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Introduction

We estimate a sample covariance matrix Σ from empirical data. . .

• Objective: infer dependence relationships between variables.

• We want this information to be as sparse as possible.

• Basic solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

and simply threshold smaller coefficients to zero. (not always psd.)

We can do better. . .
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Covariance Selection

Following Dempster (1972), look for zeros in the inverse covariance matrix:

• Parsimony. Suppose that we are estimating a Gaussian density:

f(x, Σ) =
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,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of
the density f as a member of an exponential family of distributions:

f(x, Σ) = exp(α0 + t(x) + α11t11(x) + . . . + αrstrs(x))

with here tij(x) = xixj and αij = Σ−1
ij .

• Dempster (1972) calls Σ−1
ij a concentration coefficient.

There is more. . .
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Covariance Selection

Covariance selection:

• With m + 1 observations xi ∈ Rn on n random variables, we estimate a
sample covariance matrix S such that S = 1

m

∑m+1
i=1 (xi − x̄)(xi − x̄)T

• Choose a symmetric subset I of matrix coefficients and denote by J the
remaining coefficients.

• Choose a covariance matrix estimator Σ̂ such that:

◦ Σ̂ij = Sij for all indices (i, j) in J

◦ Σ̂−1
ij = 0 for all indices (i, j) in I

We simply select a topology of zeroes in the inverse covariance matrix. . .
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Covariance Selection

Why is this a good choice? Dempster (1972) shows:

• Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij

on J , the choice Σ̂−1
ij = 0 on I has maximum entropy.

• Maximum Likelihood. Among all Gaussian models Σ such that Σ−1
ij = 0

on I, the choice Σ̂ij = Sij on J has maximum likelihood.

• Existence and Uniqueness. If there is a positive semidefinite matrix Σ̂ij

satisfying Σ̂ij = Sij on J , then there is only one such matrix satisfying

Σ̂−1
ij = 0 on I.
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Covariance Selection

Conditional independence:

• Suppose X,Y,Z have are jointly normal with covariance matrix Σ, with

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

• Conditioned on Z, X,Y are still normally distributed with covariance
matrix C satisfying:

C = Σ11 − Σ12Σ
−1
22 Σ21 =

(

Σ−1
)−1

11

• So X and Y are conditionally independent iff
(

Σ−1
)

11
is diagonal,

which is also:
Σ−1

xy = 0
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Covariance Selection

• Suppose we have iid noise ǫi ∼ N (0, 1) and the following linear model:

x = z + ǫ1
y = z + ǫ2
z = ǫ3

• Graphically, this is:

X Y

Z
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Covariance Selection

• The covariance matrix and inverse covariance are given by:

Σ =





2 1 1
1 2 1
1 1 1



 Σ−1 =





1 0 −1
0 1 −1

−1 −1 3





• The inverse covariance matrix has Σ−1
12 clearly showing that the variables

x and y are independent conditioned on z.

• Graphically, this is again:

X Y

Z

versus
X Y

Z
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Covariance Selection

On a slightly larger scale. . .
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Applications & Related Work

• Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes.
See Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West
(2004) for example.

• Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen &
Gopinath (1999).

• Finance. Covariance estimation.

• Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior
point methods for large, sparse MLE.

• See also d’Aspremont, El Ghaoui, Jordan & Lanckriet (2005) on sparse
principal component analysis (PCA).
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Maximum Likelihood Estimation

• We can estimate Σ by solving the following maximum likelihood problem:

max
X∈Sn

log detX − Tr(SX)

• This problem is convex, has an explicit answer Σ = S−1 if S ≻ 0.

• Problem here: how do we make Σ−1 sparse?

• In other words, how do we efficiently choose I and J?

• Solution: penalize the MLE.
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AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

where Card(X) is the number of nonzero elements in X .

• Set ρ = 2/(m + 1) for the Akaike Information Criterion (AIC).

• Set ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .
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Convex Relaxation

• We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

replacing Card(X) by ‖X‖1 =
∑

ij |Xij| to solve

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

• See Fazel, Hindi & Boyd (2001) for related applications.
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l1 relaxation

Assuming |x| ≤ 1, this relaxation replaces:

Card(x) =
n
∑

i=1

1{xi 6=0}

with

‖x‖1 =

n
∑

i=1

|xi|

Graphically, this is:

0 x

1

−1 1

Card(x)

|x|
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Robustness

• This penalized MLE problem can be rewritten:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This can be interpreted as a robust MLE problem with componentwise
noise of magnitude ρ on the elements of S.

• The relaxed sparsity requirement is equivalent to a robustification.

• See d’Aspremont et al. (2005) for similar results on sparse PCA.
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Algorithms

• We need to solve:

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• For medium size problems, this can be done using interior point methods.

• In practice, we need to solve very large, dense instances. . .

• The ‖X‖1 penalty implicitly introduces O(n2) linear constraints and
makes interior point methods too expensive.
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Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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Algorithms

Here, we can exploit problem structure

• Our problem here has a particular min-max structure:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This min-max structure means that we use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense
problem instances.

• We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Assuming that a problem can be written according to a min-max model, the
algorithm works as follows. . .

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .
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Nesterov’s method

• Numerical steps: computing the inverse of X and two eigenvalue
decompositions.

• Total complexity estimate of the method is:

O

(

κ
√

(log κ)

ǫ
n4.5αρ

)

where log κ = log(β/α) bounds the solution’s condition number.

22



Dual block-coordinate descent

• Here we consider the dual of the original problem:

maximize log det(S + U)
subject to ‖U‖∞ ≤ ρ

S + U � 0

• The diagonal entries of an optimal U are Uij = ρ.

• We will solve for U column by column, sweeping all the columns.
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Dual block-coordinate descent

• Let C = S + U be the current iterate, after permutation we can always
assume that we optimize over the last column:

maximize log det

(

C11 C12 + u
C21 + uT C22

)

subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

• Each iteration reduces to a simple box-constrained QP:

minimize uT (C11)−1u
subject to ‖u‖∞ ≤ ρ

• We stop when Tr(SX) + ρ‖X‖1 − n ≤ ǫ where X = C−1.
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Dual block-coordinate descent

Complexity?

• Luo & Tseng (1992): block coordinate descent has linear convergence in
this case.

Smooth first-order methods to solve the inner QP problem:

• The hardest numerical step at each iteration is computing an inverse.

• The matrix to invert is only updated by a low rank matrix at each
iteration: use Sherman-Woodbury-Morrisson formula.
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Numerical Examples

Generate random examples:

• Take a sparse, random p.s.d. matrix A ∈ Sn

• We add a uniform noise with magnitude σ to its inverse

We then solve the penalized MLE problem (or the modified one):

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

and compare the solution with the original matrix A.
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Numerical Examples

A basic example. . .

   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse Σ−1Solution for ρ = σOriginal inverse A

The original inverse covariance matrix A, the noisy inverse Σ−1 and the
solution.
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.

4.5Y

5.5Y

1Y

10Y

0.5Y

7Y

9Y

8Y

5Y

4Y

6.5Y

1.5Y

6Y

3Y

9.5Y

2Y

2.5Y

8.5Y

7.5Y

3.5Y

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y
7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

ρ = 0 ρ = .01

29



ROC curves
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Classification Error. ROC curves for the solution to the covariance selection
problem compared with a simple thresholding of B−1, for various levels of
noise: σ = 0.3 (left) and σ = 0.5 (right). Here n = 50.
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Computing time. Duality gap versus CPU time (in seconds) on a random
problem, solved using Nesterov’s method (squares) and the coordinate
descent algorithms (circles and solid line).
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Conclusion

• A convex relaxation for sparse covariance selection.

• Robustness interpretation.

• Two algorithms for dense large-scale instances.

• Precision requirements? Thresholding? How do to fix ρ? . . .

If you have financial applications in mind. . .

Network graphs generated using Cytoscape.
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