A Market Test for the Positivity of Arrow-Debreu Prices

Alexandre d'Aspremont

ORFE, Princeton University.

Introduction

- Classic Black \& Scholes (1973) option pricing based on:
- a dynamic hedging argument
- a model for the asset dynamics (geometric BM)
- Sensitive to liquidity, transaction costs, model risk ...
- What can we say about derivative prices with much weaker assumptions?

Static Arbitrage

Here, we rely on a minimal set of assumptions:

- no assumption on the asset distribution
- one period model

An arbitrage in this simple setting is a buy and hold strategy:

- form a portfolio at no cost today with a strictly positive payoff at maturity
- no trading involved between today and the option's maturity

What for?

- Data validation (e.g. before calibration), static arbitrage means market data is incompatible with any dynamic model. . .
- Test extrapolation formulas
- In illiquid markets, find optimal static hedge

Outline

- Static Arbitrage
- Harmonic Analysis on Semigroups
- No Arbitrage Conditions

Simplest Example: Put Call Parity

Static Arbitrage: Calls

Also, necessary and sufficient conditions on call prices:
Suppose we have a set of market prices for calls $C\left(K_{i}\right)=p_{i}$, then there is no arbitrage iff there is a function $C(K)$:

- $C(K)$ positive
- $C(K)$ decreasing
- $C(K)$ convex
- $C\left(K_{i}\right)=p_{i}$ and $C(0)=S$

This is very easy to test. . .

Dow Jones index call option prices on Mar. 17 2004, maturity Apr. 162004

Source: Reuters.

Why?

Data quality...

- All the prices are last quotes (not simultaneous)
- Low volume
- Some transaction costs

Problem: this data is used to calibrate models and price other derivatives...

Dimension n: Basket Options

- A basket call payoff is given by:

$$
\left(\sum_{i=1}^{k} w_{i} S_{i}-K\right)^{+}
$$

where w_{1}, \ldots, w_{k} are the basket's weights and K is the option's strike price

- Examples include: Index options, spread options, swaptions...
- Basket option prices are used to gather information on correlation

We denote by $C(w, K)$ the price of such an option, can we get conditions to test basket price data?

Necessary Conditions

Similar to dimension one...

Suppose we have a set of market prices for calls $C\left(w_{i}, K_{i}\right)=p_{i}$, and there is no arbitrage, then the function $C(w, K)$ satisfies:

- $C(w, K)$ positive
- $C(w, K)$ decreasing in K, increasing in w
- $C(w, K)$ jointly convex in (w, K)
- $C\left(w_{i}, K_{i}\right)=p_{i}$ and $C(0)=S$

This is still tractable in dimension n as a linear program.

Sufficient?

A key difference with dimension one: Bertsimas \& Popescu (2002) show that the exact problem is NP-Hard.

- These conditions are only necessary...
- Numerical cost is minimal (small LP)
- We can show sufficiency in some particular cases (see d'Aspremont \& El Ghaoui (2005) and Davis \& Hobson (2005) for details)

In practice: these conditions are far from being tight, how can we refine them?

Arrow-Debreu prices

- Arrow-Debreu: There is no arbitrage in the static market iff there is a probability measure π such that:

$$
C(w, K)=\mathbf{E}_{\pi}\left(w^{T} x-K\right)^{+}
$$

- $\pi(x)$ represents Arrow-Debreu state prices.
- Discretize on a uniform grid: This turns this into a linear program with m^{n} variables, where n is the number of assets x_{i} and m is the number of bins.
- Numerically: hopeless. . .
- Explicit conditions derived by Henkin \& Shananin (1990) (link with Radon transform), but intractable. . .

Tractable Conditions

- Bochner's theorem on the Fourier transform of positive measures:

$$
\begin{gathered}
f(s)=\int e^{-i<s, x>} d \lambda(x) \text { with } \lambda \text { positive } \\
\mathbb{\Downarrow}
\end{gathered}
$$

$$
f(s) \text { positive semidefinite }
$$

which means testing if the matrices $f\left(s_{i} s_{j}\right)$ are positive semidefinite

- Can we generalize this result to other transforms? In particular:

$$
\int_{\mathbf{R}_{+}^{n}}\left(w^{T} x-K\right)^{+} d \pi(x)
$$

Outline

- Static Arbitrage
- Harmonic Analysis on Semigroups
- No Arbitrage Conditions

Harmonic Analysis on Semigroups

Some quick definitions...

- A pair (\mathbb{S}, \cdot) is called a semigroup iff:
- if $s, t \in \mathbb{S}$ then $s \cdot t$ is also in \mathbb{S}
- there is a neutral element $e \in \mathbb{S}$ such that $e \cdot s=s$ for all $s \in \mathbb{S}$
- The dual \mathbb{S}^{*} of \mathbb{S} is the set of semicharacters, i.e. applications $\chi: \mathbb{S} \rightarrow \mathbf{R}$ such that
- $\chi(s) \chi(t)=\chi(s \cdot t)$ for all $s, t \in \mathbb{S}$
- $\chi(e)=1$, where e is the neutral element in \mathbb{S}
- A function $f: \mathbb{S} \rightarrow \mathbf{R}$ is positive semidefinite iff for every family $\left\{s_{i}\right\} \subset \mathbb{S}$ the matrix with elements $f\left(s_{i} \cdot s_{j}\right)$ is positive semidefinite

Harmonic Analysis on Semigroups

Last definitions (honest)...

- A function α is called an absolute value on \mathbb{S} iff
- $\alpha(e)=1$
- $\alpha(s \cdot t) \leq \alpha(s) \alpha(t)$, for all $s, t \in \mathbb{S}$
- A function f is bounded with respect to the absolute value α iff there is a constant $C>0$ such that

$$
|f(s)| \leq C \alpha(s), \quad s \in \mathbb{S}
$$

- f is exponentially bounded iff it is bounded with respect to an absolute value

Carleman type conditions on growth for moment determinacy, etc. . .

Harmonic Analysis on Semigroups: Central Result

The central result, see Berg, Christensen \& Ressel (1984) based on Choquet's theorem:

- the set of exponentially bounded positive definite functions is a Bauer simplex whose extreme points are the bounded semicharacters...
- this means that we have the following representation for positive definite functions on \mathbb{S} :

$$
f(s)=\int_{\mathbb{S}^{*}} \chi(s) d \mu(\chi)
$$

where μ is a Radon measure on \mathbb{S}^{*}

Harmonic Analysis on Semigroups: Simple Examples

- Berstein's theorem for the Laplace transform

$$
\mathbb{S}=\left(\mathbf{R}_{+},+\right), \chi_{x}(t)=e^{-x t} \text { and } f(t)=\int_{\mathbf{R}_{+}} e^{-x t} d \mu(x)
$$

- with involution, Bochner's theorem for the Fourier transform

$$
\mathbb{S}=(\mathbf{R},+), \chi_{x}(t)=e^{2 \pi i x t} \text { and } f(t)=\int_{\mathbf{R}} e^{2 \pi i x t} d \mu(x)
$$

- Hamburger's solution to the unidimensional moment problem

$$
\mathbb{S}=(\mathbf{N},+), \chi_{x}(k)=x^{k} \quad \text { and } \quad f(k)=\int_{\mathbf{R}} x^{k} d \mu(x)
$$

Outline

- Static Arbitrage
- Harmonic Analysis on Semigroups
- No Arbitrage Conditions

The Option Pricing Problem Revisited

What is the appropriate semigroup here?

- Basket option payoffs $\left(w^{T} x-K\right)^{+}$are not ideal in this setting.
- Solution: use straddles: $\left|w^{T} x-K\right|$
- Straddles are just the sum of a call and a put, their price can be computed from that of the corresponding call and forward by call-put parity.
- The fact that $\left|w^{T} x-K\right|^{2}$ is a polynomial keeps the complexity low.

Payoff Semigroup

- The fundamental semigroup \mathbb{S} here is the multiplicative payoff semigroup generated by the cash, the forwards and the straddles:

$$
\mathbb{S}=\left\{1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots\right\}
$$

- The semicharacters are the functions $\chi_{x}: \mathbb{S} \rightarrow \mathbf{R}$ which evaluate the payoffs at a certain point x

$$
\chi_{x}(s)=s(x), \quad \text { for all } s \in \mathbb{S}
$$

The Option Pricing Problem Revisited

- The original static arbitrage problem can be reformulated as

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & f\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m \\
& f(s)=\mathbf{E}_{\pi}[s], \quad s \in \mathbb{S} \quad \text { (f moment function) }
\end{array}
$$

- The variable is now $f: \mathbb{S} \rightarrow \mathbf{R}$, a function that associates to each payoff s in \mathbb{S}, its price $f(s)$
- The representation result in Berg et al. (1984) shows when a (price) function $f: \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\pi}[s]
$$

Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in \mathbf{R}_{+}^{n}, and note e_{i} for $i=1, \ldots, n+m$ the forward and option payoff functions we get:

A function $f(s): \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\nu}[s(x)], \quad \text { for all } s \in \mathbb{S}
$$

for some measure ν with compact support, iff for some $\beta>0$:
(i) $f(s)$ is positive semidefinite
(ii) $f\left(e_{i} s\right)$ is positive semidefinite for $i=1, \ldots, n+m$
(iii) $\left(\beta f(s)-\sum_{i=1}^{n+m} f\left(e_{i} s\right)\right)$ is positive semidefinite
this turns the basket arbitrage problem into a semidefinite program

Semidefinite Programming

A semidefinite program is written:

$$
\begin{array}{ll}
\underset{\operatorname{Tr}}{\operatorname{minimize}} & \operatorname{Tr} \\
\text { subject to } & \operatorname{Tr} A_{i} X=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

in the variable $X \in \mathbf{S}^{n}$, with parameters $C, A_{i} \in \mathbf{S}^{n}$ and $b_{i} \in \mathbf{R}$ for $i=1, \ldots, m$. Its dual is given by:

$$
\begin{array}{ll}
\text { maximize } & b^{T} \lambda \\
\text { subject to } & C-\sum_{i=1}^{m} \lambda_{i} A_{i} \succeq 0,
\end{array}
$$

in the variable $\lambda \in \mathbf{R}^{m}$.
Extension of interior point techniques for linear programming show how to solve these convex programs efficiently (see Nesterov \& Nemirovskii (1994), Sturm (1999) and Boyd \& Vandenberghe (2004)).

Option Pricing: a Semidefinite Program

We get a relaxation by only sampling the elements of \mathbb{S} up to a certain degree, the variable is then the vector $f(s)$ with
$e=\left(1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots,\left|w_{m}^{T} x-K_{m}\right|^{N}\right)$
testing for the absence of arbitrage is then a semidefinite program:

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(e_{k} s\right)\right)_{i j}=f\left(e_{k} s_{i} s_{j}\right)$

Conic Duality

Let $\Sigma \subset \mathcal{A}(\mathbb{S})$ be the set of polynomials that are sums of squares of polynomials in $\mathcal{A}(\mathbb{S})$, and \mathcal{P} the set of positive semidefinite sequences on \mathbb{S}

- instead of the conic duality between probability measures and positive portfolios

$$
p(x) \geq 0 \Leftrightarrow \int p(x) d \nu \geq 0, \quad \text { for all measures } \nu
$$

- we use the duality between positive semidefinite sequences \mathcal{P} and sums of squares polynomials Σ

$$
p \in \Sigma \Leftrightarrow\langle f, p\rangle \geq 0 \text { for all } f \in \mathcal{P}
$$

with $p=\sum_{i} q_{i} \chi_{s_{i}}$ and $f: \mathbb{S} \rightarrow \mathbf{R}$, where $\langle f, p\rangle=\sum_{i} q_{i} f\left(s_{i}\right)$

Option Pricing: Caveats

- Size: grows exponentially with the number of assets: no free lunch. . .
- In dimension 2, for spread options, this is:

$$
\binom{2+d}{2}(k+1)
$$

where d is the degree of the relaxation and k the number of assets.

- Conditioning issues. . .

Conclusion

- Testing for static arbitrage in option price data is easy in dimension one
- The extension on basket options (swaptions, etc) is NP-hard but good relaxations can be found
- We get a computationally friendly set of conditions for the absence of arbitrage
- Small scale problems are tractable in practice as semidefinite programs

References

Berg, C., Christensen, J. P. R. \& Ressel, P. (1984), Harmonic analysis on semigroups : theory of positive definite and related functions, Vol. 100 of Graduate texts in mathematics, Springer-Verlag, New York.

Bertsimas, D. \& Popescu, I. (2002), 'On the relation between option and stock prices: a convex optimization approach', Operations Research 50(2), 358-374.

Black, F. \& Scholes, M. (1973), 'The pricing of options and corporate liabilities', Journal of Political Economy 81, 637-659.

Boyd, S. \& Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press.
d'Aspremont, A. \& El Ghaoui, L. (2005), 'Static arbitrage bounds on basket option prices', Mathematical Programming .

Davis, M. H. \& Hobson, D. G. (2005), 'The range of traded option prices', Working Paper .

Henkin, G. \& Shananin, A. (1990), 'Bernstein theorems and Radon transform, application to the theory of production functions', American Mathematical Society: Translation of mathematical monographs 81, 189-223.

Nesterov, Y. \& Nemirovskii, A. (1994), Interior-point polynomial algorithms in convex programming, Society for Industrial and Applied Mathematics, Philadelphia.

Sturm, J. F. (1999), 'Using SEDUMI 1.0x, a MATLAB toolbox for optimization over symmetric cones', Optimization Methods and Software 11, 625-653.

