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Introduction

We estimate a sample covariance matrix Σ from empirical data. . .

• Objective: infer dependence relationships between variables.

• We want this information to be as sparse as possible.

• Basic solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

and simply threshold smaller coefficients to zero. (not always psd.)

We can do better. . .
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Covariance Selection

Following Dempster (1972), look for zeros in the inverse covariance matrix:

• Parsimony. Suppose that we are estimating a Gaussian density:

f(x, Σ) =
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,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of
the density f as a member of an exponential family of distributions:

f(x, Σ) = exp(α0 + t(x) + α11t11(x) + . . . + αrstrs(x))

with here tij(x) = xixj and αij = Σ−1
ij .

• Dempster (1972) calls Σ−1
ij a concentration coefficient.

There is more. . .
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Covariance Selection

Covariance selection:

• With m + 1 observations xi ∈ Rn on n random variables, we estimate a
sample covariance matrix S such that S = 1

m

∑m+1
i=1 (xi − x̄)(xi − x̄)T

• Choose a symmetric subset I of matrix coefficients and denote by J the
remaining coefficients.

• Choose a covariance matrix estimator Σ̂ such that:

◦ Σ̂ij = Sij for all indices (i, j) in J

◦ Σ̂−1
ij = 0 for all indices (i, j) in I

We simply select a topology of zeroes in the inverse covariance matrix. . .
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Covariance Selection

Why is this a good choice? Dempster (1972) shows:

• Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij

on J , the choice Σ̂−1
ij = 0 on I has maximum entropy.

• Maximum Likelihood. Among all Gaussian models Σ such that Σ−1
ij = 0

on I, the choice Σ̂ij = Sij on J has maximum likelihood.

• Existence and Uniqueness. If there is a positive semidefinite matrix Σ̂ij

satisfying Σ̂ij = Sij on J , then there is only one such matrix satisfying

Σ̂−1
ij = 0 on I.
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Covariance Selection

Conditional independence:

• Suppose X,Y,Z have are jointly normal with covariance matrix Σ, with

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

• Conditioned on Z, X,Y are still normally distributed with covariance
matrix C satisfying:

C = Σ11 − Σ12Σ
−1
22 Σ21 =

(

Σ−1
)−1

11

• So X and Y are conditionally independent iff
(

Σ−1
)

11
is diagonal,

which is also:
Σ−1

xy = 0
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Covariance Selection

• Suppose we have iid noise ǫi ∼ N (0, 1) and the following linear model:

x = z + ǫ1
y = z + ǫ2
z = ǫ3

• Graphically, this is:

X Y

Z
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Covariance Selection

• The covariance matrix and inverse covariance are given by:

Σ =





2 1 1
1 2 1
1 1 1



 Σ−1 =





1 0 −1
0 1 −1

−1 −1 3





• The inverse covariance matrix has Σ−1
12 clearly showing that the variables

x and y are independent conditioned on z.

• Graphically, this is again:

X Y

Z

versus
X Y

Z
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Covariance Selection

On a slightly larger scale. . .
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Applications & Related Work

• Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes.
See Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West
(2004) for example.

• Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen &
Gopinath (1999).

• Finance. Covariance estimation.

• Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior
point methods for large, sparse MLE.

• See also d’Aspremont, El Ghaoui, Jordan & Lanckriet (2005) on sparse
principal component analysis (PCA).
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Maximum Likelihood Estimation

• We can estimate Σ by solving the following maximum likelihood problem:

max
X∈Sn

log detX − Tr(SX)

• This problem is convex, has an explicit answer Σ = S−1 if S ≻ 0.

• Problem here: how do we make Σ−1 sparse?

• In other words, how do we efficiently choose I and J?

• Solution: penalize the MLE.
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AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

where Card(X) is the number of nonzero elements in X .

• Set ρ = 2/(m + 1) for the Akaike Information Criterion (AIC).

• Set ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .
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Convex Relaxation

• We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

replacing Card(X) by ‖X‖1 =
∑

ij |Xij| to solve

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

• See Fazel, Hindi & Boyd (2001) for related applications.
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l1 relaxation

Assuming |x| ≤ 1, this relaxation replaces:

Card(x) =
n
∑

i=1

1{xi 6=0}

with

‖x‖1 =

n
∑

i=1

|xi|

Graphically, this is:

0 x

1

−1 1

Card(x)

|x|
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Robustness

• This penalized MLE problem can be rewritten:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This can be interpreted as a robust MLE problem with componentwise
noise of magnitude ρ on the elements of S.

• The relaxed sparsity requirement is equivalent to a robustification.

• See d’Aspremont et al. (2005) for similar results on sparse PCA.
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Algorithms

• We need to solve:

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• For medium size problems, this can be done using interior point methods.

• In practice, we need to solve very large, dense instances. . .

• The ‖X‖1 penalty implicitly introduces O(n2) linear constraints and
makes interior point methods too expensive.
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Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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Algorithms

Here, we can exploit problem structure

• Our problem here has a particular min-max structure:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This min-max structure means that we use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense
problem instances.

• We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Assuming that a problem can be written according to a min-max model, the
algorithm works as follows. . .

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .
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Nesterov’s method

• Numerical steps: computing the inverse of X and two eigenvalue
decompositions.

• Total complexity estimate of the method is:

O

(

κ
√

(log κ)

ǫ
n4.5αρ

)

where log κ = log(β/α) bounds the solution’s condition number.
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Dual block-coordinate descent

• Here we consider the dual of the original problem:

maximize log det(S + U)
subject to ‖U‖∞ ≤ ρ

S + U � 0

• The diagonal entries of an optimal U are Uij = ρ.

• We will solve for U column by column, sweeping all the columns.

23



Dual block-coordinate descent

• Let C = S + U be the current iterate, after permutation we can always
assume that we optimize over the last column:

maximize log det

(

C11 C12 + u
C21 + uT C22

)

subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

• Each iteration reduces to a simple box-constrained QP:

minimize uT (C11)−1u
subject to ‖u‖∞ ≤ ρ

• We stop when Tr(SX) + ρ‖X‖1 − n ≤ ǫ where X = C−1.
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Dual block-coordinate descent

Complexity?

• Luo & Tseng (1992): block coordinate descent has linear convergence in
this case.

Smooth first-order methods to solve the inner QP problem:

• The hardest numerical step at each iteration is computing an inverse.

• The matrix to invert is only updated by a low rank matrix at each
iteration: use Sherman-Woodbury-Morrisson formula.
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Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Numerical Examples

Generate random examples:

• Take a sparse, random p.s.d. matrix A ∈ Sn

• We add a uniform noise with magnitude σ to its inverse

We then solve the penalized MLE problem (or the modified one):

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

and compare the solution with the original matrix A.
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Numerical Examples

A basic example. . .

   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse Σ−1Solution for ρ = σOriginal inverse A

The original inverse covariance matrix A, the noisy inverse Σ−1 and the
solution.
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.
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ROC curves
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Classification Error. ROC curves for the solution to the covariance selection
problem compared with a simple thresholding of B−1, for various levels of
noise: σ = 0.3 (left) and σ = 0.5 (right). Here n = 50.
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Computing time. Duality gap versus CPU time (in seconds) on a random
problem, solved using Nesterov’s method (squares) and the coordinate
descent algorithms (circles and solid line).
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Conclusion

• A convex relaxation for sparse covariance selection.

• Robustness interpretation.

• Two algorithms for dense large-scale instances.

• Precision requirements? Thresholding? How do to fix ρ? . . .

If you have financial applications in mind. . .

Network graphs generated using Cytoscape.
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