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Introduction

We estimate a sample covariance matrix Σ from empirical data. . .

� Objective: infer dependence relationships between variables.

� We only want to isolate a few key links.

Elementary solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

then simply threshold smaller coefficients to zero (not always psd).
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Covariance Selection
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Covariance Selection

Following Dempster [1972], look for zeros in the inverse covariance matrix:

Parsimony. Suppose that we are estimating a Gaussian density:

f(x,Σ) =

(
1

2π

)p
2
(

1

det Σ

)1
2

exp

(
−1

2
xTΣ−1x

)
,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of the
density f as a member of an exponential family of distributions:

f(x,Σ) = exp(α0 + t(x) + α11t11(x) + . . .+ αrstrs(x))

with here tij(x) = xixj and αij = Σ−1ij . Dempster [1972] calls Σ−1ij a
concentration coefficient.
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Covariance Selection

Conditional independence.

� Suppose X,Y, Z have are jointly normal with covariance matrix Σ, with

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

� Conditioned on Z, X,Y are still normally distributed with covariance matrix
C satisfying

C = Σ11 − Σ12Σ
−1
22 Σ21 =

(
Σ−1

)−1
11

� So X and Y are conditionally independent iff
(
Σ−1

)
11

is diagonal, which is
also

Σ−1xy = 0
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Covariance Selection

� Suppose we have iid noise εi ∼ N (0, 1) and the following linear model

x = z + ε1
y = z + ε2
z = ε3

� Graphically, this is

X Y

Z
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Covariance Selection

� The covariance matrix and inverse covariance are given by

Σ =

 2 1 1
1 2 1
1 1 1

 Σ−1 =

 1 0 −1
0 1 −1
−1 −1 3


� The inverse covariance matrix has Σ−112 clearly showing that the variables x and
y are independent conditioned on z.

� Graphically, this is again

X Y

Z

versus
X Y

Z

A. d’Aspremont, TSE, November 2011. 7/41



Covariance Selection

Let I
⊕
J = [1, n]2, Dempster [1972] shows:

� Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij on J ,

the choice Σ̂−1ij = 0 on I has maximum entropy.

� Maximum Likelihood. Among all Gaussian models Σ such that Σ−1ij = 0 on

I, the choice Σ̂ij = Sij on J has maximum likelihood.

� Existence and Uniqueness. If there is a positive semidefinite matrix Σ̂ij
satisfying Σ̂ij = Sij on J , then there is only one such matrix satisfying

Σ̂−1ij = 0 on I.
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Applications & Related Work

� Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes. See
Dobra et al. [2004], Dobra and West [2004] for example.

� Speech Recognition. See Bilmes [1999], Bilmes [2000] or Chen and Gopinath
[1999].

� Related work by Dahl et al. [2005]: interior point methods for sparse MLE.
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Financial data

Estimating covariance matrices from financial data.

� Asset returns are given by (schematically)

∆St = ∆Mt + εt

where

◦ Mt is the market return

◦ εt is an idiosyncratic component

� All assets are usually highly correlated: Mt dominates the picture. We are only
interested in the correlation between εt for various assets.

� The inverse matrix is also used to computed portfolios on the efficient frontier
for CAPM.
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Outline
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Penalized Maximum Likelihood Estimation
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AIC and BIC

Akaike [1973]: penalize the likelihood function:

max
X∈Sn

log detX −Tr(SX)− ρCard(X)

where Card(X) is the number of nonzero elements in X.

� Set ρ = 2/(m+ 1) for the Akaike Information Criterion (AIC).

� Set ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .
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Convex Relaxation

� We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log detX −Tr(SX)− ρCard(X)

replacing Card(X) by ‖X‖1 =
∑
ij |Xij| to solve

max
X∈Sn

log detX −Tr(SX)− ρ‖X‖1

� Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

� Heavily used in statistics and signal processing. See Donoho and Tanner
[2005], Candès and Tao [2005] on compressed sensing, sparse recovery for
penalized regression.
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Complexity

The problem
max
X∈Sn

log detX −Tr(SX)− ρ‖X‖1

is convex in the variable X ∈ Sn. This means that we can get explicit complexity
bounds and efficient algorithms.

� Standard convex optimization algorithms easily solve small instances.
(see Boyd and Vandenberghe [2004])

� Specialized techniques solve larger problems with complexity O(n4.5). We can
exploit the block structure of the dual. Cost per iteration comparable to that
of a penalized regression (LASSO).

� In practice, we can get a good solution with complexity O(n3.5). A bit harder
than computing a matrix inverse. . .
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Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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Algorithms

� The convex relaxation of the covariance selection problem has a particular
min-max structure

max
X∈Sn

min
|Uij|≤ρ

log detX −Tr((S + U)X)

� This min-max representation means that we use prox function algorithms by
Nesterov [2005] (see also Nemirovski [2004]) to solve large, dense problem
instances.

� We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Assuming that a problem can be written according to this min-max model, the
algorithm works as follows. . .

� Regularization. Add strongly convex penalty inside the min-max
representation to produce an ε-approximation of f with Lipschitz continuous
gradient (generalized Moreau-Yosida regularization step, see Lemaréchal and
Sagastizábal [1997] for example).

� Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov [1983] to the solve the
regularized problem.
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Nesterov’s method

Regularization. The objective is first smoothed by penalization. We solve the
following (modified) problem

max
{X∈Sn: αIn�X�βIn}

min
{U∈Sn: |Uij|≤ρ}

log detX −Tr((S − U)X)− (ε/2D2)d2(U)

an ε approximation of the original problem if α ≤ 1/(‖S‖+ nρ) and β ≥ n/ρ.

� Prox on Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} is d2(U) = 1
2 Tr(UTU) = 1

2‖U‖
2

� Prox d1(X) for the set {αIn � X � βIn} given by

d1(X) = − log detX + log β

This corresponds to a classic Moreau-Yosida regularization of the penalty ‖X‖1
and the function fε has a Lipschitz continuous gradient with constant

Lε := M +D2ρ
2/(2ε)
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Nesterov’s method

Optimal first-order minimization. The minimization algorithm in Nesterov
[1983] then involves the following steps

Choose ε > 0 and set X0 = βIn, For k = 0, . . . , N(ε) do

1. Compute ∇fε(Xk) = −X−1 + Σ + U∗(Xk)

2. Find Yk = arg minY {Tr(∇fε(Xk)(Y −Xk)) + 1
2Lε‖Y −Xk‖2F : Y ∈ Q1}.

3. Find
Zk = arg minX

{
Lεβ

2d1(X) +
∑k
i=0

i+1
2 Tr(∇fε(Xi)(X −Xi)) : X ∈ Q1

}
.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk.
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Nesterov’s method

At each iteration

� Step 1: only amounts to computing the inverse of X and the (explicit)
solution to the regularized subproblem on Q2.

� Steps 2 and 3: are both projections on Q1 = {αIn � X � βIn} and require
an eigenvalue decomposition.

This means that the total complexity estimate of the method is

O

(
κ
√

(log κ)

ε
n4.5αρ

)

where log κ = log(β/α) bounds the solution’s condition number.
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Dual block-coordinate descent

� Here we consider the dual of the original problem

maximize log det(S + U)
subject to ‖U‖∞ ≤ ρ

S + U � 0

� Let C = S +U be the current iterate, after permutation we can always assume
that we optimize over the last column

maximize log det

(
C11 C12 + u

C21 + uT C22

)
subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

� Each iteration reduces to a simple box-constrained QP

minimize uT (C11)−1u
subject to ‖u‖∞ ≤ ρ
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Consistency

Proposition 1

Consistency. Let Ĉλk denote our estimate of the connectivity component of node
k. Let α be a given level in [0, 1]. Consider the following choice for the penalty
parameter

λ(α) := (max
i>j

σ̂iσ̂j)
tn−2(α/2p

2)√
n− 2 + t2n−2(α/2p

2)
(1)

where tn−2(α) denotes the (100 − α)% point of the Student’s t-distribution for
n− 2 degrees of freedom, and σ̂i is the empirical variance of variable i. Then

Prob(∃k ∈ {1, . . . , p} : Ĉλk 6⊆ Ck) ≤ α.

Proof. Argument similar to Meinshausen and Buhlmann [2006].
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Cross-validation

In practice, we can use cross-validation

� Remove a random subset of the variables and compute the inverse covariance
matrix.

� Compute the pattern of zeros.

� Repeat the procedure for various variable subsets and various values of the
penalty ρ.

How do we pick the value of the penalty parameter ρ?

� We pick the ρ minimizing the variability of these dependence relationships
across samples.

� Also, dependence relationships which show up in most subsampled networks
are considered more reliable.
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Dependence Network Layout

How do we represent these results?

� Turn the pattern of zeros in the inverse covariance into a graph.

� Use graph visualization algorithms to layout this graph.
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Trickier than it sounds. . .

� Graph layout problems are usually very hard. Again, good approximation
algorithms exist.

� Many possible representations.

� Some coefficients are close to zero (numerical noise): threshold.
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Network Interpretation

Many characteristics of the graph have a statistical interpretation.

� if the graph is chordal, then there is a linear/Gaussian model with the same
sparsity pattern (see Wermuth [1980] for an early reference on linear recursive
models and path analysis).

Ratio Ratio

Left: a chordal graphical model: no cycles of length greater than three.
Right: a non-chordal graphical model of U.S. swap rates.
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Network Interpretation

� If there is a path between two nodes on a graph, then the corresponding
variables have nonzero covariance (see Gilbert [1994] for a survey of graph
theory/sparse linear algebra).

Ratio Ratio

Left: connected model of U.S. swap rates, with dense covariance matrix.
Right: disconnected model, the covariance matrix is block-diagonal.
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ROC curves
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Sparse covariance model. Left: ROC curves for both thresholding and covariance
selection using 20 samples to compute the covariance. Right: Binary dependence
classification performance of inverse sample covariance thresholding (THRES) and
covariance selection (COVSEL) for various sample sizes, measured by area under
ROC curve.
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.
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Zoom. . .
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Foreign exchange rates

Graph of conditional covariance among a cluster of U.S. dollar exchange rates.
Positive dependencies are plotted as green links, negative ones in red, thickness
reflects the magnitude of the covariance.
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S&P 500
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Hedge fund returns

� We track 116 hedge funds between January 1995 and December 2005.

� Monthly hedge fund returns from the Center for International Securities and
Derivatives Markets hedge fund database, via WRDS.

� Hedge fund nodes are colored to represent their primary strategy.
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Hedge fund returns
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Hedge fund returns: strategies
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Hedge fund returns: markets
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Conclusion

� Covariance selection highlights key dependence structure.

� Very good statistical performance compared to thresholding techniques.

� Results are often intuitive.

� Slides, papers and MATLAB software available at:

http://www.cmap.polytechnique.fr/∼aspremon

� R package using a pathwise algorithm at

http://cran.r-project.org/web/packages/Covpath/index.html

� A free network layout software called cytoscape:

http://www.cytoscape.org
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