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Introduction

We estimate a sample covariance matrix Σ from empirical data. . .

� Objective: infer dependence relationships between variables.

� We only want to isolate a few key links.

Elementary solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

then simply threshold smaller coefficients to zero (not always psd).
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Covariance Selection
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Covariance Selection

Following Dempster [1972], look for zeros in the inverse covariance matrix:

Parsimony. Suppose that we are estimating a Gaussian density:

f(x,Σ) =

(
1

2π

)p
2
(

1

det Σ

)1
2

exp

(
−1

2
xTΣ−1x

)
,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of the
density f as a member of an exponential family of distributions:

f(x,Σ) = exp(α0 + t(x) + α11t11(x) + . . .+ αrstrs(x))

with here tij(x) = xixj and αij = Σ−1ij . Dempster [1972] calls Σ−1ij a
concentration coefficient.
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Covariance Selection

Conditional independence.

� Suppose X,Y, Z have are jointly normal with covariance matrix Σ, with

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

� Conditioned on Z, X,Y are still normally distributed with covariance matrix
C satisfying

C = Σ11 − Σ12Σ
−1
22 Σ21 =

(
Σ−1

)−1
11

� So X and Y are conditionally independent iff
(
Σ−1

)
11

is diagonal, which is
also

Σ−1xy = 0

A. d’Aspremont, TSE, November 2011. 5/41



Covariance Selection

� Suppose we have iid noise εi ∼ N (0, 1) and the following linear model

x = z + ε1
y = z + ε2
z = ε3

� Graphically, this is

X Y

Z
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Covariance Selection

� The covariance matrix and inverse covariance are given by

Σ =

 2 1 1
1 2 1
1 1 1

 Σ−1 =

 1 0 −1
0 1 −1
−1 −1 3


� The inverse covariance matrix has Σ−112 clearly showing that the variables x and
y are independent conditioned on z.

� Graphically, this is again

X Y

Z

versus
X Y

Z
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Covariance Selection

Let I
⊕
J = [1, n]2, Dempster [1972] shows:

� Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij on J ,

the choice Σ̂−1ij = 0 on I has maximum entropy.

� Maximum Likelihood. Among all Gaussian models Σ such that Σ−1ij = 0 on

I, the choice Σ̂ij = Sij on J has maximum likelihood.

� Existence and Uniqueness. If there is a positive semidefinite matrix Σ̂ij
satisfying Σ̂ij = Sij on J , then there is only one such matrix satisfying

Σ̂−1ij = 0 on I.
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Applications & Related Work

� Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes. See
Dobra et al. [2004], Dobra and West [2004] for example.

� Speech Recognition. See Bilmes [1999], Bilmes [2000] or Chen and Gopinath
[1999].

� Related work by Dahl et al. [2005]: interior point methods for sparse MLE.
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Financial data

Estimating covariance matrices from financial data.

� Asset returns are given by (schematically)

∆St = ∆Mt + εt

where

◦ Mt is the market return

◦ εt is an idiosyncratic component

� All assets are usually highly correlated: Mt dominates the picture. We are only
interested in the correlation between εt for various assets.

� The inverse matrix is also used to computed portfolios on the efficient frontier
for CAPM.
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Outline

� Introduction

� Penalized maximum likelihood estimation
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Penalized Maximum Likelihood Estimation
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AIC and BIC

Akaike [1973]: penalize the likelihood function:

max
X∈Sn

log detX −Tr(SX)− ρCard(X)

where Card(X) is the number of nonzero elements in X.

� Set ρ = 2/(m+ 1) for the Akaike Information Criterion (AIC).

� Set ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .
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Convex Relaxation

� We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log detX −Tr(SX)− ρCard(X)

replacing Card(X) by ‖X‖1 =
∑
ij |Xij| to solve

max
X∈Sn

log detX −Tr(SX)− ρ‖X‖1

� Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

� Heavily used in statistics and signal processing. See Donoho and Tanner
[2005], Candès and Tao [2005] on compressed sensing, sparse recovery for
penalized regression.
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Complexity

The problem
max
X∈Sn

log detX −Tr(SX)− ρ‖X‖1

is convex in the variable X ∈ Sn. This means that we can get explicit complexity
bounds and efficient algorithms.

� Standard convex optimization algorithms easily solve small instances.
(see Boyd and Vandenberghe [2004])

� Specialized techniques solve larger problems with complexity O(n4.5). We can
exploit the block structure of the dual. Cost per iteration comparable to that
of a penalized regression (LASSO).

� In practice, we can get a good solution with complexity O(n3.5). A bit harder
than computing a matrix inverse. . .
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Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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Algorithms

� The convex relaxation of the covariance selection problem has a particular
min-max structure

max
X∈Sn

min
|Uij|≤ρ

log detX −Tr((S + U)X)

� This min-max representation means that we use prox function algorithms by
Nesterov [2005] (see also Nemirovski [2004]) to solve large, dense problem
instances.

� We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Assuming that a problem can be written according to this min-max model, the
algorithm works as follows. . .

� Regularization. Add strongly convex penalty inside the min-max
representation to produce an ε-approximation of f with Lipschitz continuous
gradient (generalized Moreau-Yosida regularization step, see Lemaréchal and
Sagastizábal [1997] for example).

� Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov [1983] to the solve the
regularized problem.
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Nesterov’s method

Regularization. The objective is first smoothed by penalization. We solve the
following (modified) problem

max
{X∈Sn: αIn�X�βIn}

min
{U∈Sn: |Uij|≤ρ}

log detX −Tr((S − U)X)− (ε/2D2)d2(U)

an ε approximation of the original problem if α ≤ 1/(‖S‖+ nρ) and β ≥ n/ρ.

� Prox on Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} is d2(U) = 1
2 Tr(UTU) = 1

2‖U‖
2

� Prox d1(X) for the set {αIn � X � βIn} given by

d1(X) = − log detX + log β

This corresponds to a classic Moreau-Yosida regularization of the penalty ‖X‖1
and the function fε has a Lipschitz continuous gradient with constant

Lε := M +D2ρ
2/(2ε)
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Nesterov’s method

Optimal first-order minimization. The minimization algorithm in Nesterov
[1983] then involves the following steps

Choose ε > 0 and set X0 = βIn, For k = 0, . . . , N(ε) do

1. Compute ∇fε(Xk) = −X−1 + Σ + U∗(Xk)

2. Find Yk = arg minY {Tr(∇fε(Xk)(Y −Xk)) + 1
2Lε‖Y −Xk‖2F : Y ∈ Q1}.

3. Find
Zk = arg minX

{
Lεβ

2d1(X) +
∑k
i=0

i+1
2 Tr(∇fε(Xi)(X −Xi)) : X ∈ Q1

}
.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk.
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Nesterov’s method

At each iteration

� Step 1: only amounts to computing the inverse of X and the (explicit)
solution to the regularized subproblem on Q2.

� Steps 2 and 3: are both projections on Q1 = {αIn � X � βIn} and require
an eigenvalue decomposition.

This means that the total complexity estimate of the method is

O

(
κ
√

(log κ)

ε
n4.5αρ

)

where log κ = log(β/α) bounds the solution’s condition number.
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Dual block-coordinate descent

� Here we consider the dual of the original problem

maximize log det(S + U)
subject to ‖U‖∞ ≤ ρ

S + U � 0

� Let C = S +U be the current iterate, after permutation we can always assume
that we optimize over the last column

maximize log det

(
C11 C12 + u

C21 + uT C22

)
subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

� Each iteration reduces to a simple box-constrained QP

minimize uT (C11)−1u
subject to ‖u‖∞ ≤ ρ
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Consistency

Proposition 1

Consistency. Let Ĉλk denote our estimate of the connectivity component of node
k. Let α be a given level in [0, 1]. Consider the following choice for the penalty
parameter

λ(α) := (max
i>j

σ̂iσ̂j)
tn−2(α/2p

2)√
n− 2 + t2n−2(α/2p

2)
(1)

where tn−2(α) denotes the (100 − α)% point of the Student’s t-distribution for
n− 2 degrees of freedom, and σ̂i is the empirical variance of variable i. Then

Prob(∃k ∈ {1, . . . , p} : Ĉλk 6⊆ Ck) ≤ α.

Proof. Argument similar to Meinshausen and Buhlmann [2006].
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Cross-validation

In practice, we can use cross-validation

� Remove a random subset of the variables and compute the inverse covariance
matrix.

� Compute the pattern of zeros.

� Repeat the procedure for various variable subsets and various values of the
penalty ρ.

How do we pick the value of the penalty parameter ρ?

� We pick the ρ minimizing the variability of these dependence relationships
across samples.

� Also, dependence relationships which show up in most subsampled networks
are considered more reliable.
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Dependence Network Layout

How do we represent these results?

� Turn the pattern of zeros in the inverse covariance into a graph.

� Use graph visualization algorithms to layout this graph.
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Trickier than it sounds. . .

� Graph layout problems are usually very hard. Again, good approximation
algorithms exist.

� Many possible representations.

� Some coefficients are close to zero (numerical noise): threshold.
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Network Interpretation

Many characteristics of the graph have a statistical interpretation.

� if the graph is chordal, then there is a linear/Gaussian model with the same
sparsity pattern (see Wermuth [1980] for an early reference on linear recursive
models and path analysis).

Ratio Ratio

Left: a chordal graphical model: no cycles of length greater than three.
Right: a non-chordal graphical model of U.S. swap rates.
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Network Interpretation

� If there is a path between two nodes on a graph, then the corresponding
variables have nonzero covariance (see Gilbert [1994] for a survey of graph
theory/sparse linear algebra).

Ratio Ratio

Left: connected model of U.S. swap rates, with dense covariance matrix.
Right: disconnected model, the covariance matrix is block-diagonal.
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ROC curves
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Sparse covariance model. Left: ROC curves for both thresholding and covariance
selection using 20 samples to compute the covariance. Right: Binary dependence
classification performance of inverse sample covariance thresholding (THRES) and
covariance selection (COVSEL) for various sample sizes, measured by area under
ROC curve.
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.

4.5Y

5.5Y

1Y

10Y

0.5Y

7Y

9Y

8Y

5Y

4Y

6.5Y

1.5Y

6Y

3Y

9.5Y

2Y

2.5Y

8.5Y

7.5Y

3.5Y

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y
7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

ρ = 0 ρ = .01

A. d’Aspremont, TSE, November 2011. 33/41



Zoom. . .
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Foreign exchange rates

Graph of conditional covariance among a cluster of U.S. dollar exchange rates.
Positive dependencies are plotted as green links, negative ones in red, thickness
reflects the magnitude of the covariance.
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S&P 500
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Hedge fund returns

� We track 116 hedge funds between January 1995 and December 2005.

� Monthly hedge fund returns from the Center for International Securities and
Derivatives Markets hedge fund database, via WRDS.

� Hedge fund nodes are colored to represent their primary strategy.
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Hedge fund returns

A. d’Aspremont, TSE, November 2011. 38/41



Hedge fund returns: strategies
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Hedge fund returns: markets
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Conclusion

� Covariance selection highlights key dependence structure.

� Very good statistical performance compared to thresholding techniques.

� Results are often intuitive.

� Slides, papers and MATLAB software available at:

http://www.cmap.polytechnique.fr/∼aspremon

� R package using a pathwise algorithm at

http://cran.r-project.org/web/packages/Covpath/index.html

� A free network layout software called cytoscape:

http://www.cytoscape.org
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