# Sparse Principal Component Analysis using Semidefinite Programming 

A. d'Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet Princeton University, U.C. Berkeley, U.C. San Diego

Support from NSF, DHS and Google.

## Introduction

## Principal Component Analysis (PCA)

- Classical dimensionality reduction tool.
- Numerically cheap: $O\left(k n^{2}\right)$, only requires computing k leading eigenvectors.


## Sparse PCA

- Seeks factors with a few nonzero coefficients.
- Sparse factors capture maximum variance and improve interpretability.
- Numerically hard: sparsity makes it a combinatorial problem.


## Introduction

Clustering of gene expression data in PCA versus sparse PCA, on 500 genes.

## PCA



## Sparse PCA



The PCA factors $f_{i}$ on the left are dense and each use all 500 genes.
The sparse factors $g_{1}, g_{2}$ and $g_{3}$ on the right involve 6,4 and 4 genes respectively.

## Introduction



Variance (solid lines) versus cardinality tradeoff curve for two gene expression data sets, lymphoma (top) and colon cancer (bottom).

## Introduction

Given a (centered) data set $A \in \mathbf{R}^{n \times m}$ composed of $m$ observations on $n$ variables, we form the covariance matrix $C=A A^{T} /(m-1)$.

Principal Component Analysis. To get the first factor, we solve:

$$
\begin{array}{ll}
\text { maximize } & x^{T} C x \\
\text { subject to } & \|x\|=1,
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, i.e. we maximize the variance explained by the factor $x$.
Sparse Principal Component Analysis. We constrain the cardinality of the factor $x$ and solve instead:

$$
\begin{array}{ll}
\underset{\operatorname{maximize}}{\operatorname{mabject~to}} & x^{T} C x \\
& \operatorname{Card}(x)=k \\
& \|x\|=1,
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, where $\operatorname{Card}(x)$ is the number of nonzero coefficients in the vector $x$ and $k>0$ is a parameter controlling sparsity.

## Sorting

Simplest solution: just sort variables according to variance.

Schur-Horn theorem: the diagonal of a matrix majorizes its eigenvalues so the diagonal of a matrix is a diffused vector of eigenvalues.


In this example, we selected variables according to their variance, but we ordered them according to their true ranking (computed from the optimal solution).

## Related Work

- Cadima \& Jolliffe (1995): the loadings with small absolute value are thresholded to zero.
- Johnstone \& Lu (2004) apply this to ECG data and show consistency.
- Zou, Hastie \& Tibshirani (2006), non-convex algo. (SPCA) based on a $l_{1}$ penalized representation of PCA as a regression problem.
- Non-convex methods (SCoTLASS) by Jolliffe, Trendafilov \& Uddin (2003).
- A greedy search algorithm by Moghaddam, Weiss \& Avidan (2006).

This talk is mostly about the results in d'Aspremont, El Ghaoui, Jordan \& Lanckriet (2007). New results in:

- d'Aspremont, Bach \& El Ghaoui (2007) compute a full approximate regularization path in $O\left(n^{3}\right)$.
- Sriperumbudur, Torres \& Lanckriet (2007) apply D.C. algorithms to the penalized eigenvalue problem.


## Outline

- Introduction
- Sparse PCA
- Semidefinite Relaxation
- Smooth Optimization
- Sparse Eigenvalues
- Variable Selection
- Compressed Sensing
- Numerical Experiments


## Related Work

- Non-convex methods methods produce approximate solution with unpredictable complexity.
- Here, we produce approximate solutions with predictable complexity, together with bounds on suboptimality.

Combine two classic relaxation techniques:

- The lifting procedure à la MAXCUT by Goemans \& Williamson (1995).
- A $\ell_{1}$ norm relaxation of the cardinality constraint. Used in basis pursuit by Chen, Donoho \& Saunders (2001), LASSO by Tibshirani (1996), etc.


## Semidefinite relaxation

Start from:

$$
\begin{aligned}
& \text { maximize } \quad x^{T} A x \\
& \text { subject to }\|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{aligned}
$$

where $x \in \mathbf{R}^{n}$. Let $X=x x^{T}$ and write everything in terms of the matrix X :

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T},
\end{array}
$$

Replace $X=x x^{T}$ by the equivalent $X \succeq 0, \operatorname{Rank}(X)=1$ :

$$
\begin{array}{ll}
\underset{\operatorname{maximize}}{\operatorname{mr}(A X)} \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X \succeq 0, \operatorname{Rank}(X)=1,
\end{array}
$$

again, this is the same problem.

## Semidefinite relaxation

We have made some progress:

- The objective $\operatorname{Tr}(A X)$ is now linear in $X$
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

But this is still a hard problem:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex.
- So is the constraint $\operatorname{Rank}(X)=1$.

We still need to relax the two non-convex constraints above:

- If $u \in \mathbf{R}^{p}, \operatorname{Card}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. So we can replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex): $\mathbf{1}^{T}|X| \mathbf{1} \leq k$.
- We simply drop the rank constraint


## Semidefinite Programming

Semidefinite relaxation:

| maximize | $x^{T} A x$ | becomes | maximize |
| :---: | :--- | :---: | :--- |
| subject to | $\\|x\\|_{2}=1$ | subject to | $\operatorname{Tr}(X)=1$ |
|  | $\operatorname{Card}(x) \leq k$, |  | $\mathbf{1}^{T}\|X\| \mathbf{1} \leq k$ |
|  |  | $X \succeq 0$, |  |

- This is a semidefinite program in the variable $X \in \mathbf{S}^{n}$. .
- Solve small problems (a few hundred variables) using IP solvers, etc.
- Dimensionality reduction apps: solve very large instances.

Solution: use first order algorithm. . .

## Robustness \& Tightness

Robustness. The penalized problem can be written:

$$
\min _{\left\{\left|U_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+U)
$$

Natural interpretation: robust maximum eigenvalue problem with componentwise noise of magnitude $\rho$ on the coefficients of the matrix $A$.

Tightness. The KKT optimality conditions are here:

$$
\left\{\begin{array}{l}
(A+U) X=\lambda^{\max }(A+U) X \\
U \circ X=\rho|X| \\
\operatorname{Tr}(X)=1, X \succeq 0 \\
\left|U_{i j}\right| \leq \rho, \quad i, j=1, \ldots, n .
\end{array}\right.
$$

If the eigenvalue $\lambda^{\max }(A+U)$ is simple, $\operatorname{Rank}(X)=1$ and the semidefinite relaxation is tight.

## Outline

- Introduction
- Sparse PCA
- Semidefinite Relaxation
- Smooth Optimization
- Sparse Eigenvalues
- Variable Selection
- Compressed Sensing
- Numerical Experiments


## First order algorithm

Complexity options. . .
$O(n)$
$O(n)$
$O\left(n^{2}\right)$

## Memory

| $O\left(1 / \epsilon^{2}\right)$ | $O(1 / \epsilon)$ | $O(\log (1 / \epsilon))$ |  |
| :--- | :--- | :--- | :--- |
| First-order | Smooth | Newton IP | Complexity |

## First order algorithm

Here, we can exploit problem structure

- Our problem here has a particular min-max structure:

$$
\min _{\left|U_{i j}\right| \leq \rho} \max _{X \in \mathbf{S}^{n}} \operatorname{Tr}((A+U) X)
$$

- This min-max structure means that we can use prox function algorithms by Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense problem instances.


## First order algorithm

If problem has min-max model, two steps:

- Regularization. Add strongly convex penalty inside the min-max representation to produce an $\epsilon$-approximation of $f$ with Lipschitz continuous gradient (generalized Moreau-Yosida regularization step, see Lemaréchal \& Sagastizábal (1997) for example).
- Optimal first order minimization. Use optimal first order scheme for Lipschitz continuous functions detailed in Nesterov (1983) to the solve the regularized problem.


## Benefits:

- Produces an $\epsilon$ solution is given by $O(1 / \epsilon)$ compared to $O\left(1 / \epsilon^{2}\right)$ for generic first-order methods.
- Low memory requirements. Change in granularity of the solver: larger number of cheaper iterations.

Caveat: Two (projection) subproblems need to be solved very efficiently. . .

## First order algorithm

Regularization. Let $\mu>0$ and $X \in \mathbf{S}_{n}$, we define:

$$
f_{\mu}(X)=\mu \log \operatorname{Tr}\left(\exp \left(\frac{X}{\mu}\right)\right)
$$

We then have:

$$
\lambda^{\max }(X) \leq f_{\mu}(X) \leq \lambda^{\max }(X)+\mu \log n
$$

so if we set $\mu=\epsilon / \log n$, this becomes a uniform $\epsilon$-approximation of $\lambda^{\max }(X)$ with a Lipschitz continuous gradient with constant:

$$
L=\frac{1}{\mu}=\frac{\log n}{\epsilon} .
$$

The gradient $\nabla f_{\mu}(X)$ can be computed explicitly in $O\left(n^{3}\right)$ as:

$$
\exp \left(\frac{X-\lambda^{\max }(X) \mathbf{I}}{\mu}\right) / \operatorname{Tr}\left(\exp \left(\frac{X-\lambda^{\max }(X) \mathbf{I}}{\mu}\right)\right)
$$

using the same matrix exponential.

## First order algorithm

Optimal first-order minimization. The minimization algorithm in Nesterov (1983) then involves the following steps:

Choose $\epsilon>0$ and set $X_{0}=\beta I_{n}$, For $k=0, \ldots, N$ do

1. Compute $\nabla f_{\epsilon}\left(X_{k}\right)$
2. Find $Y_{k}=\arg \min _{Y \in \mathcal{Q}}\left\{\operatorname{Tr}\left(\nabla f_{\epsilon}\left(X_{k}\right)\left(Y-X_{k}\right)\right)+\frac{1}{2} L_{\epsilon}\left\|Y-X_{k}\right\|_{F}^{2}\right\}$.
3. Find $Z_{k}=\arg \min _{X \in \mathcal{Q}}\left\{L_{\epsilon} \beta^{2} d_{1}(X)+\sum_{i=0}^{k} \frac{i+1}{2} \operatorname{Tr}\left(\nabla f_{\epsilon}\left(X_{i}\right)\left(X-X_{i}\right)\right)\right\}$.
4. Update $X_{k}=\frac{2}{k+3} Z_{k}+\frac{k+1}{k+3} Y_{k}$.
5. Test if gap less than target precision.

- Step 1 requires computing a matrix exponential.
- Steps 2 and 3 are both Euclidean projections on $\mathcal{Q}=\left\{U \in \mathbf{S}^{n}:\left|U_{i j}\right| \leq \rho\right\}$.


## First order algorithm

## Complexity:

- The number of iterations to get accuracy $\epsilon$ is

$$
O\left(\frac{n \sqrt{\log n}}{\epsilon}\right)
$$

- At each iteration, the cost of computing a matrix exponential up to machine precision is $O\left(n^{3}\right)$.


## Computing matrix exponentials:

- Many options, cf. "Nineteen Dubious Ways to Compute the Exponential of a Matrix" by Moler \& Van Loan (1978), Moler \& Van Loan (2003).
- Padé approximation, full eigenvalue decomposition: $O\left(n^{3}\right)$ up to machine precision.
- In practice, machine precision is unnecessary and a partial eigenvalue decomposition is enough (see d'Aspremont (2005)).


## Outline

- Introduction
- Sparse PCA
- Semidefinite Relaxation
- Smooth Optimization
- Sparse Eigenvalues
- Variable Selection
- Compressed Sensing
- Numerical Experiments


## Sparse Eigenvalues

Combining semidefinite and $\ell_{1}$ relaxations, we obtained:

$$
\begin{array}{ll}
\lambda_{\max }^{k}(A) \leq \max . & \operatorname{Tr}(A X) \\
\text { s.t. } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

This relaxation produces upper bounds on sparse (or restricted) maximum eigenvalues. Similarly, we can get lower bounds on sparse minimum eigenvalues.

- Used to bound MSE and model consistency in LASSO (sparse least-squares).
- Control recovery rates in compressed sensing.


## LASSO

Assume that observations $\left(Y_{1}, \ldots, Y_{n}\right)$ follow a linear model:

$$
Y=X \beta+\epsilon
$$

where $\beta \in \mathbf{R}^{p}$ and $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We define the LASSO estimator of $\beta$ as:

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1} .
$$

## Consistency.

- Suppose $b$ is sparse with cardinality $s(n)$, Meinshausen \& Yu (2007) show that with probability tending to 1 as $n \rightarrow \infty$ :

$$
\|\beta-\hat{\beta}\|_{2}^{2} \leq M \frac{s(n) \log p(n)}{n \lambda_{\min }^{s(n)}\left(X^{T} X\right)}
$$

- Meinshausen \& Yu (2007) also show sign consitency based on sparse eigenvalues. Similar non-asymptotic result by Candès \& Tao (2007).


## Compressed Sensing

Following Candès \& Tao (2005) (see also Donoho \& Tanner (2005)), recover a signal $f \in \mathbf{R}^{n}$ from corrupted measurements $y$ :

$$
y=A f+e,
$$

where $A \in \mathbf{R}^{m \times n}$ is a coding matrix and $e \in \mathbf{R}^{m}$ is an unknown sparse vector of errors.

This amounts to solving the following (combinatorial) problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & F x=F y
\end{array}
$$

where $F \in \mathbf{R}^{p \times m}$ is a matrix such that $F A=0$.

## Compressed Sensing: Restricted Isometry Constant

Given a matrix $F \in \mathbf{R}^{p \times m}$ and $0<S \leq m$, its restricted isometry constant $\delta_{S}$ is the smallest number such that for any subset $I \subset[1, m]$ of cardinality at most $S$ we have:

$$
\left(1-\delta_{S}\right)\|c\|^{2} \leq\left\|F_{I} c\right\|^{2} \leq\left(1+\delta_{S}\right)\|c\|^{2}
$$

for all $c \in \mathbf{R}^{|I|}$, where $F_{I}$ is the submatrix of $F$ formed by keeping only the columns of $F$ in the set $I$.

## Compressed sensing: perfect recovery

The following result then holds.
Proposition 1. Candès \& Tao (2005). Suppose that the restricted isometry constants of a matrix $F \in \mathbf{R}^{p \times m}$ satisfy :

$$
\begin{equation*}
\delta_{S}+\delta_{2 S}+\delta_{3 S}<1 \tag{1}
\end{equation*}
$$

for some integer $S$ such that $0<S \leq m$, then if $x$ is an optimal solution of the convex program:

$$
\begin{array}{ll}
\text { minimize } & \|x\|_{1} \\
\text { subject to } & F x=F y
\end{array}
$$

such that $\operatorname{Card}(x) \leq S$ then $x$ is also an optimal solution of the combinatorial problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Card}(x) \\
\text { subject to } & F x=F y .
\end{array}
$$

## Compressed sensing: restricted isometry

The restricted isometry constant $\delta_{S}$ in condition can be computed by solving the following sparse PCA problem:

$$
\begin{array}{rll}
\left(1+\delta_{S}\right)= & \max . & x^{T}\left(F^{T} F\right) x \\
\text { s. t. } & \operatorname{Card}(x) \leq S \\
& \|x\|=1
\end{array}
$$

in the variable $x \in \mathbf{R}^{m}$ (a similar sparse PCA problem gives the other inequality).

- Candès \& Tao (2005) obtain an asymptotic proof that some random matrices satisfy the restricted isometry condition with overwhelming probability (i.e. exponentially small probability of failure)
- Upper bounds for sparse PCA prove deterministically and with polynomial complexity that a finite dimensional matrix satisfies the restricted isometry condition.


## Outline

- Introduction
- Sparse PCA
- Semidefinite Relaxation
- Smooth Optimization
- Sparse Eigenvalues
- Variable Selection
- Compressed Sensing
- Numerical Experiments


## Gene Expression Data

- Use sparse PCA as a crude clustering/variable selection tool (see Luss \& d'Aspremont (2007)).
- Use colon cancer data set of Alon, Barkai, Notterman, Gish, Ybarra, Mack \& Levine (1999), lymphoma data from Alizadeh, Eisen, Davis, Ma, Lossos \& Rosenwald (2000).
- Track clustering quality versus number of genes used.


## Sparse PCA: clustering






PCA (left) and DSPCA (right), colon cancer (top) and lymphoma (bottom).

## Sparse PCA: clustering




Rand index (clustering) versus sparsity: colon cancer (left) \& lymphoma (right).

## Tradeoff



Variance (solid lines) versus cardinality tradeoff curve for two gene expression data sets, lymphoma (top) and colon cancer (bottom).

## CPU time



| $n$ | CPU time (secs) |
| ---: | :---: |
| 100 | 0 m 1 s |
| 500 | 0 m 11 s |
| 750 | $1 \mathrm{~m} \mathrm{33s}$ |
| 1000 | 1 m 16 s |
| 1500 | 4 m 57 s |
| 2000 | 9 m 41 s |

Using the data in Alon et al. (1999), with $\rho=1$, we plot CPU time to get a $10^{2}$ decrease in duality gap.

## Conclusion

- The tradeoff between sparsity and explained variance is often favorable.
- Dense semidefinite programs solved efficiently for matrices with $n \sim 10^{3}$
- Slides online.
- Source code, binaries and test data available at:
WWw.princeton.edu/~aspremon/DSPCA.htm
- More results in d'Aspremont, Bach \& El Ghaoui (2007) and Sriperumbudur et al. (2007).


## References

Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I. \& Rosenwald, A. (2000), 'Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling', Nature 403, 503-511.
Alon, A., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. \& Levine, A. J. (1999), 'Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays', Cell Biology 96, 6745-6750.
Cadima, J. \& Jolliffe, I. T. (1995), 'Loadings and correlations in the interpretation of principal components', Journal of Applied Statistics 22, 203-214.
Candès, E. J. \& Tao, T. (2005), 'Decoding by linear programming', Information Theory, IEEE Transactions on 51(12), 4203-4215.
Candès, E. \& Tao, T. (2007), 'The Dantzig selector: statistical estimation when\$ $\mathrm{p} \$$ is much larger than $\$ \mathrm{n} \$$ ', To appear in Annals of Statistics
Chen, S., Donoho, D. \& Saunders, M. (2001), 'Atomic decomposition by basis pursuit.', SIAM Review 43(1), 129-159.
d'Aspremont, A. (2005), 'Smooth optimization with approximate gradient', ArXiv: math.OC/0512344.
d'Aspremont, A., Bach, F. R. \& El Ghaoui, L. (2007), Full regularization path for sparse principal component analysis, in 'Proceedings of the 24th international conference on Machine learning', pp. 177-184.
d'Aspremont, A., El Ghaoui, L., Jordan, M. \& Lanckriet, G. R. G. (2007), 'A direct formulation for sparse PCA using semidefinite programming', SIAM Review 49(3), 434-448.
Donoho, D. L. \& Tanner, J. (2005), 'Sparse nonnegative solutions of underdetermined linear equations by linear programming', Proc. of the National Academy of Sciences 102(27), 9446-9451.
Goemans, M. \& Williamson, D. (1995), 'Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming', J. ACM 42, 1115-1145.
Johnstone, I. \& Lu, A. Y. (2004), 'Sparse principal components analysis', Working Paper, Stanford department of statistics .
Jolliffe, I. T., Trendafilov, N. \& Uddin, M. (2003), 'A modified principal component technique based on the LASSO', Journal of Computational and Graphical Statistics 12, 531-547.
Lemaréchal, C. \& Sagastizábal, C. (1997), 'Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries', SIAM Journal on Optimization 7(2), 367-385.
Luss, R. \& d'Aspremont, A. (2007), 'Clustering and feature selection using sparse principal component analysis', Working Paper
Meinshausen, N. \& Yu, B. (2007), Lasso-type recovery of sparse representations for highdimensional data, Technical report, To appear in Annals of Statistics.
Moghaddam, B., Weiss, Y. \& Avidan, S. (2006), 'Spectral bounds for sparse PCA: Exact and greedy algorithms', Advances in Neural Information Processing Systems 18.

Moler, C. \& Van Loan, C. (1978), 'Nineteen dubious ways to computethe exponentialof a matrix', SIAM Review 20, 801-836.
Moler, C. \& Van Loan, C. (2003), 'Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later', SIAM Review 45(1), 3-49.
Nemirovski, A. (2004), 'Prox-method with rate of convergence $O(1 / T)$ for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems', SIAM Journal on Optimization 15(1), 229-251.
Nesterov, Y. (1983), 'A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$ ', Soviet Mathematics Doklady 27(2), 372-376.
Nesterov, Y. (2005), 'Smooth minimization of non-smooth functions', Mathematical Programming 103(1), 127-152.
Sriperumbudur, B., Torres, D. \& Lanckriet, G. (2007), 'Sparse eigen methods by DC programming', Proceedings of the 24th international conference on Machine learning pp. 831-838.
Tibshirani, R. (1996), 'Regression shrinkage and selection via the LASSO', Journal of the Royal statistical society, series B 58(1), 267-288.
Zou, H., Hastie, T. \& Tibshirani, R. (2006), 'Sparse Principal Component Analysis', Journal of Computational \& Graphical Statistics 15(2), 265-286.

