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Introduction

We seek to solve the following underdetermined linear system

n

m

A x =

=

b

where A ∈ Rm×n, with n ≥ m, assuming the solution is sparse.
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l1 decoding

minimize Card(x)
subject to Ax = Ae becomes

minimize ‖x‖1
subject to Ax = Ae

� Donoho and Tanner [2005], Candès and Tao [2005]:

For some matrices A, when the solution e is sparse enough, the solution of the
`1-minimization problem is also the sparsest solution to Ax = Ae.

� This happens even when

Card(e) = O

(
m

log(n/m)

)
when m = ρn and n→∞, which is provably optimal.
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l1 decoding

Many variants:

� The observations could be noisy.

� Approximate solutions might be sufficient.

� We might have strict computational limits on the decoding side.

� The regression setting has different objectives.

In this talk:

� Use the simplest linear coding problem formulation.

� Focus on the complexity of recovery conditions.
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l1 decoding: conditions

Conditions on the coding matrix A which guarantee recovery of all signals up to
some cardinality k.

� Incoherence: bounds on the correlation between measurements

µ(A) = max
i<j
|ATi Aj|

� Nullspace property: there is some αk < 1/2 such that

‖x‖k,1 ≤ αk‖x‖1, for all x ∈ N (A)

� Restricted Isometry: Let F s.t. AF = 0 and δk(F ) = max{δmin
k , δmax

k } with

(1± δmax/min
k ) = max./min. xT (FFT )x

s.t. Card(x) ≤ k
‖x‖ = 1,

� Etc. . . See e.g. tutorial by [Indyk, 2008] or paper by [Van De Geer and
Bühlmann, 2009]
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l1 decoding: main objective

Produce a score to identify good coding matrices A?

� Ideally: Given a matrix A, compute best threshold k(A) such that exact
l1-decoding is guaranteed for all signals of cardinality up to k(A).

� In reality: Exact thresholds are hard to compute. We would be happy with
tractable scores which correlate with k(A) but are easier evaluate.
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l1 decoding: main objective

Example: fix A, draw many random sparse signals e and plot the probability of
perfectly recovering e when solving

minimize ‖x‖1
subject to Ax = Ae

in x ∈ Rn over 100 samples, with n = 50 and m = 30.
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Motivation: dictionary learning

Consider the following dictionary learning problem [Mairal, Bach, Ponce, and
Sapiro, 2009]. Given sample points xi ∈ Rm, solve

min
D∈C

∑
i

`(xi, D)

in the variable D, where the loss function is defined as

`(xi, D) = min
α
‖xi −Dα‖22 + λ‖α‖1

and C is some convex set. Mostly in a compression context here.

� The ‖α‖1 penalty, as a proxy for cardinality, seeks “good signals”.

� Usually, the set C is a norm ball, e.g. a normalization constraint ‖Di‖2 ≤ 1,
which allows to identify D and α.

This is learning without penalization, i.e. potentially low generalization power.

How do we efficiently characterize good dictionaries?
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l1 decoding: conditions

A long wish list. . . Ideally, dictionary metrics should have the following features.

� Universality: prove reconstruction for all signals (or at least most signals).

� Invariance: recovery is a property of the nullspace only.

� Low complexity: tested in polynomial-time.

� Error bound: bound the decoding error.
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l1 decoding conditions: complexity

Conditions on the coding matrix A which guarantee recovery of all signals up to
some cardinality k.

� Incoherence: Not universal, not invariant, easy to test but only guarantees
recovery of signals of size O(

√
k∗) when the best performance is O(k∗).

� Restricted Isometry: Universal, invariant. Also hard to test: the relaxation
in d’Aspremont et al. [2007] shows recovery at cardinality k = O(

√
k∗) when A

satisfies RIP at the threshold k∗. It provably cannot do better than that.

� Nullspace property: Universal, invariant. Hard to test: relaxations in
d’Aspremont and El Ghaoui [2011], Juditsky and Nemirovski [2011] can prove
exact recovery at cardinality k = O(

√
k∗) when A satisfies RIP at the

threshold k∗. They provably cannot do better than that.
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Outline

� Introduction

� Geometrical conditions

� Bounding the diameter
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Geometrical conditions

A. d’Aspremont SMILE, January 2012. 12/25



Diameter

Kashin and Temlyakov [2007]: Very simple relationship between diameter of a
section by A of the `1 ball and the recovery threshold k (largest signal size for
which perfect recovery holds).

Proposition 2

Diameter & Recovery threshold. Given a coding matrix A ∈ Rm×n, we write
xLP the solution of the `1-minimization LP and e the true signal. Suppose that
there is some k > 0 such that

diam(Bn1 ∩N (A)) = sup
Ax=0
‖x‖1≤1

‖x‖2 ≤
1√
k

(1)

then sparse recovery xLP = e is guaranteed if Card(e) < k/4, and

‖e− xLP‖1 ≤ 4 min
{Card(y)≤k/16}

‖e− y‖1.

A. d’Aspremont SMILE, January 2012. 13/25



Diameter

Proof. Kashin and Temlyakov [2007]. Suppose

sup
Ax=0
‖x‖1≤1

‖x‖2 ≤ k−1/2

If x satisfies Ax = 0, for any support set Λ with |Λ| < k/4,∑
i∈Λ

xi ≤
∑
i∈Λ

|xi| ≤
√
|Λ| ‖x‖2 ≤

√
|Λ|/k ‖x‖1 < ‖x‖1/2,

Let u be the true signal, with Card(u) < k/4 and Λ = supp(u) and let v 6= u
such that x = v − u satisfies Ax = 0, then

‖v‖1 =
∑
i∈Λ

|ui+xi|+
∑
i/∈Λ

|xi| ≥
∑
i∈Λ

|ui|−
∑
i∈Λ

|xi|+
∑
i/∈Λ

|xi| = ‖u‖1+‖x‖1−2
∑
i∈Λ

|xi|

and
‖x‖1 − 2

∑
i∈Λ

|xi| > 0

means that ‖v‖1 > ‖u‖1, so xLP = u. The error bound follows from similar arg.
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Kashin decompostion

Results giving bounds on the diameter of random sections of the `1-ball can be
traced back to Dvoretzky’s theorem and the Kashin decomposition.

� Kashin decomposition [Kashin, 1977]. Given n = 2m, there exists two
orthogonal m-dimensional subspaces E1, E2 ⊂ Rn such that

1

8
‖x‖2 ≤

1√
n
‖x‖1 ≤ ‖x‖2, for all x ∈ E1 ∪ E2,

in fact, most m-dimensional subspaces satisfy this relationship.

� For these subspaces, we have

diam(Bn1 ∩ Ei) ≤
8√
n
, i = 1, 2,

and we can guarantee `1 recovery of all signals up to cardinality n/64 if we
use a coding matrix with nullspace Ei.
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Diameter & Random Sections

Schematically...

n/2 n

D
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r

The diameter diam(Bn1 ∩ E) decreases w.h.p. for smaller random sections, until
these sections become almost spherical after which it does not change.
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Diameter, low M∗ estimate

Theorem 3

Low M∗ estimate. Let K be a symmetric convex body and E ⊂ Rn be a
subspace of codimension k chosen uniformly w.r.t. to the Haar measure on Gn,n−k,
then

diam(K ∩ E) ≤ c
√
n

k
M(K∗) = c

√
n

k

∫
Sn−1
‖x‖K∗dσ(x)

with probability 1− e−k, where c is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.

`1-decoding: We have M(Bn∞) ∼
√

log n/n asymptotically. This means that
random sections of the `1 ball with dimension n− k have diameter bounded by

diam(Bn1 ∩ E) ≤ c
√

log n

k

with high probability, where c is an absolute constant (a more precise analysis
allows the log term to be replaced by log(n/k)).
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Deterministic Bounds on the Diameter
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Bounding the diameter

Can we efficiently approximate the diameter of a given section of the `1 ball?

� Lovasz and Simonovits [1992] show that if we only have access to an oracle for
a convex body K, then there is no randomized polynomial time algorithm to
approximate the diameter of K within a factor n1/4.

� Here however, we have much more information on the set K than a simple
oracle. We know that

K = {Bn1 ∩N (A)}.
The complexity of computing or approximating the diameter of such a set is
unknown.
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Bounding the diameter

Simple SDP relaxation: to bound

diam(Bn1 ∩N (A)) = sup
Ax=0
‖x‖1≤1

‖x‖2,

given a coding matrix A, we solve

SDP (A) , max
Tr(ATAX)=0
‖X‖1≤1, X�0

TrX

which is a semidefinite program in X ∈ Sn (this is the classical lifting procedure
where have have set X = xxT ). By construction

diam(Bn1 ∩N (A))2 ≤ SDP (A).
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Bounding the diameter

Proposition 4

Relaxation performance. Suppose A ∈ Rm×n satisfies diam(K ∩ E) ≤ 1/
√
k

the semidefinite relaxation will satisfy√
SDP (A) ≤ k−1

4

Suppose now that n=2m, then we also have (2n)−1/4 ≤
√
SDP (A) and the

semidefinite relaxation will certify exact decoding of all signals of cardinality at
most O(

√
m).

These results mean that the SDP relaxation will certify recovery at the threshold√
k when the true threshold is k, it cannot do better than that.
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Estimating M∗

The low-M∗ bound shows that we can use M∗ as a good proxy for the
diameter. . .

� We can apply the low-M∗ bound in the normed space
{
Rn−k, ‖Fy‖1

}
, where

AF = 0, instead of the original normed space {Rn, ‖y‖1}.
� Approximating M∗({‖Fy‖1 ≤ 1}) simply means solving a lot of LPs.

� A section of a section is a section: taking random sections of this norm ball
simply means adding a few random rows to the matrix A.

� From a compressed sensing point of view, M∗({‖Fy‖1 ≤ 1}) simply measures
how many additional experiments it would take to reach a given recovery
performance with high probability.
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Estimating M∗

� We can estimate M(K∗) by simulation [Bourgain et al., 1988, Giannopoulos
and Milman, 1997, Giannopoulos et al., 2005]: if K ⊂ Rn is a symmetric
convex body, 0 < δ, β < 1 and we pick N points xi uniformly at random on
the sphere Sn−1 with

N =
c log(2/β)

δ2
+ 1

where c is an absolute constant, then∣∣∣∣∣M(K∗)− 1

N

N∑
i=1

‖xi‖K∗
∣∣∣∣∣ ≤ δM(K∗)

with probability 1− β. Each sample requires solving a linear program.

� With high probability, we get a bound on the coding performance of the
“enhanced” matrix A (A plus a few random measurements).
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Estimating M∗

For good CS matrices, the bound (1/M∗)2, which roughly controls the sparse
recovery threshold through the low M∗ estimate, should grow almost linearly
with m

We estimate M∗ for Gaussian sections of the `1 ball in R200, averaging 250
samples for each m and plot (1/M∗)2 (dotted lines at 95% confidence).
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Conclusion

� Increasingly large list of quality metrics for linear codes/dictionaries.

� Outside of coherence, most appear to be hard to approximate.

� Randomized polynomial time algorithm for testing the performance of slightly
“enhanced” matrices.

� Direct connection with classical approximation problems.

Some open problems. . .

� Diameter and width are NP-Hard to approximate in the oracle model, but we
have more structural information here. . .

� Can we derive deterministic bounds on M∗ instead?

� Low M estimates also give bounds on the diameter. Estimating the Dvoretzky
dimension for sections of the `1 ball is equivalent to solving a MAXCUT like
problem. The π/2 approximation bound is insufficient here, can we do better?

� Use stochastic optimization algorithms for dictionary learning?
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