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Introduction

• The classic Black & Scholes (1973) option pricing is based on:

◦ a model for the asset dynamics (geometric BM)
◦ a dynamic hedging argument

• sensitive to liquidity, transaction costs, model risk ...

• what can we say about option prices with much weaker assumptions?

2



Static Arbitrage

Here, we rely on a minimal set of assumptions:

• no assumption on the asset distribution

• one period model

An arbitrage in this simple setting is a buy and hold strategy:

• form a portfolio at no cost today with a strictly positive payoff at maturity

• no trading involved between today and the option’s maturity
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What for?

Applications:

• arbitrage free data stripping before calibration

• test extrapolation formulas

• in illiquid markets, find optimal static hedge or bound risk at little cost

• in particular: no capital requirements associated with model-risk
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Simplest Example: Put Call Parity

payoff

K

KK S

Put Call−

− =

= K − S

We denote by C(K) the price of the call with payoff (S −K)+. If we know
the forward prices, then we can deduce call prices from puts, ...
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Basket Options

• A basket call payoff is given by

(

k
∑

i=1

wiSi −K

)+

where w1, . . . , wk are the basket’s weights and K is the option’s strike
price

• examples include: Index options, spread options, swaptions...

• basket option prices are used to gather information on correlation

We denote by C(w,K) the price of such an option, can we get conditions to
test for the presence of an arbitrage in basket price data?
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No Arbitrage Conditions

Suppose we are given market prices qi for basket calls with weights wi and
strike prices Ki:

• Fundamental theorem of asset pricing: there is no arbitrage in the static
market if and only if there is a probability measure π such that:

Eπ[(wT
i x−Ki)

+] = qi

• Except in dimension one: Bertsimas & Popescu (2002) show that this
problem is NP-Hard.

We look for tractable necessary conditions.
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Necessary Conditions

• Consider a one period market with securities paying si(x), i = 0, . . . ,m,
at maturity T .

• For each value of form a rank one, symmetric, moment matrix:

M(x) =









1 s0(x) s1(x) . . .

s0(x) s20(x) s0(x)s1(x)
s1(x) s0(x)s1(x) s21(x)

... . . .









• This matrix is of the form vvT where v is a vector, hence must be positive
semidefinite.
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Necessary Conditions

• Suppose there is no arbitrage, and a pricing measure π

• Taking expectations, we form:

P := Eπ[M(x)] =









1 p0 p1 . . .

p0 P22 P23

p1 P32 P33
... . . .









where pi = Eπ[si(x)], i = 1, . . . ,m.

• P must also be positive semidefinite and its first row and column are
market prices. . .
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Necessary Conditions

There is no arbitrage between the asset prices pi and there is a pricing
measure π

⇓

There are coefficients Pij ∈ R such that the matrix:

P := Eπ[M(x)] =









1 p0 p1 . . .

p0 P22 P23

p1 P32 P33
... . . .









is positive semidefinite.
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Harmonic Analysis on Semigroups

Some quick definitions...

• a pair (S, ·) is called a semigroup iff:

◦ if s, t ∈ S then s · t is also in S

◦ there is a neutral element e ∈ S such that e · s = s for all s ∈ S

• the dual S
∗ of S is the set of semicharacters, i.e. applications χ : S → R

such that

◦ χ(s)χ(t) = χ(s · t) for all s, t ∈ S

◦ χ(e) = 1, where e is the neutral element in S

• a function α is called an absolute value on S iff

◦ α(e) = 1
◦ α(s · t) ≤ α(s)α(t), for all s, t ∈ S

11



Harmonic Analysis on Semigroups

last definitions (honest)...

• a function f : S → R is positive semidefinite iff for every family {si} ⊂ S

the matrix with elements f(si · sj) is positive semidefinite

• a function f is bounded with respect to the absolute value α iff there is a
constant C > 0 such that

|f(s)| ≤ Cα(s), s ∈ S

• f is exponentially bounded iff it is bounded with respect to an absolute
value
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Harmonic Analysis on Semigroups: Central Result

Main result, see Berg, Christensen & Ressel (1984) based on Choquet’s
theorem:

• the set of exponentially bounded positive definite functions is a Bauer

simplex whose extreme points are the bounded semicharacters...

• this means that we have the following representation for positive definite
functions on S:

f(s) =

∫

S∗

χ(s)dµ(χ)

where µ is a Radon measure on S
∗
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Harmonic Analysis on Semigroups: Simple Examples

• Berstein’s theorem for the Laplace transform

S = (R+,+), χx(t) = e−xt and f(t) =

∫

R+

e−xtdµ(x)

• with involution, Bochner’s theorem for the Fourier transform

S = (R,+), χx(t) = e2πixt and f(t) =

∫

R

e2πixtdµ(x)

• Hamburger’s solution to the unidimensional moment problem

S = (N,+), χx(k) = xk and f(k) =

∫

R

xkdµ(x)
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The Option Pricing Problem

• the basket option payoffs (wTx−K)+ are not ideal in this setting

• solution, use straddles: |wTx−K|

• as straddles are just the sum of a call and a put, their price can be
computed from that of the corresponding call and forward by call-put
parity

• the fact that |wTx−K|2 is a polynomial keeps the complexity low
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Payoff Semigroup

• the fundamental semigroup S is here the multiplicative payoff semigroup

generated by the cash, the forwards and the straddles:

S = {1, x1, . . . , xn, |w
T
1 x−K1|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . .}

• the semicharacters are the functions χx : S → R which evaluate the
payoffs at a certain point x

χx(s) = s(x), for all s ∈ S
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The Option Pricing Problem Revisited

• the original static arbitrage problem can be reformulated as

find f

subject to f(|wT
i x−Ki|) = pi, i = 1, . . . ,m

f(s) = Eπ[s], s ∈ S (f moment function)

• the variable is now f : S → R, a function that associates to each payoff s

in S, its price f(s)

• the representation result in Berg et al. (1984) shows when a (price)
function f : S → R can be represented as

f(s) = Eπ[s]
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Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in
Rn

+, and note ei for i = 1, . . . , n+m the forward and option payoff functions
we get:

A function f(s) : S → R can be represented as

f(s) = Eν[s(x)], for all s ∈ S,

for some measure ν with compact support, iff for some β > 0:

(i) f(s) is positive semidefinite

(ii) f(eis) is positive semidefinite for i = 1, . . . , n+m

(iii)
(

βf(s) −
∑n+m

i=1
f(eis)

)

is positive semidefinite

this turns the basket arbitrage problem into a semidefinite program
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Semidefinite Programming

A semidefinite program is written:

minimize TrCX

subject to TrAiX = bi, i = 1, . . . ,m
X � 0,

in the variable X ∈ Sn, with parameters C,Ai ∈ Sn and bi ∈ R for
i = 1, . . . ,m. Its dual is given by:

maximize bTλ

subject to C −
∑m

i=1
λiAi � 0,

in the variable λ ∈ Rm.

A recent extension of interior point techniques for linear programming shows
how to solve these convex programs very efficiently (see Nesterov &
Nemirovskii (1994), Sturm (1999) and Boyd & Vandenberghe (2004)).
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Feasibility Problems

Of course, the related feasibility problems:

find X

such that TrAiX = bi, i = 1, . . . ,m
X � 0,

and
find λ

such that C −
∑m

i=1
λiAi � 0,

can be solved as efficiently (setting for example C = I or b = 1 in the
previous programs).

Also, because most solvers produce both primal and dual solution, we also
get a Farkas type certificate of infeasibility or a proof of optimality in the
duality gap.
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Option Pricing: a Semidefinite Program

Relaxation: sample the elements of S up to a certain degree, the variable is
then the vector f(s) with

e = (1, x1, . . . , xn, |w
T
1 x−K1|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . . , |w
T
mx−Km|N)

testing for the absence of arbitrage is then a semidefinite program:

find f

subject to MN(f(s)) � 0
MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1
ek)s)

)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(eks))ij = f(eksisj)
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Price Bounds

We can also consider the related problem of finding bounds on the price of a
straddle, given prices of other similar options:

max./min. Eπ(|wT
0 x−K0|)

subject to Eπ(|wT
i x−Ki|) = pi, i = 1, . . . ,m,

which, using the previous result becomes the following semidefinite program:

max./min. f(e0)
subject to MN(f(s)) � 0

MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1
ek)s)

)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(eks))ij = f(eksisj).
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Duality

• the price maximization program is:

maximize
∫

Rn
+

(wT
0 x−K0)

+π(x)dx

subject to
∫

Rn
+

(wT
i x−Ki)

+π(x)dx = pi, i = 1, . . . ,m
∫

Rn
+

π(x)dx = 1,

in the variable π ∈ K.

• the dual is a portfolio problem:

minimize λTp+ λ0

subject to
∑m

i=1
λi(w

T
i x−Ki)

+ + λ0 ≥ ψ(x) for every x ∈ Rn
+

in the variable λ ∈ Rm+1.

very intuitive, but intractable. . .
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Conic Duality

let Σ ⊂ A(S) be the set of polynomials that are sums of squares of
polynomials in A(S), and P the set of positive semidefinite sequences on S

• instead of the conic duality between probability measures and positive

portfolios

p(x) ≥ 0 ⇔

∫

p(x)dν ≥ 0, for all measures ν

• we use the duality between positive semidefinite sequences P and sums of

squares polynomials Σ

p ∈ Σ ⇔ 〈f, p〉 ≥ 0 for all f ∈ P

with p =
∑

i qiχsi
and f : S → R, where 〈f, p〉 =

∑

i qif(si)
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Option Pricing: Dual

• the dual of the price maximization problem

maximize f(e0)
subject to MN(f(s)) � 0

MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1
ek)s)

)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

• now becomes...

minimize
∑n+m

j=1
pjλj + λn+m+1

subject to
∑n+m

j=1
λjej(x) + λn+m+1 − |wT

0 x−K0|

= q0(x) +
∑n+m

j=1
qj(x)ej(x) + (β −

∑n+m

k=0
ek(x))qn+1(x)

in the variables λ ∈ Rn+m+1 and qj ∈ Σ for j = 0, . . . , (n+ 1)
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Option Pricing: Caveats

• Size: grows exponentially with the number of assets: no free lunch, even
in numerical complexity. . .

• Some numerical difficulties: conditioning, etc
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Conclusion

• Testing for the absence of arbitrage between basket options (swaptions,
etc) is NP-hard but good relaxations can be found

• We get a set of relaxed conditions for the absence of arbitrage

• Small scale problems are tractable in practice as semidefinite programs
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