A Harmonic Analysis Solution to the Static Basket Arbitrage Problem

Alexandre d'Aspremont
ORFE, Princeton University

Available online at www.princeton.edu/~aspremon

Introduction

- The classic Black \& Scholes (1973) option pricing is based on:
- a model for the asset dynamics (geometric BM)
- a dynamic hedging argument
- sensitive to liquidity, transaction costs, model risk ...
- what can we say about option prices with much weaker assumptions?

Static Arbitrage

Here, we rely on a minimal set of assumptions:

- no assumption on the asset distribution
- one period model

An arbitrage in this simple setting is a buy and hold strategy:

- form a portfolio at no cost today with a strictly positive payoff at maturity
- no trading involved between today and the option's maturity

What for?

Applications:

- arbitrage free data stripping before calibration
- test extrapolation formulas
- in illiquid markets, find optimal static hedge or bound risk at little cost
- in particular: no capital requirements associated with model-risk

Simplest Example: Put Call Parity

We denote by $C(K)$ the price of the call with payoff $(S-K)^{+}$. If we know the forward prices, then we can deduce call prices from puts, ...

Basket Options

- A basket call payoff is given by

$$
\left(\sum_{i=1}^{k} w_{i} S_{i}-K\right)^{+}
$$

where w_{1}, \ldots, w_{k} are the basket's weights and K is the option's strike price

- examples include: Index options, spread options, swaptions...
- basket option prices are used to gather information on correlation

We denote by $C(w, K)$ the price of such an option, can we get conditions to test for the presence of an arbitrage in basket price data?

No Arbitrage Conditions

Suppose we are given market prices q_{i} for basket calls with weights w_{i} and strike prices K_{i} :

- Fundamental theorem of asset pricing: there is no arbitrage in the static market if and only if there is a probability measure π such that:

$$
\mathbf{E}_{\pi}\left[\left(w_{i}^{T} x-K_{i}\right)^{+}\right]=q_{i}
$$

- Except in dimension one: Bertsimas \& Popescu (2002) show that this problem is NP-Hard.

We look for tractable necessary conditions.

Necessary Conditions

- Consider a one period market with securities paying $s_{i}(x), i=0, \ldots, m$, at maturity T.
- For each value of form a rank one, symmetric, moment matrix:

$$
M(x)=\left(\begin{array}{cccc}
1 & s_{0}(x) & s_{1}(x) & \cdots \\
s_{0}(x) & s_{0}^{2}(x) & s_{0}(x) s_{1}(x) & \\
s_{1}(x) & s_{0}(x) s_{1}(x) & s_{1}^{2}(x) & \\
\vdots & & & \ddots
\end{array}\right)
$$

- This matrix is of the form $v v^{T}$ where v is a vector, hence must be positive semidefinite.

Necessary Conditions

- Suppose there is no arbitrage, and a pricing measure π
- Taking expectations, we form:

$$
P:=\mathbf{E}_{\pi}[M(x)]=\left(\begin{array}{cccc}
1 & p_{0} & p_{1} & \ldots \\
p_{0} & P_{22} & P_{23} & \\
p_{1} & P_{32} & P_{33} & \\
\vdots & & & \ddots
\end{array}\right)
$$

where $p_{i}=\mathbf{E}_{\pi}\left[s_{i}(x)\right], i=1, \ldots, m$.

- P must also be positive semidefinite and its first row and column are market prices. . .

Necessary Conditions

There is no arbitrage between the asset prices p_{i} and there is a pricing measure π

There are coefficients $P_{i j} \in \mathbf{R}$ such that the matrix:

$$
P:=\mathbf{E}_{\pi}[M(x)]=\left(\begin{array}{cccc}
1 & p_{0} & p_{1} & \ldots \\
p_{0} & P_{22} & P_{23} & \\
p_{1} & P_{32} & P_{33} & \\
\vdots & & & \ddots
\end{array}\right)
$$

is positive semidefinite.

Harmonic Analysis on Semigroups

Some quick definitions...

- a pair (\mathbb{S}, \cdot) is called a semigroup iff:
- if $s, t \in \mathbb{S}$ then $s \cdot t$ is also in \mathbb{S}
- there is a neutral element $e \in \mathbb{S}$ such that $e \cdot s=s$ for all $s \in \mathbb{S}$
- the dual \mathbb{S}^{*} of \mathbb{S} is the set of semicharacters, i.e. applications $\chi: \mathbb{S} \rightarrow \mathbf{R}$ such that
- $\chi(s) \chi(t)=\chi(s \cdot t)$ for all $s, t \in \mathbb{S}$
- $\chi(e)=1$, where e is the neutral element in \mathbb{S}
- a function α is called an absolute value on \mathbb{S} iff
- $\alpha(e)=1$
- $\alpha(s \cdot t) \leq \alpha(s) \alpha(t)$, for all $s, t \in \mathbb{S}$

Harmonic Analysis on Semigroups

last definitions (honest)...

- a function $f: \mathbb{S} \rightarrow \mathbf{R}$ is positive semidefinite iff for every family $\left\{s_{i}\right\} \subset \mathbb{S}$ the matrix with elements $f\left(s_{i} \cdot s_{j}\right)$ is positive semidefinite
- a function f is bounded with respect to the absolute value α iff there is a constant $C>0$ such that

$$
|f(s)| \leq C \alpha(s), \quad s \in \mathbb{S}
$$

- f is exponentially bounded iff it is bounded with respect to an absolute value

Harmonic Analysis on Semigroups: Central Result

Main result, see Berg, Christensen \& Ressel (1984) based on Choquet's theorem:

- the set of exponentially bounded positive definite functions is a Bauer simplex whose extreme points are the bounded semicharacters...
- this means that we have the following representation for positive definite functions on \mathbb{S} :

$$
f(s)=\int_{\mathbb{S}^{*}} \chi(s) d \mu(\chi)
$$

where μ is a Radon measure on \mathbb{S}^{*}

Harmonic Analysis on Semigroups: Simple Examples

- Berstein's theorem for the Laplace transform

$$
\mathbb{S}=\left(\mathbf{R}_{+},+\right), \chi_{x}(t)=e^{-x t} \text { and } f(t)=\int_{\mathbf{R}_{+}} e^{-x t} d \mu(x)
$$

- with involution, Bochner's theorem for the Fourier transform

$$
\mathbb{S}=(\mathbf{R},+), \chi_{x}(t)=e^{2 \pi i x t} \text { and } f(t)=\int_{\mathbf{R}} e^{2 \pi i x t} d \mu(x)
$$

- Hamburger's solution to the unidimensional moment problem

$$
\mathbb{S}=(\mathbf{N},+), \chi_{x}(k)=x^{k} \quad \text { and } \quad f(k)=\int_{\mathbf{R}} x^{k} d \mu(x)
$$

The Option Pricing Problem

- the basket option payoffs $\left(w^{T} x-K\right)^{+}$are not ideal in this setting
- solution, use straddles: $\left|w^{T} x-K\right|$
- as straddles are just the sum of a call and a put, their price can be computed from that of the corresponding call and forward by call-put parity
- the fact that $\left|w^{T} x-K\right|^{2}$ is a polynomial keeps the complexity low

Payoff Semigroup

- the fundamental semigroup \mathbb{S} is here the multiplicative payoff semigroup generated by the cash, the forwards and the straddles:

$$
\mathbb{S}=\left\{1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots\right\}
$$

- the semicharacters are the functions $\chi_{x}: \mathbb{S} \rightarrow \mathbf{R}$ which evaluate the payoffs at a certain point x

$$
\chi_{x}(s)=s(x), \quad \text { for all } s \in \mathbb{S}
$$

The Option Pricing Problem Revisited

- the original static arbitrage problem can be reformulated as

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & f\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m \\
& f(s)=\mathbf{E}_{\pi}[s], \quad s \in \mathbb{S} \quad \text { (f moment function) }
\end{array}
$$

- the variable is now $f: \mathbb{S} \rightarrow \mathbf{R}$, a function that associates to each payoff s in \mathbb{S}, its price $f(s)$
- the representation result in Berg et al. (1984) shows when a (price) function $f: \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\pi}[s]
$$

Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in \mathbf{R}_{+}^{n}, and note e_{i} for $i=1, \ldots, n+m$ the forward and option payoff functions we get:

A function $f(s): \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\nu}[s(x)], \quad \text { for all } s \in \mathbb{S}
$$

for some measure ν with compact support, iff for some $\beta>0$:
(i) $f(s)$ is positive semidefinite
(ii) $f\left(e_{i} s\right)$ is positive semidefinite for $i=1, \ldots, n+m$
(iii) $\left(\beta f(s)-\sum_{i=1}^{n+m} f\left(e_{i} s\right)\right)$ is positive semidefinite
this turns the basket arbitrage problem into a semidefinite program

Semidefinite Programming

A semidefinite program is written:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} C X \\
\text { subject to } & \operatorname{Tr} A_{i} X=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

in the variable $X \in \mathbf{S}^{n}$, with parameters $C, A_{i} \in \mathbf{S}^{n}$ and $b_{i} \in \mathbf{R}$ for $i=1, \ldots, m$. Its dual is given by:

$$
\begin{array}{ll}
\text { maximize } & b^{T} \lambda \\
\text { subject to } & C-\sum_{i=1}^{m} \lambda_{i} A_{i} \succeq 0
\end{array}
$$

in the variable $\lambda \in \mathbf{R}^{m}$.
A recent extension of interior point techniques for linear programming shows how to solve these convex programs very efficiently (see Nesterov \& Nemirovskii (1994), Sturm (1999) and Boyd \& Vandenberghe (2004)).

Feasibility Problems

Of course, the related feasibility problems:

$$
\begin{array}{ll}
\text { find } & X \\
\text { such that } & \operatorname{Tr} A_{i} X=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

and

can be solved as efficiently (setting for example $C=I$ or $b=\mathbf{1}$ in the previous programs).

Also, because most solvers produce both primal and dual solution, we also get a Farkas type certificate of infeasibility or a proof of optimality in the duality gap.

Option Pricing: a Semidefinite Program

Relaxation: sample the elements of \mathbb{S} up to a certain degree, the variable is then the vector $f(s)$ with
$e=\left(1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots,\left|w_{m}^{T} x-K_{m}\right|^{N}\right)$
testing for the absence of arbitrage is then a semidefinite program:

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(e_{k} s\right)\right)_{i j}=f\left(e_{k} s_{i} s_{j}\right)$

Price Bounds

We can also consider the related problem of finding bounds on the price of a straddle, given prices of other similar options:

$$
\begin{array}{ll}
\max . / \min . & \mathbf{E}_{\pi}\left(\left|w_{0}^{T} x-K_{0}\right|\right) \\
\text { subject to } & \mathbf{E}_{\pi}\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

which, using the previous result becomes the following semidefinite program:

$$
\begin{array}{ll}
\operatorname{max.} / \min . & f\left(e_{0}\right) \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(e_{k} s\right)\right)_{i j}=f\left(e_{k} s_{i} s_{j}\right)$.

Duality

- the price maximization program is:

$$
\begin{array}{ll}
\operatorname{maximize} & \int_{\mathbf{R}_{+}^{n}}\left(w_{0}^{T} x-K_{0}\right)^{+} \pi(x) d x \\
\text { subject to } & \int_{\mathbf{R}_{+}^{n}}\left(w_{i}^{T} x-K_{i}\right)^{+} \pi(x) d x=p_{i}, \quad i=1, \ldots, m \\
& \int_{\mathbf{R}_{+}^{n}} \pi(x) d x=1
\end{array}
$$

in the variable $\pi \in \mathcal{K}$.

- the dual is a portfolio problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} p+\lambda_{0} \\
\text { subject to } & \sum_{i=1}^{m} \lambda_{i}\left(w_{i}^{T} x-K_{i}\right)^{+}+\lambda_{0} \geq \psi(x) \text { for every } x \in \mathbf{R}_{+}^{n}
\end{array}
$$

in the variable $\lambda \in \mathbf{R}^{m+1}$.
very intuitive, but intractable. . .

Conic Duality

let $\Sigma \subset \mathcal{A}(\mathbb{S})$ be the set of polynomials that are sums of squares of polynomials in $\mathcal{A}(\mathbb{S})$, and \mathcal{P} the set of positive semidefinite sequences on \mathbb{S}

- instead of the conic duality between probability measures and positive portfolios

$$
p(x) \geq 0 \Leftrightarrow \int p(x) d \nu \geq 0, \quad \text { for all measures } \nu
$$

- we use the duality between positive semidefinite sequences \mathcal{P} and sums of squares polynomials Σ

$$
p \in \Sigma \Leftrightarrow\langle f, p\rangle \geq 0 \text { for all } f \in \mathcal{P}
$$

with $p=\sum_{i} q_{i} \chi_{s_{i}}$ and $f: \mathbb{S} \rightarrow \mathbf{R}$, where $\langle f, p\rangle=\sum_{i} q_{i} f\left(s_{i}\right)$

Option Pricing: Dual

- the dual of the price maximization problem

$$
\begin{array}{ll}
\operatorname{maximize} & f\left(e_{0}\right) \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

- now becomes...

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n+m} p_{j} \lambda_{j}+\lambda_{n+m+1} \\
\text { subject to } & \sum_{j=1}^{n+m} \lambda_{j} e_{j}(x)+\lambda_{n+m+1}-\left|w_{0}^{T} x-K_{0}\right| \\
& =q_{0}(x)+\sum_{j=1}^{n+m} q_{j}(x) e_{j}(x)+\left(\beta-\sum_{k=0}^{n+m} e_{k}(x)\right) q_{n+1}(x)
\end{array}
$$

in the variables $\lambda \in \mathbf{R}^{n+m+1}$ and $q_{j} \in \Sigma$ for $j=0, \ldots,(n+1)$

Option Pricing: Caveats

- Size: grows exponentially with the number of assets: no free lunch, even in numerical complexity. . .
- Some numerical difficulties: conditioning, etc

Conclusion

- Testing for the absence of arbitrage between basket options (swaptions, etc) is NP-hard but good relaxations can be found
- We get a set of relaxed conditions for the absence of arbitrage
- Small scale problems are tractable in practice as semidefinite programs

References

Berg, C., Christensen, J. P. R. \& Ressel, P. (1984), Harmonic analysis on semigroups : theory of positive definite and related functions, Vol. 100 of Graduate texts in mathematics, Springer-Verlag, New York.
Bertsimas, D. \& Popescu, I. (2002), 'On the relation between option and stock prices: a convex optimization approach', Operations Research 50(2), 358-374.
Black, F. \& Scholes, M. (1973), 'The pricing of options and corporate liabilities', Journal of Political Economy 81, 637-659.
Boyd, S. \& Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press.
Nesterov, Y. \& Nemirovskii, A. (1994), Interior-point polynomial algorithms in convex programming, Society for Industrial and Applied Mathematics, Philadelphia.
Sturm, J. F. (1999), 'Using sedumi 1.0x, a matlab toolbox for optimization over symmetric cones', Optimization Methods and Software 11, 625-653.

