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Introduction

We seek to solve the following underdetermined linear system

where A € R™*™ with n > m, assuming the solution is sparse.
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[1 decoding

minimize  Card(x) minimize  ||x|1
subject to Ax = Ae becomes subject to Ax = Ae

= Donoho and Tanner [2005], Candés and Tao [2005]:

For some matrices A, when the solution e is sparse enough, the solution of the
¢1-minimization problem is also the sparsest solution to Ax = Ae.

m This happens even when

Card(e):O( - )

log(n/m)

when m = pn and n — oo, which is provably optimal.
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[1 decoding

Many variants:

m [ he observations could be noisy.
m Approximate solutions might be sufficient.
s We might have strict computational limits on the decoding side.

m T he regression setting has different objectives.

In this talk:

m Use the simplest linear coding problem formulation.

m Focus on the complexity of recovery conditions.
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[1 decoding: conditions

Conditions on the coding matrix A which guarantee recovery of all signals up to
some cardinality k.

m Incoherence: bounds on the correlation between measurements

u(A) = max |AT 4,

i<j
= Nullspace property: there is some o < 1/2 such that
|z||k1 < agl|x|1, forall x e N(A)

= Restricted Isometry: Let F s.t. AF =0 and 0x(F) = max{d™"® 6%} with

1:|:5max/min — max./min. zl(FF)x
k
s.t. Card(x) < k
Jz]| =1,

m Etc. .. Seee.g. tutorial by [Indyk, 2008] or paper by [Van De Geer and
BiihImann, 2009]
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[1 decoding: main objective

Produce a score to identify good coding matrices A?

= ldeally: Given a matrix A, compute best threshold k(A) such that exact
l1-decoding is guaranteed for all signals of cardinality up to k(A).

m In reality: Exact thresholds are hard to compute. We would be happy with
tractable scores which correlate with k(A) but are easier evaluate.
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[1 decoding: main objective

Example: fix A, draw many random sparse signals ¢ and plot the probability of
perfectly recovering e when solving

iIn £ € R™ over 100

A. d'Aspremont

minimize  ||x|1
subject to Az = Ae

samples, with n = 50 and m = 30.

Prob. of recovering e
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Motivation: dictionary learning

Consider the following dictionary learning problem [Mairal, Bach, Ponce, and
Sapiro, 2009]. Given sample points x; € R™, solve

min l(x;, D)
DeC -

In the variable D, where the loss function is defined as
: 2
(3, D) = min ||lz; — Del; + Alle]l
and C is some convex set. Mostly in a compression context here.

m The ||a||1 penalty, as a proxy for cardinality, seeks “good signals”.

= Usually, the set C is a norm ball, e.g. a normalization constraint ||D;||2 < 1,
which allows to identify D and «.

This is learning without penalization, i.e. potentially low generalization power.

How do we efficiently characterize good dictionaries?
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[1 decoding: conditions

A long wish list. . . Ideally, dictionary metrics should have the following features.

= Universality: prove reconstruction for all signals (or at least most signals).
= Invariance: recovery is a property of the nullspace only.
s Low complexity: tested in polynomial-time.

m Error bound: bound the decoding error.
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[1 decoding conditions: complexity

Conditions on the coding matrix A which guarantee recovery of all signals up to
some cardinality k.

m Incoherence: Not universal, not invariant, easy to test but only guarantees
recovery of signals of size O(v/k*) when the best performance is O(k*).

m Restricted Isometry: Universal, invariant. Also hard to test: the relaxation
in d'Aspremont et al. [2007] shows recovery at cardinality k = O(vk*) when A
satisfies RIP at the threshold £*. It provably cannot do better than that.

m Nullspace property: Universal, invariant. Hard to test: relaxations in
d'Aspremont and El Ghaoui [2011], Juditsky and Nemirovski [2011] can prove
exact recovery at cardinality & = O(vk*) when A satisfies RIP at the
threshold £*. They provably cannot do better than that.
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Outline

m Introduction
m Geometrical conditions

m Bounding the diameter
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Geometrical conditions
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Diameter

Kashin and Temlyakov [2007]: Very simple relationship between diameter of a
section by A of the ¢ ball and the recovery threshold k (largest signal size for

which perfect recovery holds).

Diameter & Recovery threshold. Given a coding matrix A € R™*™, we write
Y the solution of the ¢1-minimization LP and e the true signal. Suppose that

there is some k > 0 such that

diam (B NN (A)) = Sup ]l < — (1)

then sparse recovery Y = e is guaranteed if Card(e) < k/4, and

— P < 4 ' —ylly.
e — 2™ < Card i) le = yl1

A. d'Aspremont SMILE, January 2012. 13/25



Diameter

Proof. Kashin and Temlyakov [2007]. Suppose

sup ||z|l2 < L—1/2

Ax=0
|lz][1<1

If x satisfies Ax = 0, for any support set A with |A| < k/4,

Do < ) il < VIAlllzll: < VIA/K 2zl < llz]i/2,

€A €A

Let u be the true signal, with Card(u) < k/4 and A = supp(u) and let v # u
such that x = v — wu satisfies Ax = 0, then

ol =) Jwitm |+l =) il = ) = [ulliHwli—2) il

iEA i¢ A iEA iEA i¢ A iEA
and
lzls —2)  Jai >0
iEA

LP

means that ||v||1 > ||u||1, so ™" = u. The error bound follows from similar arg.
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Kashin decompostion

Results giving bounds on the diameter of random sections of the /;-ball can be
traced back to Dvoretzky's theorem and the Kashin decomposition.

s Kashin decomposition [Kashin, 1977]. Given n = 2m, there exists two
orthogonal m-dimensional subspaces E1, F'5 C R™ such that

1 1
§||5’3H2 < —||z||1 < ||z||2, forall z € B4 U Es,

NG

in fact, most m-dimensional subspaces satisfy this relationship.

m For these subspaces, we have

8

and we can guarantee /7 recovery of all signals up to cardinality n/64 if we
use a coding matrix with nullspace E;.
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Diameter & Random Sections

Schematically...

A

Diameter

The diameter diam (BT N F) decreases w.h.p. for smaller random sections, until
these sections become almost spherical after which it does not change.
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Diameter, low M™* estimate

Low M* estimate. Let K be a symmetric convex body and EE C R" be a
subspace of codimension k chosen uniformly w.r.t. to the Haar measure on G, ,,_p,

then
diam(K N FE) < c\/%M(K*) — c\/% / ||| k+do (x)
n—1

with probability 1 — e~* where ¢ is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.

¢1-decoding: We have M (BZ) ~ \/logn/n asymptotically. This means that
random sections of the ¢; ball with dimension n — k have diameter bounded by

logn
k

diam(BT NFE) <c

with high probability, where c is an absolute constant (a more precise analysis
allows the log term to be replaced by log(n/k)).
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Deterministic Bounds on the Diameter
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Bounding the diameter

Can we efficiently approximate the diameter of a given section of the ¢; ball?

= Lovasz and Simonovits [1992] show that if we only have access to an oracle for
a convex body K, then there is no randomized polynomial time algorithm to
approximate the diameter of K within a factor n!/4.

m Here however, we have much more information on the set K than a simple
oracle. We know that
K ={B'NN((A)}.
The complexity of computing or approximating the diameter of such a set is
unknown.

A. d'Aspremont SMILE, January 2012. 19/25



Bounding the diameter

Simple SDP relaxation: to bound

diam(BT NN (A)) = sup |z,

Ax=0
lz][1<1
given a coding matrix A, we solve

SDP(A) &  max Tr X
Tr(AT AX)=0
1 X([1<1, X=0

which is a semidefinite program in X € S,, (this is the classical lifting procedure
where have have set X = za!). By construction

diam (B} NN (A))? < SDP(A).
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Bounding the diameter

Relaxation performance. Suppose A € R™*" satisfies diam(K N E) < 1/Vk

the semidefinite relaxation will satisfy

=

VSDP(A) < k™

Suppose now that n=2m, then we also have (2n)~*/* < \/SDP(A) and the
semidefinite relaxation will certify exact decoding of all signals of cardinality at

most O(y/m).

These results mean that the SDP relaxation will certify recovery at the threshold
V'k when the true threshold is k, it cannot do better than that.
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Estimating M~

The low-M* bound shows that we can use M ™ as a good proxy for the
diameter. . .

s We can apply the low-A* bound in the normed space {R" " | Fy|}, where
AF = 0, instead of the original normed space {R", ||y||1}.

s Approximating M*({||Fy|[1 < 1}) simply means solving a lot of LPs.

m A section of a section is a section: taking random sections of this norm ball
simply means adding a few random rows to the matrix A.

m From a compressed sensing point of view, M*({||Fy||1 < 1}) simply measures
how many additional experiments it would take to reach a given recovery
performance with high probability.
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Estimating M~

= We can estimate M (K™) by simulation [Bourgain et al., 1988, Giannopoulos
and Milman, 1997, Giannopoulos et al., 2005]: if K C R" is a symmetric
convex body, 0 < 9,5 < 1 and we pick N points z; uniformly at random on
the sphere S*~! with
clog(2/6)

N = 52

+1

where ¢ is an absolute constant, then
| N

M(K™) — NZ il x| < OM(K)
i=1

with probability 1 — 3. Each sample requires solving a linear program.

m With high probability, we get a bound on the coding performance of the
“enhanced” matrix A (A plus a few random measurements).
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Estimating M~

For good CS matrices, the bound (1/M*)?, which roughly controls the sparse
recovery threshold through the low M™ estimate, should grow almost linearly
with m

We estimate M* for Gaussian sections of the ¢; ball in R?%0, averaging 250
samples for each m and plot (1/M*)? (dotted lines at 95% confidence).
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Conclusion

= Increasingly large list of quality metrics for linear codes/dictionaries.
m Outside of coherence, most appear to be hard to approximate.

m Randomized polynomial time algorithm for testing the performance of slightly
“enhanced” matrices.

m Direct connection with classical approximation problems.

Some open problems. . .

m Diameter and width are NP-Hard to approximate in the oracle model, but we
have more structural information here. . .

m Can we derive deterministic bounds on M* instead?

m Low M estimates also give bounds on the diameter. Estimating the Dvoretzky
dimension for sections of the /1 ball is equivalent to solving a MAXCUT like
problem. The /2 approximation bound is insufficient here, can we do better?

m Use stochastic optimization algorithms for dictionary learning?
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