Phase Retrieval,

New Results on an Old Problem.

Alex d'Aspremont, CNRS \& École Normale Supérieure, Paris, with Fajwel Fogel, Irène Waldspurger and Stéphane Mallat, ENS.

Support from ERC (project SIPA).

Introduction: diffraction imaging

Diffraction imaging

[Candes et al., 2011]

- Sensors only record the magnitude of diffracted rays, and lose the phase.
- The phase is required to invert the 2D Fourier transform and reconstruct the sample density.

Introduction: phasing

Focus on the phase retrieval problem, i.e. solve

$$
\begin{array}{ll}
\text { find } & x \\
\text { such that } & \left|\left\langle a_{i}, x\right\rangle\right|^{2}=b_{i}^{2}, \quad i=1, \ldots, n
\end{array}
$$

in the variable $x \in \mathbb{C}^{p}$.

- Reconstruct a signal x from the amplitude of n linear measurements A.
- Easy to write, very hard to solve in general.
- We seek a tractable procedure, i.e. a polynomial time algorithm with explicit approximation and complexity guarantees.

Introduction: efficiency \& stability

We want more than uniqueness of the solution.

- A tractable algorithm to solve the phasing problem in polynomial-time.
- A solution that is stable and robust to noise.

For certain measurement matrices A, this is indeed possible. . .

Introduction

Greedy algorithm [Gerchberg and Saxton, 1972], find $y=A x$ given $b=|A x|$

Input: An initial $y^{1} \in \mathbb{C}^{n}$, i.e. such that $\left|y^{1}\right|=b$.
1: for $k=1, \ldots, N-1$ do
2: Set

$$
w=A A^{\dagger} y^{k}, \quad \text { (project } y \text { on } \mathcal{R}(A) . \text {) }
$$

3: \quad Set

$$
\left.y_{i}^{k+1}=b_{i} \frac{w}{|w|}, \quad \text { (match }|y| \text { with } b .\right)
$$

4: end for
Output: $y_{N} \in \mathbb{C}^{n}$.

Similar to alternating projections. Sometimes it works, sometimes it doesn't. . .

Can we do better?

WETFLJX

Given user ratings

Make personalized recommendations for other movies. . .

Introduction: collaborative prediction

- A linear prediction model

$$
\operatorname{rating}_{i j}=u_{i}^{T} v_{j}
$$

where u_{i} represents user characteristics and v_{j} movie features.

- Collaborative prediction is a matrix factorization problem

$$
M=U^{T} V
$$

$U \in \mathbb{R}^{n \times k}$ user types, $V \in \mathbb{R}^{k \times m}$ movie features, $M \in \mathbb{R}^{n \times m}$ ratings.

- Assume M is low rank.

Introduction: matrix completion

Matrix completion. [Recht et al., 2007, Candes and Recht, 2008, Candes and Tao, 2010].

- The NETFLIX problem can be written as

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Rank}(X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

- For certain matrices A_{i}, it suffices to solve

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Tr}(X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

which is a convex problem in $X \in \mathbf{S}_{n}$.

Introduction: phase retrieval as a SDP

- [Chai et al., 2011, Candes et al., 2013a], lifting technique from [Shor, 1987]

$$
\left|\left\langle a_{i}, x\right\rangle\right|^{2}=b_{i}^{2} \quad \Longleftrightarrow \operatorname{Tr}\left(a_{i} a_{i}^{*} x x^{*}\right)=b_{i}^{2}
$$

to formulate phase recovery as a matrix completion problem

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Rank}(X) \\
\text { such that } & \operatorname{Tr}\left(a_{i} a_{i}^{*} X\right)=b_{i}^{2}, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

- [Candes, Strohmer, and Voroninski, 2013a] show that under certain conditions on A and x_{0}, it suffices to solve

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Tr}(X) \\
\text { such that } & \operatorname{Tr}\left(a_{i} a_{i}^{*} X\right)=b_{i}^{2}, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

which is a (convex) semidefinite program in $X \in \mathbf{H}_{p}$.

Introduction

A very sparse (and incomplete) list of references. . .

Algorithms

- Greedy algorithm [Gerchberg and Saxton, 1972]

■ Classical survey of early algorithms by [Fienup, 1982].

- NP-complete [Sahinoglou and Cabrera, 1991].

■ Many algorithms. [Miao et al., 1998, Bauschke et al., 2002, Luke, 2005].
■ Matrix completion formulation [Chai, Moscoso, and Papanicolaou, 2011] and [Candes, Strohmer, and Voroninski, 2013a]

Applications

- X-ray and crystallography imaging [Harrison, 1993], diffraction imaging [Bunk et al., 2007] or microscopy [Miao et al., 2008].
- Audio signal processing [Griffin and Lim, 1984].

Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?

Introduction: semidefinite programming

A linear program (LP) is written

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

where $x \geq 0$ means that the coefficients of the vector x are nonnegative.
A semidefinite program (SDP) is written

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(C X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

where $X \succeq 0$ means that the matrix variable $X \in \mathbf{S}_{n}$ is positive semidefinite.

- Nesterov and Nemirovskii [1994] showed that the interior point algorithms used for linear programs could be extended to semidefinite programs.
- Efficient solvers, many (unexpected) applications.

Phase problem in phase

We can decouple the phase and magnitude reconstruction problems.

- $A x=\operatorname{diag}(b) u$ where $u \in \mathbb{C}^{n}$ is a phase vector with $\left|u_{i}\right|=1$.
- The phase recovery problem can be written

$$
\min _{\substack{u \in \mathbb{C}^{n},\left|u_{i}\right|=1 \\ x \in \mathbb{C}^{p}}}\|A x-\operatorname{diag}(b) u\|_{2}^{2}
$$

- The inner minimization problem in x is a standard least squares, with solution $x=A^{\dagger} \boldsymbol{\operatorname { d i a g }}(b) u$, so phase recovery becomes

$$
\begin{array}{ll}
\operatorname{minimize} & u^{*} M u \\
\text { subject to } & \left|u_{i}\right|=1, \quad i=1, \ldots n
\end{array}
$$

in $u \in \mathbb{C}^{n}$, where $M=\operatorname{diag}(b)\left(\mathbf{I}-A A^{\dagger}\right) \operatorname{diag}(b) \succeq 0$.

Tightness

Exact phase reconstruction in polynomial-time.

- [Candes et al., 2013a,b] show exact recovery w.h.p. for the PhaseLift relaxation

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Tr}(X) \\
\text { such that } & \operatorname{Tr}\left(a_{i} a_{i}^{*} X\right)=b_{i}^{2}, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

when $n=O(p)$ observations a_{i} picked randomly (sphere or coded Fourier).

- [Waldspurger, d'Aspremont, and Mallat, 2012] Semidefinite relaxation for phase recovery, called PhaseCut.

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Tr}(M U) \\
\text { such that } & \operatorname{diag}(U)=1, U \succeq 0
\end{array}
$$

similar to MAXCUT relaxation.

■ [Waldspurger et al., 2012] show PhaseCut is tight when PhaseLift is.

Which observations A ?

[Candes et al., 2013b]: The observations A are constructed from multiple coded diffraction patterns

More on this later. . .

Algorithms

Block Coordinate Method. PhaseCut \& MAXCUT

Input: An initial $U^{0}=\mathbf{I}_{n}$ and $\nu>0$ (typically small). An integer $N>1$.
1: $\mathbf{f o r} k=1, \ldots, N$ do
2: \quad Pick $i \in[1, n]$.
3: Compute

$$
\mathbf{u}=\mathbf{U}_{\mathbf{i} \mathrm{c}, \mathrm{i}}^{\mathrm{k}} \mathbf{M}_{\mathbf{i}^{\mathrm{c}}, \mathrm{i}} \quad \text { and } \quad \gamma=u^{*} M_{i^{c}, i}
$$

4: If $\gamma>0$, set

$$
U_{i c, i}^{k+1}=U_{i, i c}^{k+1 *}=-\sqrt{\frac{1-v}{\gamma}} x
$$

else

$$
U_{i c, i}^{k+1}=U_{i, i c}^{k+1 *}=0 .
$$

5: end for
Output: A matrix $U \succeq 0$ with $\operatorname{diag}(U)=1$.

Writing i^{c} the index set $\{1, \ldots, i-1, i+1, \ldots, n\}$.

Algorithms

Complexity.

- Each iteration only requires matrix vector products $O\left(n^{2}\right)$.
- Cost per iteration similar to greedy algorithm [Gerchberg and Saxton, 1972].
- Signal applications: matrix vector product computed efficiently using the FFT, cost per iteration reduced to $O(n \log n)$.

Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results

■ Experimental setup?

Sparsity: known support in 2D

Electronic density: caffeine (left), 2D FFT transform (diffraction pattern, center), reconstructed using 3% of the coefficients at the core of the FFT (right).

- Molecular imaging: data is sparse with known support.
- Most coefficients in b close to zero, so most coefficients in u can be set to zero in

$$
\begin{array}{ll}
\operatorname{minimize} & u^{*} M u \\
\text { subject to } & \left|u_{i}\right|=1, \quad i=1, \ldots n,
\end{array}
$$

which means significant computational savings.

Positivity

- We observe the magnitude of the Fourier transform of a discrete signal $x \in \mathbb{R}^{p}$

$$
|\mathcal{F} x|=b
$$

- We seek to reconstruct positive signals $x \geq 0$.

A function $f: \mathbb{R}^{s} \mapsto \mathbb{C}$ is positive semidefinite if and only if the matrix B with $B_{i j}=f\left(x_{i}-x_{j}\right)$ is Hermitian positive semidefinite for any sequence $x_{i} \in \mathbb{R}^{s}$.

Theorem (Bochner)

Fourier on positive signals. A function $f: \mathbb{R}^{s} \mapsto \mathbb{C}$ is positive semidefinite if and only if it is the Fourier transform of a (finite) nonnegative Borel measure.

Positivity

- Reconstruct a phase vector $u \in \mathbb{C}^{n}$ such that $|u|=1$ and

$$
\mathcal{F} x=\operatorname{diag}(b) u
$$

- We define the Toeplitz matrix $B_{i j}(y)=y_{|i-j|+1}, i, j=1, \ldots, p$, so that

$$
B(y)=\left(\begin{array}{cccccc}
y_{1} & y_{2}^{*} & & \cdots & & y_{n}^{*} \\
y_{2} & y_{1} & y_{2}^{*} & & \ldots & \\
& y_{2} & y_{1} & y_{2}^{*} & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \\
& \ldots & & y_{2} & y_{1} & y_{2}^{*} \\
y_{n} & & \ldots & & y_{2} & y_{1}
\end{array}\right)
$$

- Bochner's theorem.

$$
x \geq 0 \quad \Longleftrightarrow \quad B(\operatorname{diag}(b) u) \succeq 0,
$$

which is a (convex) linear matrix inequality in u.

Real signals

Real valued signal. Phase problem on real valued signal is

$$
\begin{array}{ll}
\text { minimize } & \left\|\mathcal{T}(A)\binom{x}{0}-\operatorname{diag}\binom{b}{b}\binom{\Re(u)}{\Im(u)}\right\|_{2}^{2} \\
\text { subject to } & u \in \mathbb{C}^{n},\left|u_{i}\right|=1 \\
& x \in \mathbb{R}^{p} .
\end{array}
$$

Here $x=A_{2}^{\dagger} B_{2} v$, where

$$
A_{2}=\binom{\Re(A)}{\Im(A)}, \quad B_{2}=\operatorname{diag}\binom{b}{b}, \quad \text { and } \quad v=\binom{\Re(u)}{\Im(u)}
$$

the phase problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|\left(A_{2} A_{2}^{\dagger} B_{2}-B_{2}\right) v\right\|_{2}^{2} \\
\text { subject to } & v_{i}^{2}+v_{n+i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

in the variable $v \in \mathbb{R}^{2 n}$.

Real signals

Real valued signal. The last problem can be relaxed as

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}\left(V M_{2}\right) \\
\text { subject to } & V_{i i}+V_{n+i, n+i}=1, \quad i=1, \ldots, n, \\
& V \succeq 0,
\end{array}
$$

which is a semidefinite program in the variable $V \in \mathbf{S}_{2 n}$, where

$$
M_{2}=\left(A_{2} A_{2}^{\dagger} B_{2}-B_{2}\right)^{T}\left(A_{2} A_{2}^{\dagger} B_{2}-B_{2}\right)=B_{2}^{T}\left(\mathbf{I}-A_{2} A_{2}^{\dagger}\right) B_{2} .
$$

- Explicitly constrains the solution x to be real valued.
- Small increase in complexity.

Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?

Numerical Experiments: PDB molecules

Two molecules, two resolutions: 16×16 and 128×128.

Caffeine

Cocaine

Numerical Experiments: PDB molecules

2 msk, $\alpha=0$

4 msk, $\alpha=0$

1 msk, $\alpha=10^{-3}$
2 msk, $\alpha=10^{-3}$
3 msk, $\alpha=10^{-3}$
4 msk, $\alpha=10^{-3}$

1 msk, $\alpha=10^{-2}$

3 msk, $\alpha=10^{-2}$

4 msk, $\alpha=10^{-2}$

Solution of the greedy algorithm on caffeine molecule, for various values of the number of masks and noise level α.

Numerical Experiments: 2D

Solution of the PhaseCut SDP followed by greedy refinements, for various values of the number of masks and noise level α.

Numerical Experiments: 2D

MSE between reconstructed image and true image for 2 random illuminations without noise, using SDP then Fienup (blue), and Fienup only (red).

Numerical Experiments: comparing algorithms

16×16 caffeine image. No oversampling.

Left: MSE (relative to b) vs. number of random masks.
Right: Probability of recovering molecular density ($\operatorname{MSE}<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms
16×16 cocaine image. No oversampling.

Left: MSE (relative to b) vs. number of random masks.
Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms

16×16 caffeine image. $2 x$ oversampling.

Left: MSE vs. number of random masks.
Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms

16×16 caffeine image. Mask resolution (1×1 to 8×8 pixels).

Left: MSE vs. mask resolution. ($2 x$ oversampling, no noise, 3 masks). Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms

16×16 cocaine image. Mask resolution (1×1 to 8×8 pixels).

Left: MSE vs. mask resolution. (2x oversampling, no noise, 3 masks). Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms

16×16 cocaine image. Mask resolution (1×1 to 8×8 pixels).

Left: MSE vs. mask resolution. (2x oversampling, no noise, 2 masks). Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms
16×16 caffeine image. Noise.

Left: MSE vs. noise level (2 x oversampling, 2 masks).
Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Numerical Experiments: comparing algorithms
16×16 cocaine image. Noise.

Left: MSE vs. noise level (2x oversampling, 2 masks).
Right: Probability of recovering molecular density ($M S E<10^{-4}$) vs. number of random masks.

Outline

- Introduction
- Algorithms
- Exploiting structure
- Numerical results
- Experimental setup?

Observations A : implementation

Construct observations A from multiple coded diffraction patterns

- Split the beam?
- Mask before/after the sample?

Conclusion

- Tractable algorithms for phase recovery
- Exact recovery results
- Exploit structure

Open questions. . . .

- Is the SDP relaxation optimal?
- Experimental setup?

References

Heinz H Bauschke, Patrick L Combettes, and D Russell Luke. Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization. JOSA A, 19(7):1334-1345, 2002.
O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D.K. Satapathy, and JF Veen. Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallographica Section A: Foundations of Crystallography, 63 (4):306-314, 2007.
E. J. Candes, T. Strohmer, and V. Voroninski. Phaselift : exact and stable signal recovery from magnitude measurements via convex programming. To appear in Communications in Pure and Applied Mathematics, 66(8):1241-1274, 2013a.
E.J. Candes and B. Recht. Exact matrix completion via convex optimization. preprint, 2008.
E.J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5): 2053-2080, 2010.
E.J. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. Arxiv preprint arXiv:1109.0573, 2011.

Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval from coded diffraction patterns. preprint, 2013b.
A. Chai, M. Moscoso, and G. Papanicolaou. Array imaging using intensity-only measurements. Inverse Problems, 27:015005, 2011.
J.R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758-2769, 1982.
R. Gerchberg and W. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35: 237-246, 1972.
D. Griffin and J. Lim. Signal estimation from modified short-time fourier transform. Acoustics, Speech and Signal Processing, IEEE Transactions on, 32(2):236-243, 1984.
R.W. Harrison. Phase problem in crystallography. JOSA A, 10(5):1046-1055, 1993.

D Russell Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems, 21(1):37, 2005.
J Miao, D Sayre, and HN Chapman. Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects. JOSA A, 15(6): 1662-1669, 1998.
J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem., 59:387-410, 2008.
Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.
B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Arxiv preprint arXiv:0706.4138, 2007.
H. Sahinoglou and S.D. Cabrera. On phase retrieval of finite-length sequences using the initial time sample. Circuits and Systems, IEEE Transactions on, 38(8):954-958, 1991.
N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems Sciences, 25:1-11, 1987.
A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational harmonic analysis, 30(1): 20-36, 2011.
I. Waldspurger, A. d'Aspremont, and S. Mallat. Phase recovery, maxcut and complex semidefinite programming. ArXiv: 1206.0102, 2012.

