Exploring patterns of dependence in financial data.

Alexandre d'Aspremont CNRS – CMAP, Ecole Polytechnique

Joint work with **O. Banerjee, L. El Ghaoui**, U.C. Berkeley.

Support from NSF, ERC SIPA and Google.

We estimate a sample covariance matrix Σ from empirical data. . .

- Objective: infer **dependence** relationships between variables.
- We only want to isolate a few key links.

Elementary solution: look at the magnitude of the covariance coefficients:

 $|\Sigma_{ij}| > \beta \quad \Leftrightarrow \quad \text{variables } i \text{ and } j \text{ are related},$

then simply threshold smaller coefficients to zero (not always psd).

Covariance Selection

Before

After

Following Dempster [1972], look for zeros in the inverse covariance matrix:

Parsimony. Suppose that we are estimating a Gaussian density:

$$f(x,\Sigma) = \left(\frac{1}{2\pi}\right)^{\frac{p}{2}} \left(\frac{1}{\det\Sigma}\right)^{\frac{1}{2}} \exp\left(-\frac{1}{2}x^T\Sigma^{-1}x\right),$$

a sparse inverse matrix Σ^{-1} corresponds to a sparse representation of the density f as a member of an exponential family of distributions:

$$f(x, \Sigma) = \exp(\alpha_0 + t(x) + \alpha_{11}t_{11}(x) + \ldots + \alpha_{rs}t_{rs}(x))$$

with here $t_{ij}(x) = x_i x_j$ and $\alpha_{ij} = \Sigma_{ij}^{-1}$. Dempster [1972] calls Σ_{ij}^{-1} a concentration coefficient.

A. d'Aspremont, TSE, November 2011.

Conditional independence.

Suppose X, Y, Z have are jointly normal with covariance matrix Σ , with

$$\Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

where $\Sigma_{11} \in \mathbb{R}^{2 \times 2}$ and $\Sigma_{22} \in \mathbb{R}$.

Conditioned on Z, X, Y are still normally distributed with covariance matrix C satisfying

$$C = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} = \left(\Sigma^{-1}\right)_{11}^{-1}$$

So X and Y are conditionally independent iff $(\Sigma^{-1})_{11}$ is diagonal, which is also

$$\Sigma_{xy}^{-1} = 0$$

Covariance Selection

Suppose we have iid noise $\epsilon_i \sim \mathcal{N}(0,1)$ and the following linear model

$$\begin{array}{ll} x &= z + \epsilon_1 \\ y &= z + \epsilon_2 \\ z &= \epsilon_3 \end{array}$$

Graphically, this is

The covariance matrix and inverse covariance are given by

$$\Sigma = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \Sigma^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

- The inverse covariance matrix has Σ_{12}^{-1} clearly showing that the variables x and y are independent conditioned on z.
- Graphically, this is again

Let $I \bigoplus J = [1, n]^2$, Dempster [1972] shows:

- Maximum Entropy. Among all Gaussian models Σ such that $\Sigma_{ij} = S_{ij}$ on J, the choice $\hat{\Sigma}_{ij}^{-1} = 0$ on I has maximum entropy.
- Maximum Likelihood. Among all Gaussian models Σ such that $\Sigma_{ij}^{-1} = 0$ on I, the choice $\hat{\Sigma}_{ij} = S_{ij}$ on J has maximum likelihood.
- **Existence and Uniqueness**. If there is a positive semidefinite matrix $\hat{\Sigma}_{ij}$ satisfying $\hat{\Sigma}_{ij} = S_{ij}$ on J, then **there is only one** such matrix satisfying $\hat{\Sigma}_{ij}^{-1} = 0$ on I.

- Gene expression data. The sample data is composed of gene expression vectors and we want to isolate links in the expression of various genes. See Dobra et al. [2004], Dobra and West [2004] for example.
- Speech Recognition. See Bilmes [1999], Bilmes [2000] or Chen and Gopinath [1999].
- Related work by Dahl et al. [2005]: interior point methods for sparse MLE.

Estimating covariance matrices from financial data.

Asset returns are given by (schematically)

$$\Delta S_t = \Delta M_t + \epsilon_t$$

where

- $\circ M_t$ is the **market** return
- $\circ \epsilon_t$ is an **idiosyncratic** component
- All assets are usually highly correlated: M_t dominates the picture. We are only interested in the correlation between ϵ_t for various assets.
- The inverse matrix is also used to computed portfolios on the efficient frontier for CAPM.

Introduction

Penalized maximum likelihood estimation

- Algorithms & complexity
- Consistency
- Graph layout
- Numerical experiments

Penalized Maximum Likelihood Estimation

Akaike [1973]: **penalize** the likelihood function:

$$\max_{X \in \mathbf{S}^n} \log \det X - \mathbf{Tr}(SX) - \rho \, \mathbf{Card}(X)$$

where Card(X) is the number of nonzero elements in X.

Of course, this is a (NP-Hard) combinatorial problem. . .

• We can form a **convex relaxation** of AIC or BIC penalized MLE

$$\max_{X \in \mathbf{S}^n} \log \det X - \mathbf{Tr}(SX) - \rho \, \mathbf{Card}(X)$$

replacing $\mathbf{Card}(X)$ by $||X||_1 = \sum_{ij} |X_{ij}|$ to solve

$$\max_{X \in \mathbf{S}^n} \log \det X - \mathbf{Tr}(SX) - \rho \|X\|_1$$

- Classic l_1 heuristic: $||X||_1$ is a convex lower bound on Card(X).
- Heavily used in statistics and signal processing. See Donoho and Tanner [2005], Candès and Tao [2005] on compressed sensing, sparse recovery for penalized regression.

- Introduction
- Penalized maximum likelihood estimation
- Algorithms & complexity
- Consistency
- Graph layout
- Numerical experiments

The problem

$$\max_{X \in \mathbf{S}^n} \log \det X - \mathbf{Tr}(SX) - \rho \|X\|_1$$

is **convex** in the variable $X \in \mathbf{S}_n$. This means that we can get explicit complexity bounds and efficient algorithms.

- Standard convex optimization algorithms easily solve small instances. (see Boyd and Vandenberghe [2004])
- Specialized techniques solve larger problems with complexity O(n^{4.5}). We can exploit the block structure of the dual. Cost per iteration comparable to that of a penalized regression (LASSO).
- In practice, we can get a good solution with complexity $O(n^{3.5})$. A bit harder than computing a matrix inverse. . .

Complexity options. . .

First-order	Smooth	Newton IP	Complexity
$O(1/\epsilon^2)$	$O(1/\epsilon)$	$O(\log(1/\epsilon))$	
			Memory
O(n)	O(n)	$O(n^2)$	>

The convex relaxation of the covariance selection problem has a particular min-max structure

$$\max_{X \in \mathbf{S}^n} \min_{|U_{ij}| \le \rho} \log \det X - \mathbf{Tr}((S+U)X)$$

- This min-max representation means that we use prox function algorithms by Nesterov [2005] (see also Nemirovski [2004]) to solve large, dense problem instances.
- We also detail a "greedy" block-coordinate descent method with good empirical performance.

Assuming that a problem can be written according to this min-max model, the algorithm works as follows. . .

- Regularization. Add strongly convex penalty inside the min-max representation to produce an ε-approximation of f with Lipschitz continuous gradient (generalized Moreau-Yosida regularization step, see Lemaréchal and Sagastizábal [1997] for example).
- Optimal first order minimization. Use optimal first order scheme for Lipschitz continuous functions detailed in Nesterov [1983] to the solve the regularized problem.

Nesterov's method

Regularization. The objective is first smoothed by penalization. We solve the following (modified) problem

 $\max_{\{X \in \mathbf{S}^n: \alpha I_n \preceq X \preceq \beta I_n\}} \min_{\{U \in \mathbf{S}^n: |U_{ij}| \le \rho\}} \log \det X - \mathbf{Tr}((S - U)X) - (\epsilon/2D_2)d_2(U)$

an ϵ approximation of the original problem if $\alpha \leq 1/(||S|| + n\rho)$ and $\beta \geq n/\rho$.

- Prox on $Q_2 := \{U \in \mathcal{S}^n : \|U\|_{\infty} \le 1\}$ is $d_2(U) = \frac{1}{2} \operatorname{Tr}(U^T U) = \frac{1}{2} \|U\|^2$
- Prox $d_1(X)$ for the set $\{\alpha I_n \preceq X \preceq \beta I_n\}$ given by

$$d_1(X) = -\log \det X + \log \beta$$

This corresponds to a classic Moreau-Yosida regularization of the penalty $||X||_1$ and the function f_{ϵ} has a Lipschitz continuous gradient with constant

$$L_{\epsilon} := M + D_2 \rho^2 / (2\epsilon)$$

Optimal first-order minimization. The minimization algorithm in Nesterov [1983] then involves the following steps

Choose $\epsilon > 0$ and set $X_0 = \beta I_n$, For $k = 0, \ldots, N(\epsilon)$ do

1. Compute
$$\nabla f_{\epsilon}(X_k) = -X^{-1} + \Sigma + U^*(X_k)$$

2. Find
$$Y_k = \arg\min_Y \left\{ \operatorname{Tr}(\nabla f_{\epsilon}(X_k)(Y - X_k)) + \frac{1}{2}L_{\epsilon} \| Y - X_k \|_F^2 : Y \in \mathcal{Q}_1 \right\}.$$

3. Find

$$Z_k = \arg \min_X \left\{ L_{\epsilon} \beta^2 d_1(X) + \sum_{i=0}^k \frac{i+1}{2} \operatorname{Tr}(\nabla f_{\epsilon}(X_i)(X - X_i)) : X \in \mathcal{Q}_1 \right\}.$$

4. Update
$$X_k = \frac{2}{k+3}Z_k + \frac{k+1}{k+3}Y_k$$
.

A. d'Aspremont, TSE, November 2011.

At each iteration

- **Step 1:** only amounts to computing the **inverse** of X and the (explicit) solution to the regularized subproblem on Q_2 .
- **Steps 2 and 3:** are both projections on $Q_1 = \{\alpha I_n \leq X \leq \beta I_n\}$ and require an **eigenvalue decomposition**.

This means that the total complexity estimate of the method is

$$O\left(\frac{\kappa\sqrt{(\log\kappa)}}{\epsilon}n^{4.5}\alpha\rho\right)$$

where $\log \kappa = \log(\beta/\alpha)$ bounds the solution's condition number.

Dual block-coordinate descent

Here we consider the dual of the original problem

$$\begin{array}{ll} \mbox{maximize} & \log \det(S+U) \\ \mbox{subject to} & \|U\|_{\infty} \leq \rho \\ & S+U \succeq 0 \end{array}$$

• Let C = S + U be the current iterate, after permutation we can always assume that we optimize over the last column

$$\begin{array}{ll} \mbox{maximize} & \log \det \left(\begin{array}{cc} C^{11} & C^{12} + u \\ C^{21} + u^T & C^{22} \end{array} \right) \\ \mbox{subject to} & \|u\|_{\infty} \leq \rho \end{array}$$

where C^{12} is the last column of C (off-diag.).

Each iteration reduces to a simple box-constrained QP

$$\begin{array}{ll} \mbox{minimize} & u^T(C^{11})^{-1}u\\ \mbox{subject to} & \|u\|_\infty \leq \rho \end{array}$$

- Introduction
- Penalized maximum likelihood estimation
- Algorithms & complexity
- Consistency
- Graph layout
- Numerical experiments

Proposition 1

Consistency. Let \hat{C}_k^{λ} denote our estimate of the connectivity component of node k. Let α be a given level in [0,1]. Consider the following choice for the penalty parameter

$$\lambda(\alpha) := (\max_{i>j} \hat{\sigma}_i \hat{\sigma}_j) \frac{t_{n-2}(\alpha/2p^2)}{\sqrt{n-2 + t_{n-2}^2(\alpha/2p^2)}}$$
(1)

where $t_{n-2}(\alpha)$ denotes the $(100 - \alpha)\%$ point of the Student's t-distribution for n-2 degrees of freedom, and $\hat{\sigma}_i$ is the empirical variance of variable *i*. Then

$$\mathbf{Prob}(\exists k \in \{1, \dots, p\} : \hat{C}_k^{\lambda} \not\subseteq C_k) \leq \alpha.$$

Proof. Argument similar to Meinshausen and Buhlmann [2006].

In practice, we can use cross-validation

- Remove a random subset of the variables and compute the inverse covariance matrix.
- Compute the pattern of zeros.
- Repeat the procedure for various variable subsets and various values of the penalty ρ.

How do we pick the value of the penalty parameter ρ ?

- We pick the ρ minimizing the variability of these dependence relationships across samples.
- Also, dependence relationships which show up in most subsampled networks are considered more reliable.

- Introduction
- Penalized maximum likelihood estimation
- Algorithms & complexity
- Consistency
- Graph layout
- Numerical experiments

Dependence Network Layout

How do we represent these results?

- Turn the pattern of zeros in the inverse covariance into a graph.
- Use graph visualization algorithms to layout this graph.

Trickier than it sounds. . .

- Graph layout problems are usually very hard. Again, good approximation algorithms exist.
- Many possible representations.
- Some coefficients are close to zero (numerical noise): threshold.

Network Interpretation

Many characteristics of the graph have a statistical interpretation.

 if the graph is chordal, then there is a linear/Gaussian model with the same sparsity pattern (see Wermuth [1980] for an early reference on linear recursive models and path analysis).

Left: a chordal graphical model: no cycles of length greater than three. *Right:* a non-chordal graphical model of U.S. swap rates.

Network Interpretation

If there is a path between two nodes on a graph, then the corresponding variables have nonzero covariance (see Gilbert [1994] for a survey of graph theory/sparse linear algebra).

Left: connected model of U.S. swap rates, with dense covariance matrix. *Right:* disconnected model, the covariance matrix is block-diagonal.

- Introduction
- Penalized maximum likelihood estimation
- Algorithms & complexity
- Consistency
- Graph layout
- Numerical experiments

Sparse covariance model. *Left:* ROC curves for both thresholding and covariance selection using 20 samples to compute the covariance. *Right:* Binary dependence classification performance of inverse sample covariance thresholding (THRES) and covariance selection (COVSEL) for various sample sizes, measured by area under ROC curve.

Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.

 $\rho = 0$

 $\rho = .01$

Foreign exchange rates

Graph of conditional covariance among a cluster of U.S. dollar exchange rates. Positive dependencies are plotted as green links, negative ones in red, thickness reflects the magnitude of the covariance.

S&P 500

- We track 116 hedge funds between January 1995 and December 2005.
- Monthly hedge fund returns from the Center for International Securities and Derivatives Markets hedge fund database, via WRDS.
- Hedge fund nodes are colored to represent their primary strategy.

Hedge fund returns

Hedge fund returns: strategies

Hedge fund returns: markets

Conclusion

- Covariance selection highlights key dependence structure.
- Very good statistical performance compared to thresholding techniques.
- Results are often intuitive.
- Slides, papers and MATLAB software available at:

http://www.cmap.polytechnique.fr/~aspremon

R package using a pathwise algorithm at

http://cran.r-project.org/web/packages/Covpath/index.html

• A free network layout software called cytoscape:

http://www.cytoscape.org

References

- J. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, *Second international symposium on information theory*, pages 267–281, Budapest, 1973. Akedemiai Kiado.
- J. A. Bilmes. Natural statistic models for automatic speech recognition. Ph.D. thesis, UC Berkeley, Dept. of EECS, CS Division, 1999.
- J. A. Bilmes. Factored sparse inverse covariance matrices. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203-4215, 2005.
- S. S. Chen and R. A. Gopinath. Model selection in acoustic modeling. EUROSPEECH, 1999.
- J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation of gaussian graphical models: numerical implementation and topology selection. *Preprint*, 2005.
- A. Dempster. Covariance selection. Biometrics, 28:157-175, 1972.
- A. Dobra and M. West. Bayesian covariance selection. working paper, 2004.
- A. Dobra, C. Hans, B. Jones, J.R. J. R. Nevins, G. Yao, and M. West. Sparse graphical models for exploring gene expression data. *Journal of Multivariate Analysis*, 90(1):196–212, 2004.
- D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. *Proc. of the National Academy of Sciences*, 102(27):9446–9451, 2005.
- J.R. Gilbert. Predicting Structure in Sparse Matrix Computations. SIAM Journal on Matrix Analysis and Applications, 15(1):62-79, 1994.
- C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. *SIAM Journal on Optimization*, 7(2):367–385, 1997.
- N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3):1436–1462, 2006.
- A. Nemirovski. Prox-method with rate of convergence O(1/T) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. *SIAM Journal on Optimization*, 15(1):229–251, 2004.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Mathematics Doklady, 27(2): 372–376, 1983.
- Y. Nesterov. Smooth minimization of non-smooth functions. *Mathematical Programming*, 103(1):127–152, 2005.
- N. Wermuth. Linear Recursive Equations, Covariance Selection, and Path Analysis. *Journal of the American Statistical Association*, 75(372): 963–972, 1980.