follows to the general case being straightforward. We recall the simple market definition in
Avellaneda & Paras (1996). In this market, the dynamics of the forwards F it are given by:

mt = 1
dF is = F isγ

idWQ
t

(6.1)

whereWt is a d-dimensionalQ-Brownian motion adapted to the filtration {Ft} and γ =
(
γi
)
i=1,...,n

∈
R
n×d is the volatility matrix.

88
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Definition 30 A portfolio process {∆t ∈ R
n, 0 ≤ t ≤ T} is a bounded adapted process represent-

ing the quantity of each asset held at time t. The value of a portfolio is then given by Πt =
mt + ∆tF

i
t . Given an initial value Π0, a portfolio is said to be self-financing iff its dynamics

are given by:
dΠt = ∆tdF

i
t (6.2)

We study the pricing of an option on a basket of forwards given by

Fωt =
n∑
i=1

ωiF
i
t

where ω = (ωi)i=1,...,n ∈ R
n. The terminal payoff of this option at maturity T is then computed as:

hω,k (FωT ) =

(
n∑
i=1

ωiF
i
T − k

)+

for some strike price K ≥ 0. We recall the basket approximation result
The dynamics of the basket of forwards can be approximated by the process:

dFωs =
n∑
i=1

ω̂i,tγ
idWs (6.3)

where ηs ∈ R
n, t ≤ s ≤ T, is computed from the market data today and ω̂i is defined by:

ω̂i =
ωiF

i
t∑n

i=1 ωiF
i
t

which can also be computed from the market data today.

6.2 Quasi-static arbitrage bounds

The approximation formula above allows the pricing of baskets using the Black & Scholes (1973)
formula with a variance that is a linear function constructed from the variance parameter σTσ and
a matrix that can be computed from the market data today. Because a set of price calibration
constraints then simply becomes a set of linear constraints on the covariance matrix, the set of
market calibrated matrixes is the feasible set of a Linear Matrix Inequality. It then becomes possible
to investigate upper and lower bound on the variance of a particular basket given the price of a set of
other baskets and vanilla options as well as design hedging portfolio using the dual program. In this
section, we show that this produces dynamic arbitrage bounds similar to that found in El Karoui &
Quenez (1991) and Avellaneda et al. (1995) and construct an optimal mixed dynamic - static hedge
(hence the term quasi-static), where a static hedging portfolio is constructed using the calibration
instruments and the residual risk is hedged dynamically.

6.2.1 Approximate bounds

As in the last section, let us quickly recall how we can maximize the price of a particular swaption
given the market data σ2

kTk for k = 1, ...,M by solving a semidefinite program. Suppose we have a
set of market prices represented by volatilities σi, i = 1, . . . ,M for basket options with coefficients
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ωk ∈ R
Nk , k = 1, . . . ,M , we can compute an upper bound on the price of another basket ω0 by

solving the following program:

maximize σ2
maxT = Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk for k = 1, ...,M

X 
 0
(6.4)

Having constructed Ωt and Γs ∈ SN such that:

Ωt = ω̂ω̂T = (ω̂i,0ω̂j,0)i,j∈[1,N ] 
 0

and
X =

(
γiTγj

)
i,j∈[1,N ]


 0

As we have seen in the first section, we can then compute an upper bound on the price of the
option of strike κ using the Black & Scholes (1973) formula:

Fωt N(h) −KN
(
d− σmax

√
T
)

where

d =

(
ln
(
Fω

t
κ

)
+ 1

2σ
2
maxT

)
σmax

√
T

When the volatilities γi are constant, this appears directly in the Black-Scholes-Barenblatt equation.

Proposition 31 Suppose that the volatilities γi are constant. The price obtained by solving the
program in (6.4) is an approximate arbitrage upper bound on the basket Call price given the market
data (σi, ωi) for i = 1, . . . , k.

Proof. For a given volatility parameter γ, we know (see for example Karatzas & Shreve (1991))
that the approximate Call price follows the PDE:

∂C(x,t)
∂t + 1

2

∥∥∑n
i=1 ω̂i,0γ

i
∥∥x∂2C(x,t)

∂x2 = 0

C(x, T ) = (x− k)+

As above, we can rewrite: ∥∥∥∥∥
n∑
i=1

ω̂i,0γ
i

∥∥∥∥∥ = Tr(Ω0X)

and we know from Avellaneda et al. (1995) that the upper bound C(x, t) on the price of a basket
Call must verify the Black-Scholes-Barenblatt equation:

∂C(x,t)
∂t + 1

2 maxTr(ΩkX)=σ2
kTk

Tr(Ω0X)x∂
2C(x,t)
∂x2 = 0

C(x, T ) = (x− k)+

which is again 
∂C(x,t)
∂t + 1

2σmaxx
∂2C(x,t)
∂x2 = 0

C(x, T ) = (x− k)+
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where σmax is the optimum value of the program in (6.4).

As in El Karoui et al. (1998) and Avellaneda et al. (1995), a superreplicating strategy is then
obtained by maintaining a self-financed dynamic portfolio composed of cash and delta shares, where
the delta is computed using the volatility found by solving the semidefinite program above. Hence,
we set ∆t = ∂Cσmax(St,t)

∂x to be the amount of basket underlying in the replicating portfolio at time
t. As in Avellaneda & Paras (1996), we can improve that dynamic hedge by adding a static portfolio
of derivatives and solve the following (formal) program:

Price = Min {Value of static hedge + Max (PV of residual liability)}
Because of the sub-additivity of the above program with respect to payoffs, we expect this diversifi-
cation of the volatility risk to bring down the total cost of hedging. Suppose we have a set of market
prices Ci, i = 1, . . . ,M for basket options with coefficients ωi ∈ R

n, i = 1, . . . ,M and payoffs

hωi,Ki(FT ) =
(∑

j ωi,jF
j
T − kj

)+
where FT =

(
F iT

)
i=1,...,n

.

Remark 32 It is important to understand that the two parts of the PV equation above are not
computed using the same pricing methodology. One, the Value of the static hedge is a static portfolio
of instruments quoted by the market today, the other, the PV of the residual liability, is computed
as the value today of a self-financing dynamic portfolio that superreplicates the residual liability.
This last computation is subject to much stronger assumptions on the market liquidity than the first
one. Despite this apparent inhomogeneity in method, the Price computed above still accurately
reflects the behavior of a market operator who prices his products by calibrating on a liquid set of
instruments that will also constitute his hedge and looks for the most conservative set of parameters.

As more and more time dependence and flexibility is allowed in the model, the price obtained
becomes closer and closer to the lower static hedging bound. This indicates that although market
operators use prices obtained from a dynamic hedging methodology, the observed tendency to push
for time inhomogeneity and less parametric models tends to produce prices that are more conser-
vative and closer to static hedging bounds.

We can apply the above program to basket pricing and solve for the optimal mixed static-
dynamic hedging portfolio as in Avellaneda & Paras (1996).

Proposition 33 The approximate optimal hedging portfolio in the sense of Avellaneda & Paras
(1996) is composed of a static part with λoptk baskets with payoffs hωk,Kk

(FT ) and a dynamic

hedging strategy with ∆k
t = ∂BS0(Tr(Ω0Xopt))

∂Fk,0
, having computed λoptk and Xopt from:

λoptk = −yoptk

∂BS0 (Tr(Ω0X)) /∂v
∂BSk (Tr(ΩkX)) /∂v

where Xopt and yoptk are the primal and dual solutions to the semidefinite program:

maximize σ2
maxT = Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk for k = 1, ...,M

X 
 0

Proof. We can write the portfolio optimization program as:

inf
λ∈RM

{
m∑
k=1

λkCk +

(
sup
P
EP

[
hω,k(FT ) −

m∑
k=1

λkhωk,Kk
(FT )

])}
(6.5)
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where P varies within the set of equivalent martingale measure. We can rewrite the above problem
as:

inf
λ

{
sup
P

(
EP [hω,0(FT )] −

m∑
i=1

λk
(
EP [hωk,Kk

(FT )] − Ck
))}

where we can recognize the optimum hedging portfolio problem as the dual of the maximum price
problem above:

maximize EP [hω,K(FT )]
s.t. EP [hωi,Kk

(FT )] = Ck for k = 1, ...,m
We can find an approximate solution by solving the following problem:

maximize BS0(Tr(Ω0X))
s.t. BSk (Tr(ΩkX)) = Ck for k = 1, ...,m

X 
 0

and its dual:

inf
λ

{
sup
X�0

(
BS(Tr(Ω0X)) −

m∑
k=1

λk (BS (Tr(ΩkX)) − Ck)

)}
where, for simplicity, we have noted BSk(v) the Black & Scholes (1973) price of basket k as
a function of the cumulative variance σ2

kTk. The primal problem, after we write it in terms of
variance, becomes the following semidefinite program:

maximize σ2
maxT = Tr(Ω0X)

s.t. Tr(ΩkX) = σ2
kTk for k = 1, ...,m

X 
 0

If we note yopt ∈ R
m the solution to the dual of this last problem:

minimize
∑m

k=1 ykσ
2
kTk

s.t. 0  ∑m
k=1 ykΩk − Ω0

We know (see Vandenberghe & Boyd (1996) for example) that the Karush-Kuhn-Tucker conditions
on the primal-dual semidefinite program pair above can be written:

0  ∑m
k=1 ykΩk − Ω0

0 =
∑m

k=1 ykΩkX − Ω0X
Tr(ΩkX) = σ2

kTk for k = 1, ...,m
0  X

We can compare those to the KKT conditions for the price maximization problem:
Z = ∂BS0(Ω0X)

∂v Ω0 +
∑m

k=1 λk
∂BSk(ΩkX)

∂v Ωk

XZ = 0
BSk (Tr(ΩkX)) = Ci for k = 1, ...,m
0  X,Z

with dual variables λ ∈ R
m and Z ∈ SM . An optimal dual solution for the price maximization

problem can then be constructed from y∗, the optimal dual solution of the semidefinite program on
the variance as:

λoptk = −yopti

∂BS0 (Tr(Ω0X)) /∂v
∂BSk (Tr(ΩkX)) /∂v

and this gives the composition of the optimal static hedging portfolio in the baskets (ωk,Kk).
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6.2.2 The exact problem

The bounds found in the section above are only approximate solutions to the superreplicating prob-
lem. Although the relative error in this approximation is known to be about 1-2%, it is interesting
to notice that although it does not remain completely tractable, the exact problem shares the same
optimization structure as the approximate one. In fact, we will see below that the optimization prob-
lem in the exact Black-Scholes-Barenblatt equation retains most of the structure of the approximate
one. Let us recall the results in Romagnoli & Vargiolu (2000). If we note C(Ft, t) the super-
replicating price of a basket option, then C(Ft, t) is the solution to the following multidimensional
Black-Scholes-Barenblatt equation:

∂C(x,t)
∂t + 1

2 maxγ∈Λ Tr
(
∂2C(x,t)
∂x2 (x̄γ)T (x̄γ)

)
= 0

C(x, T ) = (
∑n

i=1 ωix− k)+

where x̄ is the diagonal matrix formed with the components of x.
We can create a superreplicating strategy by dynamically trading in a portfolio composed of

∆i
t = ∂C

∂xi
(t, F it ) of each asset in the basket. The volatility optimization problem embedded in the

BSB equation above has been studied by Romagnoli & Vargiolu (2000).
We can rewrite it in a format that is closer to that of the approximate problem above and it

becomes: 
∂C(x,t)
∂t + 1

2 maxΓ∈Λ Tr
(
x̄∂

2C(x,t)
∂x2 x̄Γ

)
= 0

C(x, T ) = (
∑n

i=1 ωix− k)+

where we have noted Γ = γγT the model covariance matrix. If the set Λ is given by the intersection
of the semidefinite cone (the covariance matrix has to be p.s.d.) with a polyhedra (for example
approximate price constraints, sign constraints or bounds on the matrix coefficients, ...), then the
embedded optimization problem becomes a semidefinite program:

maximize Γ∈Λ Tr
(

Γx̄
∂2C(x, t)
∂x2

x̄

)
on the feasible set Λ. Under the conditions above, the general upper-lower hedging price is then
computed by solving: 

∂C(x,t)
∂t + 1

2 maxΓ∈Λ Tr
(
x̄∂

2C(x,t)
∂x2 x̄Γ

)
= 0

C(x, T ) = (
∑n

i=1 ωix− k)+

where the embedded problem is a semidefinite program. This is simply a rearrangement of the
equation in Romagnoli & Vargiolu (2000) where we have parametrized the embedded optimization
problem using the covariance matrix.

We recover the same optimization problem as in the approximate solution found in the section
above, the only difference being here that the solution to the exact general problem might not be
equal to a Black-Scholes price. This gives a convex (and much simpler) formulation of the embed-
ded problem in Romagnoli & Vargiolu (2000).
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6.3 Optimal Gamma Hedging

We study here the problem of optimally adjusting the Gamma of a portfolio using only options on
single assets. This problem is essentially motivated by a difference in liquidity between the vanilla
and basket option markets, which makes it impractical to use some baskets in the hedging portfolio.
Suppose we have an initial portfolio with a Gamma sensitivity matrix given by Γ in a market with
underlying assets xi, i = 1, . . . n. We want to hedge this position with yi vanilla options on each
single asset xi with Gamma given by γi We assume that the portfolio is maintained delta-neutral
at all times using the appropriate proportions of each particular stock. A small perturbation of the
stock price will induce a change in the portfolio price given by:

∆P (X + ∆X) = P (X) +
1
2
∆STΓ(y)∆S

where Γ(y) = Γ + diag(γ)y, with diag(γ) the diagonal matrix with components γi. As in Douady
(1995), our objective is to minimize in y the maximum possible perturbation given by:

max
∆S∈E

∣∣∆STΓ(y)∆S
∣∣

where E is the ellipsoid defined by

E =
{
X ∈ R

n|XTΣX = 1
}

with Σ = (cov(xi, xj))i,j=1,...,n

the covariance matrix of the underlying assets. This is amounts to minimizing the maximum eigen-
value of the matrix ΣΓ(y).

Proposition 34 The optimum Gamma hedging portfolio can be solved by the following semidefinite
program:

minimize t
subject to −tI  ΣΓ + Σdiag(γ)y  tI

Proof. Because we know that ΣΓ + Σdiag(γ)y  tId⇐⇒ maxk λk(ΣΓ + Σdiag(γ)y) ≤ t,
hence in the above problem we have maxk |λk(ΣΓ + Σdiag(γ)y)| = ‖ΣΓ + Σdiag(γ)y‖2 ≤ t.

This can be solved very efficiently using solvers such as the one by Sturm (1999). We can
balance this with constraints on the cost of the hedge. Suppose that there are proportional transaction
costs associated with trading in the vanilla option on xi given by ki |yi| for some ki ≥ 0. The
problem becomes is a symmetric cone program given by:

minimize t0 + α
∑n

i=1 kiti
subject to −t0I  ΣΓ + Σdiag(γ)y  t0I

−ti ≤ yi ≤ ti

and can also be solved using the code by Sturm (1999). The parameter α describes the relative
importance of minimizing the cost of the hedge compared to minimizing the gamma.

6.4 Static hedging

The objective of this section is to provide an additional piece in the calibration toolbox that this
work is meant to create. As the model itself is allowed to be significantly more flexible by letting
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the variance covariance matrix vary among the full set of semidefinite positive matrixes instead of
the rank one or two matrixes, an important number of additional swaptions can be incorporated in
the calibration program. In practice, this has the direct effect of reducing the number of times when
a swaption cannot be incorporated into the calibration set because it makes the problem infeasible
(this would qualify as an arbitrage if the market was following the dynamics given by the LIBOR
market model). The objective of the section that follows is to further reduce the frequency of such
problems by detecting the swaption prices that are not statically-arbitrage free (due to a data error
or a false extrapolated input from the volatility stripping) and eliminate them from the calibration
set. The bounds obtained here will of course be much wider than the one discussed trough dynamic
arbitrage in the previous chapters, but they still provide some structural insights into the relative
price structure of caps and swaptions.

The classical setup that has been formulated by Black-Scholes Black & Scholes (1973) and Mer-
ton Merton (1973) computes the unique price of an option as the price today of a dynamic portfolio
strategy that perfectly replicates the option payoff at maturity. This ”dynamic hedging” approach
relies of course heavily on the hypothesis that the markets are complete and frictionless, i.e. that
traders can instantaneously adjust their hedging portfolio at no cost and perfectly replicate any con-
tingent claim. This is of course not verified in reality but the Black-Scholes hedging procedure
performs sufficiently well in practice to make the (dynamic) arbitrage-free price of a product a fun-
damental reference (see for example El Karoui et al. (1998)). As we have already seen in a previous
section, if the markets are incomplete and not all payoffs are attainable, the arbitrage argument does
not provide a unique price but rather upper and lower bounds inside of which the absence of arbi-
trage is guaranteed. Those bounds correspond to the price of a dynamic strategy that almost surely
dominates (resp. is dominated by) the payoff of the contingent claim (see El Karoui & Quenez
(1991), El Karoui & Quenez (1995) or Karatzas & Shreve (1998)). Within this price interval, the
choice of a particular trading price is defined by further assumptions on the agent preferences (Davis
(1994) or Hodges & Neuberger (1989)).

All the pricing and hedging methods above suppose that it is possible to form a dynamic hedging
portfolio and provide precise constraints on contingent claims prices given that market are complete
and frictionless. In this paper, we are interested in the pricing results that can be obtained with a very
minimum set of assumptions on the market setup, hence we will explore the information that can
be inferred from the market by static arbitrage instead of dynamic ones. We call static arbitrage an
arbitrage that can be realized by investing in a portfolio at a particular time and trading at only a few
dates in the future (typically two here). The static arbitrage arguments produce pricing and hedging
results that are much more robust to market imperfection or in other words produce much harder
price bounds which are wider than their dynamic counterparts. The objective of this approach is thus
more to give a reliable reference tool in the analysis of the relative structure of market prices rather
than a pricing methodology. Of course this static arbitrage approach can be seen as a particular
case of the dynamic hedging methodology with an additional restriction on the intensity of trading,
however the theory behind dynamic arbitrage does not allow the addition of direct restrictions on
the trading intensity in a tractable way. The setup we present here is thus adapted to accommodate
these restrictions.

The idea of inferring information from option prices dates back at least to Breeden & Litzen-
berger (1978) and was adapted to a diffusion model à la Black-Scholes by Dupire (1994), both these
papers suppose that a continuum of option prices is observed. More recently Edirisinghe, Naik &
Uppal (1993) use a linear programming approach to compute the upper and lower hedging prices
of European contingent claims in a dynamic framework. Jackwerth & Rubinstein (1996) solve the
problem of computing minimum entropy distributions from market data. Laurent & Leisen (2000)



CHAPTER 6. HEDGING 96

define the necessary and sufficient conditions on the prices of a set of European Options for the ab-
sence of dynamic arbitrage. In a paper that is focused on moment constraints under the risk-neutral
probability, Bertsimas & Popescu (2002) solve the same problem in a one-dimensional framework
and propose an approximate solution based on a relaxation of the infinite dimensional problem1.

In this section, we directly deduce the conditions for the absence of static arbitrage by adapting
the setup in Edirisinghe et al. (1993) and Laurent & Leisen (2000), we then extend these results to
options on a basket of assets. Our basic market price information set will be composed of individual
assets and some options of different strikes and maturities written on those assets. We use the
information inferred from this set of instruments to compute static arbitrage price bounds on other
European contingent claims. In the case where a static arbitrage strategy exists, we compute the
corresponding portfolio as the solution to the dual problem. We also study the static arbitrage
conditions on option prices in the presence of transaction costs and we describe how these results
can be extended to some of the classical dynamic, continuous-time models. Our key argument will
be that the correct pricing of ”butterfly” and ”calendar” spreads (see Merton (1973), this will be
further detailed below) together with a few additional linear constraints is a necessary and sufficient
condition for the absence of static arbitrage between European options.

We start by recalling the classical one-dimensional result and we then extend it to basket options.

6.4.1 Necessary conditions

Let us note St the price process of a given asset and let C(K,T ) be the price of an European Call
option written on this asset with strike K and maturity T . Suppose that we are given the market
price of a set of such options:

C(Ki, Ti) = pi for i = 1, ...,M

In this section we will derive the two necessary conditions on this set of Call prices that preclude
the existence of static arbitrage. Following the ideas in Merton (1973) and Laurent & Leisen (2000),
these conditions are derived from the pricing of two basic trading strategies.

The ”butterfly” spread

A butterfly spread is a portfolio of three call options with a common maturity date T . If we note
K1,K2,K3 the strike prices of the options, if K1 < K3 we can form a butterfly spread by buying
one of each options at strikeK1 andK2 and selling short two options at a strikeK2 = (K1+K3)/2.
If ST is the value of the underlying asset at time T, the payoff at maturity T of the butterfly spread
is then given by:

(ST −K1)+ − 2(ST −K2)+ + (ST −K3)+

Because the payoff at maturity of this product is always positive, its price at time zero must also be
positive to avoid arbitrage, hence we must have:

C(K1, T ) − 2C(K2, T ) + C(K3, T ) ≥ 0 for T > 0

if the market data is made of a smooth continuum of Call prices, we can rewrite the constraint above
as:

∂2C(K,T )
∂K2

≥ 0 for T > 0 (6.6)

in other words, the static arbitrage free pricing of the butterfly spreads imposes that the Call prices
be convex with respect to the strike price.

1Note that both Laurent & Leisen (2000) and Bertsimas & Popescu (2002) do not mention the lower bound constraint
C(K, T ) ≥ S0 − B(0, T )K because their static market does not always include the forward.
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The ”calendar” spread

We form a calendar spread as a portfolio of two options with a common strike K. If we note T1, T2

the option maturities, with T1 < T2, we can form a calendar spread by buying the Call with maturity
T2 and selling short the Call with maturity T1.

Following the ideas of Merton (1973), let us suppose now that C(K,T1) > C(K,T2). We can
”invest” in a calendar spread at time zero and receive a strictly positive cash flow. At time T1, if
the asset price is greater than the strike K, we exercise the Call, if not, we do nothing. We carry all
proceedings up to maturity T2, if for simplicity we suppose that interest rates are zero, this generates
a payoff of:

(St+1 −K)+ − 1{St>K}(St+1 −K) ≥ 0

and this strategy constitutes an arbitrage (strictly positive cash flow at date zero, zero cash flow at
time T1, positive cash flow at time T2), we can conclude that we must have:

C(K,T1) < C(K,T2)

or again, with a smooth continuum of Calls:

∂C(K,T )
∂T

≥ 0 for K > 0 (6.7)

and as the above strategy involves only trading at two dates, we show that the static arbitrage free
price of Call options must be increasing with maturity.

Convex conditions

For simplicity we assume again that a smooth continuum of Calls C(K,T ) is observed from the
market and we only add the trivial condition that Call prices be decreasing with respect to strike,

Proposition 35 The necessary conditions for the absence of static arbitrage become:

C(K,T ) ≥ S0 −B(0, T )K
C(K,T ) nondecreasing in T
C(K,T ) convex, nonincreasing in K
C homogeneous of degree one

Proof. See Laurent & Leisen (2000), except for the omitted condition C(K,T ) ≥ S0 −
B(0, T )K.

Because the set of Call prices verifying these constraints is the intersection of three convex sets
(both the set of decreasing and the set of convex functions are convex cones), it must be convex, the
cone property is simply a direct consequence of the invariance with respect to a change of numeraire.

6.4.2 Non-parametric bounds on the price of baskets

We can now exploit the two conditions above to find price bounds on European contingent claims
that are not priced by the market. From the results above, we know that if a contingent claim’s price
falls out of these bounds there is an arbitrage and we can form a static portfolio to take advantage of
it. In fact, we can extend these results to basket options and give necessary and sufficient conditions
for the absence of static arbitrage between baskets. Let us start by showing the result with a single
maturity date T .
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And as above, the no arbitrage condition between options of different maturity dates is equiva-
lent to the correct pricing of calendar spreads. This allows us to formulate the general result on the
absence of static arbitrage between basket Call options.

Proposition 36 For a fixed maturity T > 0, let us note C(ω, T,K) with ω ∈ R
n and K ∈ R, the

price today of a Call basket option on the assets Sit , i = 1, ..., n with payoff:(
n∑
i=1

ωiS
i
T −K

)+

then there are no static arbitrage opportunities iff the function C(ω, T,K) : R
n×R → R

+ verifies:

C(ω, 0, T ) = ωTSt
C(ω,K, T ) ≥ ∑n

i=1 ωiS
i
0 −B(0, T )K

C(ω,K, T ) convex in (ω,K) , nonincreasing in K
C(ω,K, T ) nondecreasing in ω, nonincreasing in K
C(ω,K, T ) nondecreasing in T
C(ω,K, T ) homogeneous of degree one in (ω,K)

where B(0, T ) is the price of a zero coupon bond with maturity T , as quoted by the market today.

We now notice that the program above can be solved exactly.

Proposition 37 The infinite program above can be discretized exactly into the following program:

vred(D) = min p0

s.t. 〈gi, (ωj ,Kj) − (ωi,Ki)〉 ≤ pj − pi for i, j = 0, ..., k
gi,j ≥ 0, gi,n+1 ≤ 0 for i = 0, ..., k and j = 1, ..., n
〈gi, (ωi,Ki)〉 = pi for i, j = 0, ..., k

(6.8)

which is a finite L.P. in the variables p0 ∈ R+ and gi ∈ R
n+1 for i = 0, ..., k.

Proof. We first notice that as a discretization of the infinite program, the finite L.P. will compute
a lower bound on the its optimal value. Let us now show that this lower bound is actually attained.
If we note z∗ =

[
p∗0, g∗T0 , . . . , g∗Tk

]T
the optimal solution to the LP problem above and if we define:

s(x) = max
i=0,...,k

{p∗i + 〈g∗i , x− xi〉}

s(x) verifies
s(xi) = pi, i = 1, . . . , k

and, by construction, s(x0) attains the lower bound p0 computed in the finite L.P.. Because s(x)
is convex as the pointwise maximum of affine functions and is piecewise affine with gradient gi,
which implies that it also verifies the monotonicity conditions, it is a feasible point of the infinite
dimensional problem. Finally the condition 〈gi, (ωi,Ki)〉 = pi guarantees that the solution is ho-
mogeneous, hence both problems have the same optimal value and s(x) is an optimal solution to
the Infinite Linear Program.

This provides both an upper and a lower static arbitrage bound on the price of a basket. As in
d’Aspremont & El Ghaoui (2002), it can be showed that these bounds are sharp in some cases.
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Numerical performance
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Chapter 7

Approximation precision

7.1 Generic Basket pricing

We look here at the approximation error for generic multidimensional Black & Scholes (1973) bas-
ket prices. Here, as in figure (3.2), we plot the error in the basket pricing formula for a basket of as-
sets, having supposed that the forwards are all martingale under the same probability measure (hence
we test the precision of the approximations without the error from the forward measures). The refer-
ence is given by a Monte-Carlo estimate with enough steps to make the confidence interval less than
one basis point. The numerical values used here in figure (7.1) are F i0 = {0.7, 0.5, 0.4, 0.4, 0.4},
ωi = {0.2, 0.2, 0.2, 0.2, 0.2}, T = 5 years, and the covariance matrix is given by:

11
100


0.64 0 0 0 0
0 1 0 0 0
0 0 0.64 0 0
0 0 0 0.36 0
0 0 0 0 0.16


In the covariance above, we have supposed that the rates are independent. Here again, these values
are meant to replicate the pricing of a 5Y into 5Y swaption if we neglect the change of measure and
the weight dynamics. We can see that the pricing error is consistent with that found in (3.2). Here
however the order one term provides a significant improvement over the order zero price.

We can also look at the error in a standard equity basket (with forwards closer to 100). In
figure (7.2) The numerical values used here in figure (7.1) are F i0 = {100, 80, 120, 40, 15}, ωi =
{0.4, 0.1, 0.1, 0.2, 0.2}, T = 2 years, and the covariance matrix is again given by:

11
100


0.64 0.59 0.32 0.12 0.06
0.59 1 0.67 0.28 0.13
0.32 0.67 0.64 0.29 0.14
0.12 0.28 0.29 0.36 0.11
0.06 0.13 0.14 0.11 0.16


We have computed the relative pricing error here and we can see that in the pure equity case the
order one correction provides a very significant improvement over the order zero price.

7.2 Swaption pricing in the Libor Market model

As opposed to the previous section, here we look at actual Libor market prices obtained by Monte-
Carlo (including the exact change of measure and weights dynamics). As in figure (3.1), we present

100
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Figure 7.1: Order zero (dashed) and order one (plain) absolute approximation error versus the mul-
tidimensional Black-Scholes basket prices obtained by simulation for various strikes.
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Figure 7.2: An equity basket example: Order zero (dashed) and order one (plain) relative approx-
imation error versus the multidimensional Black-Scholes basket prices obtained by simulation for
various strikes.
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a plot of the difference between two distinct sets of swaption prices in the Libor Market Model. One
is obtained by Monte-Carlo simulation using enough steps to make the 95% confidence margin of
error always less than 1bp. The second set of prices is computed using the order zero approximation
formula above. In figures (7.3), (7.4) and (7.5) however, we look at the pricing error when the strike
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Figure 7.3: Absolute error on the 5Y into 5Y swaption price for various strikes. We compare the
order zero price approximation versus the Libor market model prices estimated using Monte-Carlo
simulation.

varies. Again, this plot is based on the prices obtained by calibrating the model to EURO swaption
prices on November 6 2000. We have used all cap volatilities and the following swaptions: 2Y into
5Y, 5Y into 5Y, 5Y into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y, 1Y
into 9Y.

7.3 Market Implied Covariance Factor Analysis

We use the data set from Nov. 6 2000 and we calibrate by fitting all caplets up to 20 years plus
the following set of swaptions: 5Y into 5Y, 5Y into 2Y, 5Y into 10Y, 2Y into 2Y, 2Y into 5Y, 7Y
into 5Y, 10Y into 5Y, 10Y into 2Y, 10Y into 10Y, 7Y into 3Y, 4Y into 6Y, 17Y into 3Y (again the
motivation behind this choice of swaptions is liquidity). For simplicity, all frequencies are annual.
The resulting covariance matrix is plotted in figure (7.6). In figure (7.7) and (7.8) we plot the
eigenvectors of this matrix. The first vector has a level shape. The second one is close to a spread of
rates. We notice, this purely market implied covariance factor structure closely matches the results
obtained by historical time series analysis.

7.4 Relative caps-swaption prices

We use again the data set from Nov. 6 2000 and we plot in figure (7.9) the upper and lower bound
given by maximizing (resp. minimizing ) the volatility of a given swaption provided that the Libor
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Figure 7.4: Absolute error on the 10Y into 2Y swaption price for various strikes. We compare the
order zero price approximation versus the Libor market model prices estimated using Monte-Carlo
simulation.
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Figure 7.5: Absolute error on the 10Y into 7Y swaption price for various strikes. We compare the
order zero price approximation versus the Libor market model prices estimated using Monte-Carlo
simulation.
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Figure 7.6: Smooth calibrated covariance matrix.

covariance matrix remains positive semidefinite and that it matches the calibration instruments. We
calibrate on the same products as in the last section. The result is plotted in the first figure.

Quite surprisingly considering the simplicity of the model (stationarity of the sliding dynam-
ics in L(t, θ), the converging dynamics are of course not stationary), figure (7.9) shows that all
swaptions seem to fit reasonably well inside the bounds imposed by the model except for the 10Y
underlying, this in line with the findings of Longstaff et al. (2000). We can also calibrate by fitting
all caplets up to 20 years and a smaller (more liquid) set of swaptions: 2Y into 5Y, 5Y into 5Y, 5Y
into 2Y, 10Y into 5Y, 7Y into 5Y, 10Y into 2Y, 10Y into 7Y, 2Y into 2Y. This choice of swaptions
was motivated by liquidity (where all swaptions on underlying and maturity in 2Y, 5Y, 7Y, 10Y
are meant to be liquid). We plot the result in figure (7.10). Table (7.1) details the market caplet
volatilities, while table (7.2) shows the swaption volatilities and the corresponding ω̂i weights (Sep.
03 2000, data courtesy of BNP Paribas, London).

Quite surprisingly considering the simplicity of the model (stationarity of the sliding Libor
dynamics L(t, θ)), figure (7.9) shows that all swaptions seem to fit reasonably well in the bounds
imposed by the model except for the 10Y underlying. This is in line with the findings of Longstaff
et al. (2000). In table (7.3) and (7.4), we show the market volatility movement vector with largest
impact on the covariance matrix (first vector in the singular value decomposition of the sensitivity
matrix in 5.12), computed in the A.H.O. case, using the same dataset above and a minimum trace
objective.

We can also study the evolution of the price bounds on a particular swaption (the 5Y into 3Y)
as more and more instruments are added in the calibration set (in that sense, we plot a graph that is
”transversal” to the one in the first figure). The initial calibration set is composed of all caps and the
2Y into 5Y swaption, it then evolves as in figure (7.11), where the flat line between the upper and
lower bounds represents the actual market price of the 5Y into 3Y swaption.
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Caplet Vols (%, 1Y to 10Y) 14.3 15.6 15.4 15.1 14.8 14.5 14.2 14.0 13.9 13.3
Caplet Vols (%, 11Y to 20Y) 13.0 12.7 12.4 12.2 12.0 11.9 11.8 11.8 11.7 12.0

Table 7.1: Caplet volatilities.

Swaption Vol (%) ω̂i
2Y into 5Y 12.4 0.22 0.20 0.20 0.19 0.18
5Y into 5Y 11.7 0.22 0.21 0.20 0.19 0.18
5Y into 2Y 14.0 0.51 0.49
10Y into 5Y 10.0 0.22 0.21 0.20 0.19 0.18
7Y into 5Y 11.0 0.23 0.21 0.20 0.19 0.18
10Y into 2Y 12.2 0.51 0.49
10Y into 7Y 9.6 0.17 0.16 0.15 0.14 0.13 0.13 0.12
2Y into 2Y 14.8 0.52 0.48

Table 7.2: Swaption volatilities and weights.

Caplet (1Y to 10Y) 0.00 -0.01 0.01 0.21 -0.25 -0.08 0.04 -0.17 -0.09 0.18
Caplet (11Y to 20Y) 0.15 -0.01 0.19 -0.18 0.29 0.04 0.09 -0.52 0.09 0.00

Table 7.3: Maximum sensitivity vector: caplet components.

Swaption (2Y,5Y) (5Y,5Y) (5Y,2Y) (10Y,5Y) (7Y,5Y) (10Y,2Y) (10Y,7Y) (2Y,2Y)
Sensitivity -0.05 0.16 0.28 0.17 -0.18 -0.38 0.15 -0.08

Table 7.4: Maximum sensitivity vector: swaption components.
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Figure 7.7: First eigenvector ”level”.

In the last two figures we study the sensitivity of the bounds obtained with the entire calibration
set by looking at the respective dual solutions.

We have plotted the sensitivity versus a particular swaption in the calibration set. The singular
behavior of the 7Y into 5Y swaption in the calibration set is probably due to its particular pricing
by the market that day, making it particularly attractive component of the optimal hedging portfolio
in terms of price vs. diversification.
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Figure 7.8: Second eigenvector ”spread”
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Figure 7.9: Calibration result and price bounds on a ”Sidney opera house” set of swaptions.
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Figure 7.10: Calibration result and price bounds on a ”Sydney opera house” set of swaptions.
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Figure 7.12: Dual solution to the upper bound problem
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Figure 7.13: Dual solution to the lower bound problem



Chapter 8

Conclusion

The methods described in this work are organized around one central objective: the design of a true
”black-box” calibration and risk-management tool for classic multifactor interest rate models. In
particular, the performance guarantee given by the numerical methods used here makes it possible
to design a calibration procedure that does not require numerical baby-sitting. Furthermore, the pos-
sibility of stabilizing the calibration result should induce significant savings in hedging transaction
costs by suppressing the possibility of purely numerical P&L hikes.

In practice however, two important obstacles remain in the design of a ”Swiss army knife” inter-
est rate model: smile modelling and rank reduction. The first problem has already been mentioned
in the first part, it is at this point not possible to globally calibrate the model to the smile and to
the covariance structure, instead, one has to apply a two-step procedure to first calibrate the correct
smile structure and then recover the covariance information. This makes it impossible to jointly
optimize the calibration result on the smile and the covariance structure (smoothness, etc...). The
second problem is rank reduction: numerical methods for American-style securities pricing are only
efficient for models with a small number of factors. This makes rank reduction a backward compati-
bility problem: the semidefinite programming methods detailed above cannot guarantee a minimum
rank for the solution. In fact, we know that the minimum rank problem is NP-hard. However, re-
cent advances in quantization methods (see Bally & Pages (2000)) or American Monte-Carlo (see
Longstaff & Schwartz (1998) for example) make it reasonable to expect significant progress in this
area.
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8.1 Second order term in the basket price approximation

Here, we show how we can apply the same expansion technique as in Chapter 2 to compute the
second-order term in the basket option price expansion. We notice that the computations become
a bit heavy and at this point it would probably be easier to compute this term and all the following
ones using a formal calculus software such as Mathematica.

We look here for the second-order term using a procedure that exactly mimics the one used for
C(1). We start by writing the P.D.E. solved by the second order term in the development.

Lemma 38 The second order term C(2)(s, x, y) can be computed by solving:
0 = L0

0C
(2) + 2L0

1C
(1) + L2C

0

0 = C(2) for s = T

(8.1)

With the terms L0
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(1) and L2C
0 given by:
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where C0 = BS(s, x, Vs) given by the Black & Scholes (1973) formula as in (3.3) and C(1)(s, x, y)
has been computed in (3.5) above.

Proof. As in Fournié et al. (1997) and Lebuchoux & Musiela (1999) we can differentiate twice
with respect to ε the P.D.E. obtained in the previous lemma to get:

0 = Lε0C
(2) + 2Lε1C
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0

0 = C(2) for s = T

(8.2)

where Lε0 and Lε1 where computed in the previous lemma and with:
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and again, as in Lebuchoux & Musiela (1999) and Karatzas & Shreve (1991), we take the limit as
ε→ ∞ and compute C2) as the solution to the P.D.E.

0 = L0
0C

(2) + 2L0
1C

(1) + L2C
0

0 = C(2) for s = T

(8.3)

with L0
0C

(2), L0
1C

(1) and L2C
0 defined as above.

We can now compute a closed-form solution to the equation verified by C(2) using its Feynman-
Kac representation and the formula for C(1)(s, x, y) computed in (3.5) above.

Proposition 39 The derivative C(2)
(
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)
can be computed as:

C(2) =
∫ T

t
E

2
n∑
j=1

ω̂j,s
〈
ξjs , σ

ω
s

〉 (Fωs )2

2
∂2C(1)

∂x2

 ds (8.4)

+
∫ T

t
E

 n∑
j=1

(
n∑
k=1

ω̂k,s

〈
ξjs − σωs , ξ

k
s

〉)
Fωs ω̂j,s

∂2C(1)

∂x∂yj

 ds
+
∫ T

t
E

 n∑
j=1

(
n∑
k=1

ω̂k,s

〈
ξjs − σωs , ξ

k
s

〉)
ω̂j,s

∂C(1)

∂yj

 ds
+
∫ T

t
E

2

∥∥∥∥∥
n∑
k=1

ω̂k,sξ
k
s

∥∥∥∥∥
2
 (Fωs )2

2
∂2C0

∂x2

 ds
Proof. Because C(2) solves the P.D.E. (3.4) in the above lemma, we can write the Feynman-Kac

representation of the solution as:

C(2) =
∫ T

t
E
[
2Lε1C

(1)
(
s, Fωs , (ω̂j,s)j=1,...,n

)
+ L2C

0
(
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)]
ds

which together with ∂2C(1)/∂y2
j = 0 gives the desired result.

We first introduce a set of convenient notations and then begin with a sequence of purely tech-

nical lemmas that will help us compute the final expression of C(2)
(
t, Fωt , (ω̂j,t)j=1,...,n

)
.

Notation 40 We note
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to simplify the computations that follow.
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We now compute a generic formula for a term that will appear frequently in the expression of
C(2).

Lemma 41 Suppose (z1, z2, z3) is a centered Gaussian vector with covariance matrix V . We have:
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Proof. First we can use the Cameron-Martin formula to get:
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which is the desired result.

For simplicity, we introduce the following notation based on the previous lemma.
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Notation 42 We note
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(8.5)

where σ1,u ∈ R
d for u ∈ [t, T ] and Vi,j =

∫ u
t 〈σ1,v, σ2,v〉 dv.

We then compute the various derivatives of C(1), beginning with ∂C(1)/ ∂x and ∂2C(1)/∂x2.

Lemma 43 If C(1) is given by (3.5) above then
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σω
u√
VT
, 0)

Fωt
√
VT

and

ηi,jv =
(
ξjv − σωv + 1{v≤s}

(
ξiv + 2σωv

))
ψ(u,K) =

ln Fω
t
K +

∫ u
t

〈
ξjv, σωv

〉
dv + 1

2VT√
VT

φ(u) = exp
(∫ u

t

(〈
ξjv, σ

ω
v

〉− 1
2

∥∥ξjv∥∥2 +
1
2
Vt,u

)
dv

)
exp

(∫ s

t

(〈
ξiv, σ

ω
v

〉− 1
2

∥∥ξiv∥∥2 − Vt,s

)
dv

)
and

ψ̄(u,K) = ψ(u,K) +
∫ u

t

∥∥(ξjv − σωv + 1{v≤s}
(
ξjv + 2σωv

))∥∥2
dv

+

∫ u
t

(〈
ξiv, σ

ω
v

〉
+ 1{v≤s}

〈
ξiv + 2σωv , σ

ω
v

〉)
dv − Vt,u√

VT

to simplify the expression above.

Proof. With C(1) written as:

C(1)(s, x, y) = x

∫ T

s

n∑
j=1

yjϕ
j
s(u)n (hs,u(x,K)) du
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we get:

∂C(1)

∂x
=

∫ T

s

n∑
j=1

yjϕ
j
s(u)n (hs,u(x,K)) du

+
∫ T

s

n∑
j=1

yjϕ
j
s(u)

n (hs,u(x,K))hs,u(x,K)√
VT

du

hence

∂2C(1)

∂x2
=

∫ T

s

n∑
j=1

yjϕ
j
s(u)

n (hs,u(x,K))hs,u(x,K)
x
√
VT

du

+
∫ T

s

n∑
j=1

yjϕ
j
s(u)

n (hs,u(x,K))
xVT

(
h2
s,u(x,K) + 1

)
du

we can then compute

E

[
ω̂i,s (Fωs )2

∂2C(1)(s)
∂x2

]

=
∫ T

s

n∑
j=1

E

[
ω̂j,uω̂i,s (Fωs )2 ϕjs(u)

n (hs,u(Fωu ,K))
Fωu

√
VT

(
h2
s,u(F

ω
u ,K)√
VT

)]
du

+
∫ T

s

n∑
j=1

E

[
ω̂j,uω̂i,s (Fωs )2 ϕjs(u)

n (hs,u(Fωu ,K))
Fωu

√
VT

(
1 +

1√
VT

)]
du

which can be written:∫ T

s

n∑
j=1

ϕjs(u)ω̂j,tω̂i,t (F
ω
t )2 exp

(∫ u

t

(〈
ξjv, σ

ω
v

〉− 1
2

∥∥ξiv∥∥2 +
1
2
Vt,u

)
dv

)

exp
(∫ s

t

(〈
ξiv, σ

ω
v

〉− 1
2

∥∥ξiv∥∥2 − Vt,s

)
dv

)
E[exp

(∫ u

t

(
ξjv − σωv + 1{v≤s}

(
ξiv + 2σωv

))
dWv

)
n (hs,u(Fωu ,K))

Fωt
√
VT(

h2
s,u(F

ω
u ,K)√
VT

+
(

1 +
1√
VT

))
]du

An because if we remember that

h(s, u, x,K) =
ln x

K +
∫ u
s

〈
ξjv, σωv

〉
dv + 1

2VT√
VT
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and if we note:

ηi,jv =
(
ξjv − σωv + 1{v≤s}

(
ξiv + 2σωv

))
Z1,u =

∫ u

t
ηi,jv dWv and Z2 =

∫ s
t σ

ω
udWu√
VT

ψ(u) =
ln Fω

t
K +

∫ u
t

〈
ξjv, σωv

〉
dv + 1

2VT√
VT

φ(u) = exp
(∫ u

t

(〈
ξjv, σ

ω
v

〉− 1
2

∥∥ξjv∥∥2 +
1
2
Vt,u

)
dv

)
exp

(∫ s

t

(〈
ξiv, σ

ω
v

〉− 1
2

∥∥ξiv∥∥2 − Vt,s

)
dv

)
we can get:

E

[
exp (Z1,u)

n (Z2,u + ψ(u)) (Z2,u + ψ(u))2

Fωt
√
VT

]
du

= E

[
exp

(∫ u

t
ηi,jv dWv

)
n (Z2,u + ψ(u)) (Z2,u + ψ(u))2

Fωt
√
VT

]
du

= exp
(∫ u

t

∥∥ηi,jv ∥∥2
dv

)
E

[
n
(
Z2,u + ψ̄(u)

)
(Z2,u + ψ̄(u))2

Fωt
√
VT

]
du

where

ψ̄(u) = ψ(u) +
∫ u

t

∥∥(ξjv − σωv + 1{v≤s}
(
ξiv + 2σωv

))∥∥2
dv

+

∫ u
t

(〈
ξjv, σωv

〉
+ 1{v≤s}

〈
ξiv + 2σωv , σ

ω
v

〉)
dv − Vt,u√

VT

hence we have

E

[
exp (Z1,u)

n (Z2,u + ψ(u)) (Z2,u + ψ(u))2

Fωt VT

]

=
exp

(∫ u
t

∥∥∥ηi,jv ∥∥∥2
dv

)
exp

(
Vt,uψ̄(u)2

Vt,u+VT

)
Fωt VT

√
2πVt,u/VT(

Vt,u/VT√
Vt,u/VT + VT

+
ψ̄(u)2

Vt,u/VT + 1

)
(Vt,u/VT + 1)

1
4√

Vt,u/VT

We can then obtain the last term by computing

E

[
exp (Z1,u)

n (hs,u(Fωu ,K)) (hs,u(Fωu ,K))
Fωt

√
VT

]
=

Φu(η
i,j
v ,

σω
u√
VT
, σω

u√
VT

) + ψ(u)Φu(η
i,j
v ,

σω
u√
VT
, 0)

Fωt
√
VT

which produces the desired result.

We then compute the term in ∂C(1)/ ∂yi in the expression of C(2).
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Lemma 44 If C(1) is given by (3.5) above then

E

[
ω̂j,sω̂k,s

∂C(1)

∂yj

]
=

∫ T

s
ω̂j,tω̂k,tF

ω
t ϕ

j
s(u) exp

(∫ s

t

〈
ξjv + ξkv , σ

ω
v

〉
dv

)
exp

(
−1

2
Vt,u

)
exp

(
−1

2

∫ s

t

(∥∥ξjv∥∥2 +
∥∥∥ξkv∥∥∥2

)
dv

)
Φu(σωv + 1{v≤s}

(
ξkv + ξjv

)
,
σωu√
VT
, 0)du

Proof. From the expression of C(1) we get:

∂C(1)

∂yj
= x

∫ T

s
ϕjs(u)n (hs,u(x,K)) du

hence

E

[
ω̂j,sω̂k,s

∂C(1)

∂yj

]
=

∫ T

s
E
[
ω̂j,sω̂k,sF

ω
u ϕ

j
s(u)n (hs,u(x,K))

]
du

=
∫ T

s
ω̂j,tω̂k,tF

ω
t ϕ

j
s(u) exp

(∫ s

t

〈
ξjv + ξkv , σ

ω
v

〉
dv

)
exp

(
−1

2
Vt,u

)
exp

(
−1

2

∫ s

t

(∥∥ξjv∥∥2 +
∥∥∥ξkv∥∥∥2

)
dv

)
E

[
exp

(∫ u

t
σωv + 1{v≤s}

(
ξkv + ξjv

)
dWv

)
n (hs,u(x,K))

]
du

with

E

[
exp

(∫ u

t
σωv + 1{v≤s}

(
ξkv + ξjv

)
dWv

)
n (Z2,u + ψ(u))

]
= Φu(σωv + 1{v≤s}

(
ξkv + ξjv

)
,
σωu√
VT
, 0)

hence the desired result.

We can now compute the cross term in ∂2C(1)/ ∂x∂yi in the expression of C(2).

Lemma 45 If C(1) is given by (3.5) above then

E

[
ω̂k,sF

ω
s ω̂j,s

∂2C(1)

∂x∂yj

]
=

∫ T

s
ω̂j,tω̂k,tF

ω
t ϕ

j
s(u) exp

(∫ s

t

〈
ξjv + ξkv , σ

ω
v

〉
dv

)
exp

(
−1

2
Vt,u

)
exp

(
−1

2

∫ s

t

(∥∥ξjv∥∥2 +
∥∥∥ξkv∥∥∥2

)
dv

)
Φu(1{v≤s}

(
σωv + ξkv + ξjv

)
,
σωu√
VT
, 0)du

Proof. With C(1) written as:

C(1)(s, x, y) = x

∫ T

s

n∑
j=1

yjϕ
j
s(u)n (hs,u(x,K)) du
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we get:
∂2C(1)

∂x∂yj
=
∫ T

s
ϕjs(u)n (hs,u(x,K)) du

hence

E

[
ω̂j,sω̂k,sF

ω
s

∂C(1)

∂yj

]
=

∫ T

s
E
[
ω̂j,sω̂k,sF

ω
s ϕ

j
s(u)n (hs,u(x,K))

]
du

=
∫ T

s
ω̂j,tω̂k,tF

ω
t ϕ

j
s(u) exp

(∫ s

t

〈
ξjv + ξkv , σ

ω
v

〉
dv

)
exp

(
−1

2
Vt,u

)
exp

(
−1

2

∫ s

t

(∥∥ξjv∥∥2 +
∥∥∥ξkv∥∥∥2

)
dv

)
E

[
exp

(∫ s

t
σωv +

(
ξkv + ξjv

)
dWv

)
n (hs,u(x,K))

]
du

with

E

[
exp

(∫ s

t

(
σωv + ξkv + ξjv

)
dWv

)
n (Z2,u + ψ(u))

]
= Φu(1{v≤s}

(
σωv + ξkv + ξjv

)
,
σωu√
VT
, 0)

hence the desired result.

And we now get the last term in the development of C(2):

Lemma 46 If C(1) is given by (3.5) above then

E

[
ω̂i,sω̂j,s (Fωs )2

∂2C0

∂x2

]
=

∫ T

s
ω̂i,tω̂j,tF

ω
t exp

(∫ s

t

〈
ξiv + ξjv, σ

ω
v

〉
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)
exp
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2
Vt,u

)
exp

(
−1

2
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t
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∥∥ξiv∥∥2

)
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)
1√
Vs,T

Φs(σωv +
(
ξiv + ξjv

)
,
σωv√
VT
, 0)

Proof. As before we know that

∂2C0

∂x2
=
n(h(x, Vs,T ))
x
√
Vs,T

which means that we need to compute:

E
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ω
s

n(h(Fωs , Vs,T ))√
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]
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ω
t exp
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t

〈
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ω
v

〉
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)
exp

(
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2
Vt,u

)
exp

(
−1

2

∫ s

t

(∥∥ξjv∥∥2 +
∥∥ξiv∥∥2

)
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)
E

[
exp

(∫ s

t
σωv +

(
ξiv + ξjv

)
dWv

)
n(h(Fωs , Vs,T ))√
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]
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with

E

[
exp

(∫ s

t
σωv +

(
ξiv + ξjv

)
dWv

)
n(Z2,s + ψ(s))√

Vs,T

]

=
1√
Vs,T

Φs(σωv +
(
ξiv + ξjv

)
,
σωv√
VT
, 0)

hence the desired result.

Finally we can assemble these results to compute the second-order term in the price develop-
ment.

Proposition 47 The derivative C(2)
(
t, Fωt , (ω̂j,t)j=1,...,n

)
is given by:

C(2) =
∫ T

t
(As +Bs + Cs +Ds) ds (8.7)

with

As =
n∑
i=1

〈
ξis, σ

ω
s

〉 ∫ T

s

 n∑
j=1

ϕjs(u)ω̂j,tω̂i,t (F
ω
t )2 φ(u)

(
H1
u +H2

u

) du

using the notations in (8.6). With
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k
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2
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)
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and
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k
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〉
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)

exp
(
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2
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)
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t
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and finally
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