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Introduction

Principal Component Analysis (PCA): classic tool in multivariate data
analysis

• Input: a covariance matrix A

• Output: a sequence of factors ranked by variance

• Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model.

Numerically, just an eigenvalue decomposition of the covariance matrix:

A =
n

∑

i=1

λixix
T
i
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Portfolio Hedging

Hedging problem:

• Market is composed of N assets with price Si,t at time t

• Let C be the covariance matrix of the assets

• Pt is the value of a portfolio of assets with coefficients ui:

Pt =

N
∑

i=1

uiSi,t

• The market factors and corresponding variances are given by:

C =

n
∑

i=1

λixix
T
i
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Portfolio Hedging

• We can hedge some of the risk using the k most important market factors:

Pt =

k
∑

i=1

(uTxi)Fi,t + εt, with Fi,t = xT
i St

• Usually k = 3. On interest rate markets the first three factors are level,
spread and convexity.

• Problem: the factors xi usually assign a nonzero weight to all assets Si

• This means large fixed transaction costs when hedging. . .
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Sparse PCA: Applications

Can we get sparse factors xi instead?

• Portfolio hedging: sparse factors mean less assets in the portfolio, hence
less transaction costs.

• Side effects: minimize proportional transaction costs, robustness
interpretation.

• Other applications: image processing, gene expression data analysis,
multiscale data processing.
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A: rank one approximation

Problem definition:

• Here, we focus on the first factor x, computed as the solution of:

min
x∈R

‖A − xxT‖F

where ‖X‖F is the Frobenius norm of X, i.e. ‖X‖F =
√

Tr(X2)

• In this case, we get an exact solution λmax(A)x1x
T
1 where λmax(X) is the

maximum eigenvalue and x1 is the associated eigenvector.
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Variational formulation

We can rewrite the previous problem as:

max xTAx

subject to ‖x‖2 = 1.
(1)

This problem is easy, its solution is again λmax(A) at x1.

Here however, we want a little bit more. . . We look for a sparse solution and
solve instead:

max xTAx

subject to ‖x‖2 = 1
Card(x) ≤ k,

(2)

where Card(x) denotes the cardinality (number of non-zero elements) of x.
This is non-convex and numerically hard.
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Related literature

Previous work:

• Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

• A non-convex method called SCoTLASS by Jolliffe & Uddin (2003).
(Same problem formulation)

• Zou, Hastie & Tibshirani (2004): a regression based technique called
SPCA. Based on a representation of PCA as a regression problem.
Sparsity is obtained using the LASSO Tibshirani (1996) a l1 norm penalty.

Performance:

• These methods are either very suboptimal (thresholding) or lead to
nonconvex optimization problems (SPCA).

• Regression: works for very large scale examples.
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Semidefinite relaxation
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Semidefinite relaxation

Start from:
max xTAx

subject to ‖x‖2 = 1
Card(x) ≤ k,

let X = xxT , and write everything in terms of the matrix X:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT .

This is a strictly equivalent problem.
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Semidefinite relaxation

From
max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT .

We can go a little further and replace X = xxT by an equivalent
X � 0, Rank(X) = 1, to get:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

Again, this is the same problem!
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Semidefinite relaxation

Numerically, this is still hard:

• The Card(X) ≤ k2 is still non-convex

• So is the constraint Rank(X) = 1

but, we have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint
Tr(X) = 1.

To solve this problem efficiently, we need to relax the two non-convex
constraints above.
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Semidefinite relaxation

If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. Hence, we can find a

convex relaxation:

• Replace Card(X) ≤ k2 by the weaker (but convex) 1
T |X|1 ≤ k

• Simply drop the rank constraint

Our problem becomes now:

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

(3)

This is a convex program and can be solved efficiently.
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Semidefinite programming

More specifically, we get a semidefinite program in the variable X ∈ Sn,
which can be solved using SEDUMI by Sturm (1999) or SDPT3 by Toh,
Todd & Tutuncu (1996).

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0.

• Polynomial complexity. . .

• Problem here: the program has O(n2) dense constraints on the matrix X

(sampling fails, . . . ).

In practice, use first order algorithm developed by Nesterov (2003).

14



Singular Value Decomposition

Same technique works for Singular Value Decomposition instead of PCA.

• The variational formulation of SVD is here:

min ‖A − uvT‖F

subject to Card(u) ≤ k1

Card(v) ≤ k2,

in the variables (u, v) ∈ Rm × Rn where k1 ≤ m, k2 ≤ n are fixed.

• This can be relaxed as the following semidefinite program:

max Tr(ATX12)
subject to X � 0, Tr(Xii) = 1

1
T |Xii|1 ≤ ki, i = 1, 2

1
T |X12|1 ≤

√
k1k2,

in the variable X ∈ Sm+n with blocks Xij for i, j = 1, 2.
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Robustness
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Duality - robustness

We look at the penalized problem:

max. Tr(AU) − ρ1T |U |1
s.t. TrU = 1

U � 0

which can be written:

max
{Tr U=1, U�0}

min
{|Xij|≤ρ}

Tr((A + X)U)

or also:
min{|Xij|≤ρ} λmax(A + X)

This dual has a very natural interpretation. . .
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Duality - robustness

min{|Xij|≤ρ} λmax(A + X)

• Worst-case robust maximum eigenvalue problem

• Uniformly distributed noise with magnitude ρ on the coefficients of the
covariance matrix A

Asking for sparsity in the primal means solving a robust maximum eigenvalue
problem with uniform noise on the coefficients.
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Numerical results
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Sparse factors. . .

Example:

• Use a covariance matrix from forward rates with maturity 1Y to 10Y

• Compute first factor normally (average of rates)

• Use the relaxation to get a sparse second factor
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Second Factor
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The second factor is much sparser than in the PCA case (5 nonzero
components instead of 10), explained variance goes from 16% to 14%. . .
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Portfolio hedging

• Pick a random portfolio of forward rates in JPY, USD and EUR

• Hedge it and compute the residual variance over a three months horizon

• Hedge only using the first factor

• Record the percentage reduction in variance for various levels of sparsity

(Thanks to Aslheigh Kreider for research assistance)
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Portfolio hedging
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Cardinality versus k: model

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0). We then define the
matrix A as:

A = UTU + 15 vvT

here U ∈ S10 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

• Try k = 1, . . . , 10

• For each k, sample a 100 matrices A

• Plot average solution cardinality (and standard dev. as error bars)
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Cardinality versus k
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Figure 1: Cardinality versus k.
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Sparsity versus # iterations

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 0) ∈ R20. We
then define the matrix A as:

A = UTU + 100 vvT

here U ∈ S20 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AU) − ρ1T |U |1
s.t. TrU = 1

U � 0

for ρ = 5.
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Sparsity versus # iterations
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Number of iterations: 10,000 to 100,000. Computing time: 12” to 110”.
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Conclusion

• Semidefinite relaxation for sparse PCA

• Robustness & sparsity at the same time (cf. dual)

• Can solve large-scale problems with first-order method by Nesterov (2003)

• (Approximately) optimal factors when fixed transaction costs are present

Slides and software available online at www.princeton.edu/∼aspremon
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