Semidefinite Programming with Applications

 in Geometry and Machine Learning.Part Two.

Alexandre d'Aspremont, CNRS \& Ecole Polytechnique.

Support from NSF, ERC SIPA and Google.

Introduction

We seek to solve the following underdetermined linear system

where $A \in \mathbb{R}^{m \times n}$, with $n \geq m$, assuming the solution is sparse.

$\operatorname{minimize}$	$\operatorname{Card}(x)$		
subject to	$A x=A e$	\quad becomes \quad	minimize
:---	$\|x\|_{1}$, subject to $A x=A e$		

- Donoho and Tanner [2005], Candès and Tao [2005]:

For some matrices A, when the solution e is sparse enough, the solution of the ℓ_{1}-minimization problem is also the sparsest solution to $A x=A e$.

■ This happens even when

$$
\operatorname{Card}(\mathbf{e})=\mathbf{O}\left(\frac{\mathbf{m}}{\log (\mathbf{n} / \mathbf{m})}\right)
$$

when $m=\rho n$ and $n \rightarrow \infty$, which is provably optimal.

Many variants:

- The observations could be noisy.
- Approximate solutions might be sufficient.
- We might have strict computational limits on the decoding side.
- The regression setting has different objectives.

In this talk:

- Use the simplest linear coding problem formulation.
- Focus on the complexity of recovery conditions.

l_{1} decoding: conditions

Conditions on the coding matrix A which guarantee recovery of all signals up to some cardinality k.

- Incoherence: bounds on the correlation between measurements

$$
\mu(A)=\max _{i<j}\left|A_{i}^{T} A_{j}\right|
$$

- Nullspace property: there is some $\alpha_{k}<1 / 2$ such that

$$
\|x\|_{k, 1} \leq \alpha_{k}\|x\|_{1}, \quad \text { for all } x \in \mathcal{N}(A)
$$

- Restricted Isometry: Let F s.t. $A F=0$ and $\delta_{k}(F)=\max \left\{\delta_{k}^{\min }, \delta_{k}^{\max }\right\}$ with

$$
\begin{array}{ll}
\left(1 \pm \delta_{k}^{\max / \min }\right)=\underset{\max . / \min .}{ } & x^{T}\left(F F^{T}\right) x \\
\text { s.t. } & \operatorname{Card}(x) \leq k \\
& \|x\|=1
\end{array}
$$

- Etc. . . See e.g. tutorial by [Indyk, 2008] or paper by [Van De Geer and Bühlmann, 2009]

l_{1} decoding: main objective

Produce a score to identify good coding matrices A ?

- Ideally: Given a matrix A, compute best threshold $k(A)$ such that exact l_{1}-decoding is guaranteed for all signals of cardinality up to $k(A)$.
- In reality: Exact thresholds are hard to compute. We would be happy with tractable scores which correlate with $k(A)$ but are easier evaluate.

l_{1} decoding: main objective

Example: fix A, draw many random sparse signals e and plot the probability of perfectly recovering e when solving

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=A e
\end{array}
$$

in $x \in \mathbb{R}^{n}$ over 100 samples, with $n=50$ and $m=30$.

Motivation: dictionary learning

Consider the following dictionary learning problem [Mairal, Bach, Ponce, and Sapiro, 2009]. Given sample points $x_{i} \in \mathbb{R}^{m}$, solve

$$
\min _{D \in \mathcal{C}} \sum_{i} \ell\left(x_{i}, D\right)
$$

in the variable D, where the loss function is defined as

$$
\ell\left(x_{i}, D\right)=\min _{\alpha}\left\|x_{i}-D \alpha\right\|_{2}^{2}+\lambda\|\alpha\|_{1}
$$

and \mathcal{C} is some convex set. Mostly in a compression context here.

- The $\|\alpha\|_{1}$ penalty, as a proxy for cardinality, seeks "good signals".
- Usually, the set \mathcal{C} is a norm ball, e.g. a normalization constraint $\left\|D_{i}\right\|_{2} \leq 1$, which allows to identify D and α.

This is learning without penalization, i.e. potentially low generalization power.
How do we efficiently characterize good dictionaries?
l_{1} decoding: conditions

A long wish list. . . Ideally, dictionary metrics should have the following features.

- Universality: prove reconstruction for all signals (or at least most signals).
- Invariance: recovery is a property of the nullspace only.
- Low complexity: tested in polynomial-time.
- Error bound: bound the decoding error.

Conditions on the coding matrix A which guarantee recovery of all signals up to some cardinality k.

- Incoherence: Not universal, not invariant, easy to test but only guarantees recovery of signals of size $O\left(\sqrt{k^{*}}\right)$ when the best performance is $O\left(k^{*}\right)$.
- Restricted Isometry: Universal, invariant. Also hard to test: the relaxation in d'Aspremont et al. [2007] shows recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at the threshold k^{*}. It provably cannot do better than that.
- Nullspace property: Universal, invariant. Hard to test: relaxations in d'Aspremont and El Ghaoui [2011], Juditsky and Nemirovski [2011] can prove exact recovery at cardinality $k=O\left(\sqrt{k^{*}}\right)$ when A satisfies RIP at the threshold k^{*}. They provably cannot do better than that.

Outline

- Introduction
- Geometrical conditions
- Bounding the diameter

Geometrical conditions

Diameter

Kashin and Temlyakov [2007]: Very simple relationship between diameter of a section by A of the ℓ_{1} ball and the recovery threshold k (largest signal size for which perfect recovery holds).

Proposition 2

Diameter \& Recovery threshold. Given a coding matrix $A \in \mathbb{R}^{m \times n}$, we write x^{LP} the solution of the ℓ_{1}-minimization $L P$ and e the true signal. Suppose that there is some $k>0$ such that

$$
\begin{equation*}
\operatorname{diam}\left(B_{1}^{n} \cap \mathcal{N}(A)\right)=\sup _{\substack{A x=0 \\\|x\|_{1} \leq 1}}\|x\|_{2} \leq \frac{1}{\sqrt{k}} \tag{1}
\end{equation*}
$$

then sparse recovery $x^{\mathrm{LP}}=e$ is guaranteed if $\operatorname{Card}(e)<k / 4$, and

$$
\left\|e-x^{\mathrm{LP}}\right\|_{1} \leq 4 \min _{\{\operatorname{Card}(y) \leq k / 16\}}\|e-y\|_{1}
$$

Diameter

Proof. Kashin and Temlyakov [2007]. Suppose

$$
\sup _{\substack{A x=0 \\\|x\|_{1} \leq 1}}\|x\|_{2} \leq k^{-1 / 2}
$$

If x satisfies $A x=0$, for any support set Λ with $|\Lambda|<k / 4$,

$$
\sum_{i \in \Lambda} x_{i} \leq \sum_{i \in \Lambda}\left|x_{i}\right| \leq \sqrt{|\Lambda|}\|x\|_{2} \leq \sqrt{|\Lambda| / k}\|x\|_{1}<\|x\|_{1} / 2,
$$

Let u be the true signal, with $\operatorname{Card}(u)<k / 4$ and $\Lambda=\operatorname{supp}(u)$ and let $v \neq u$ such that $x=v-u$ satisfies $A x=0$, then
$\|v\|_{1}=\sum_{i \in \Lambda}\left|u_{i}+x_{i}\right|+\sum_{i \notin \Lambda}\left|x_{i}\right| \geq \sum_{i \in \Lambda}\left|u_{i}\right|-\sum_{i \in \Lambda}\left|x_{i}\right|+\sum_{i \notin \Lambda}\left|x_{i}\right|=\|u\|_{1}+\|x\|_{1}-2 \sum_{i \in \Lambda}\left|x_{i}\right|$
and

$$
\|x\|_{1}-2 \sum_{i \in \Lambda}\left|x_{i}\right|>0
$$

means that $\|v\|_{1}>\|u\|_{1}$, so $x^{\mathrm{LP}}=u$. The error bound follows from similar arg.

Kashin decompostion

Results giving bounds on the diameter of random sections of the ℓ_{1}-ball can be traced back to Dvoretzky's theorem and the Kashin decomposition.

- Kashin decomposition [Kashin, 1977]. Given $n=2 m$, there exists two orthogonal m-dimensional subspaces $E_{1}, E_{2} \subset \mathbb{R}^{n}$ such that

$$
\frac{1}{8}\|x\|_{2} \leq \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2}, \quad \text { for all } x \in E_{1} \cup E_{2}
$$

in fact, most m-dimensional subspaces satisfy this relationship.

- For these subspaces, we have

$$
\operatorname{diam}\left(B_{1}^{n} \cap E_{i}\right) \leq \frac{8}{\sqrt{n}}, \quad i=1,2
$$

and we can guarantee ℓ_{1} recovery of all signals up to cardinality $n / 64$ if we use a coding matrix with nullspace E_{i}.

Diameter \& Random Sections

Schematically...

The diameter $\operatorname{diam}\left(B_{1}^{n} \cap E\right)$ decreases w.h.p. for smaller random sections, until these sections become almost spherical after which it does not change.

Diameter, low M^{*} estimate

Theorem 3

Low \mathbf{M}^{*} estimate. Let K be a symmetric convex body and $E \subset \mathbb{R}^{n}$ be a subspace of codimension k chosen uniformly w.r.t. to the Haar measure on $\mathcal{G}_{n, n-k}$, then

$$
\operatorname{diam}(K \cap E) \leq c \sqrt{\frac{n}{k}} M\left(K^{*}\right)=c \sqrt{\frac{n}{k}} \int_{\mathbb{S}^{n-1}}\|x\|_{K^{*}} d \sigma(x)
$$

with probability $1-e^{-k}$, where c is an absolute constant.

Proof. See [Pajor and Tomczak-Jaegermann, 1986] for example.
ℓ_{1}-decoding: We have $M\left(B_{\infty}^{n}\right) \sim \sqrt{\log n / n}$ asymptotically. This means that random sections of the ℓ_{1} ball with dimension $n-k$ have diameter bounded by

$$
\operatorname{diam}\left(B_{1}^{n} \cap E\right) \leq c \sqrt{\frac{\log n}{k}}
$$

with high probability, where c is an absolute constant (a more precise analysis allows the \log term to be replaced by $\log (n / k))$.

Deterministic Bounds on the Diameter

Bounding the diameter

Can we efficiently approximate the diameter of a given section of the ℓ_{1} ball?

- Lovasz and Simonovits [1992] show that if we only have access to an oracle for a convex body K, then there is no randomized polynomial time algorithm to approximate the diameter of K within a factor $n^{1 / 4}$.
- Here however, we have much more information on the set K than a simple oracle. We know that

$$
K=\left\{B_{1}^{n} \cap \mathcal{N}(A)\right\} .
$$

The complexity of computing or approximating the diameter of such a set is unknown.

Bounding the diameter

Simple SDP relaxation: to bound

$$
\operatorname{diam}\left(B_{1}^{n} \cap \mathcal{N}(A)\right)=\sup _{\substack{A x=0 \\\|x\|_{1} \leq 1}}\|x\|_{2},
$$

given a coding matrix A, we solve

$$
S D P(A) \triangleq \max _{\substack{\operatorname{Tr}\left(A^{T} A X\right)=0 \\\|X\|_{1} \leq 1, X \succeq 0}} \operatorname{Tr} X
$$

which is a semidefinite program in $X \in \mathbf{S}_{n}$ (this is the classical lifting procedure where have have set $X=x x^{T}$). By construction

$$
\operatorname{diam}\left(B_{1}^{n} \cap \mathcal{N}(A)\right)^{2} \leq S D P(A)
$$

Bounding the diameter

Proposition 4

Relaxation performance. Suppose $A \in \mathbb{R}^{m \times n}$ satisfies $\operatorname{diam}(K \cap E) \leq 1 / \sqrt{k}$ the semidefinite relaxation will satisfy

$$
\sqrt{S D P(A)} \leq k^{-\frac{1}{4}}
$$

Suppose now that $n=2 m$, then we also have $(2 n)^{-1 / 4} \leq \sqrt{S D P(A)}$ and the semidefinite relaxation will certify exact decoding of all signals of cardinality at most $O(\sqrt{m})$.

These results mean that the SDP relaxation will certify recovery at the threshold \sqrt{k} when the true threshold is k, it cannot do better than that.

Estimating M^{*}

The low- M^{*} bound shows that we can use M^{*} as a good proxy for the diameter. . .

- We can apply the low- M^{*} bound in the normed space $\left\{\mathbb{R}^{n-k},\|F y\|_{1}\right\}$, where $A F=0$, instead of the original normed space $\left\{\mathbb{R}^{n},\|y\|_{1}\right\}$.
- Approximating $M^{*}\left(\left\{\|F y\|_{1} \leq 1\right\}\right)$ simply means solving a lot of LPs.
- A section of a section is a section: taking random sections of this norm ball simply means adding a few random rows to the matrix A.
- From a compressed sensing point of view, $M^{*}\left(\left\{\|F y\|_{1} \leq 1\right\}\right)$ simply measures how many additional experiments it would take to reach a given recovery performance with high probability.

Estimating M^{*}

- We can estimate $M\left(K^{*}\right)$ by simulation [Bourgain et al., 1988, Giannopoulos and Milman, 1997, Giannopoulos et al., 2005]: if $K \subset \mathbb{R}^{n}$ is a symmetric convex body, $0<\delta, \beta<1$ and we pick N points x_{i} uniformly at random on the sphere \mathbb{S}^{n-1} with

$$
N=\frac{c \log (2 / \beta)}{\delta^{2}}+1
$$

where c is an absolute constant, then

$$
\left|M\left(K^{*}\right)-\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}\right\|_{K^{*}}\right| \leq \delta M\left(K^{*}\right)
$$

with probability $1-\beta$. Each sample requires solving a linear program.

- With high probability, we get a bound on the coding performance of the "enhanced" matrix A (A plus a few random measurements).

Estimating M^{*}

For good CS matrices, the bound $\left(1 / M^{*}\right)^{2}$, which roughly controls the sparse recovery threshold through the low M^{*} estimate, should grow almost linearly with m

We estimate M^{*} for Gaussian sections of the ℓ_{1} ball in \mathbb{R}^{200}, averaging 250 samples for each m and plot $\left(1 / M^{*}\right)^{2}$ (dotted lines at 95% confidence).

Conclusion

- Increasingly large list of quality metrics for linear codes/dictionaries.
- Outside of coherence, most appear to be hard to approximate.
- Randomized polynomial time algorithm for testing the performance of slightly "enhanced" matrices.
- Direct connection with classical approximation problems.

Some open problems. . .

- Diameter and width are NP-Hard to approximate in the oracle model, but we have more structural information here. . .
- Can we derive deterministic bounds on M^{*} instead?

■ Low M estimates also give bounds on the diameter. Estimating the Dvoretzky dimension for sections of the ℓ_{1} ball is equivalent to solving a MAXCUT like problem. The $\pi / 2$ approximation bound is insufficient here, can we do better?

- Use stochastic optimization algorithms for dictionary learning?

References

J. Bourgain, J. Lindenstrauss, and V. Milman. Minkowski sums and symmetrizations. Geometric aspects of functional analysis, pages 44-66, 1988.
E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203-4215, 2005.
A. d'Aspremont, L. El Ghaoui, M.I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-448, 2007.
Alexandre d'Aspremont and Laurent El Ghaoui. Testing the nullspace property using semidefinite programming. Mathematical Programming, 127:123-144, 2011.
D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. of the National Academy of Sciences, 102(27):9446-9451, 2005.
A. Giannopoulos, V.D. Milman, and A. Tsolomitis. Asymptotic formulas for the diameter of sections of symmetric convex bodies. Journal of Functional Analysis, 223(1):86-108, 2005.
A. A. Giannopoulos and V. D. Milman. On the diameter of proportional sections of a symmetric convex body. International Math. Research Notices, No. 1 (1997) 5-19., (1):5-19, 1997.
P. Indyk. Tutorial on compressed sensing (or compressive sampling or linear sketching). In Workshop on Geometry and Algorithms. Princeton, 2008.
A. Juditsky and A.S. Nemirovski. On verifiable sufficient conditions for sparse signal recovery via ℓ_{1} minimization. Mathematical Programming Series B, 127(57-88), 2011.
B. Kashin. The widths of certain finite dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat, 41(2):334-351, 1977.
B.S. Kashin and V.N. Temlyakov. A remark on compressed sensing. Mathematical notes, 82(5):748-755, 2007.
L. Lovasz and M. Simonovits. On the randomized complexity of volume and diameter. In Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pages 482-492. IEEE, 1992.
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 689-696. ACM, 2009.
A.S. Nemirovski. Computation of matrix norms with applications to Robust Optimization. PhD thesis, Technion, 2005.
Y. Nesterov. Global quadratic optimization via conic relaxation. Number 9860. CORE Discussion Paper, 1998.
A. Pajor and N. Tomczak-Jaegermann. Subspaces of small codimension of finite-dimensional banach spaces. Proceedings of the American Mathematical Society, 97(4):637-642, 1986.
S.A. Van De Geer and P. Bühlmann. On the conditions used to prove oracle results for the lasso. Electronic Journal of Statistics, 3: 1360-1392, 2009.

