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Problem Statement

Shape Constrained Problem (SCP):

minimize cTz
subject to Az ≤ b, Cz = d

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , g

T
k

]T

gi subgradient of f at xi i = 1, . . . , k
f bounded, convex & monotone

in the variables f ∈ C (Rn), z ∈ R(n+1)k, g1, . . . , gk ∈ Rn

• particular case of Continuous Linear Program, which are intractable in
general

• reduces to a Linear Program with a polynomial number of constraints

• extensions: replace ”convex” by ”positive” or ”moment function”...

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 2



Outline

1. Problem statement and motivation

2. Convexity constraints

(a) Main result
(b) Applications:

i. Consumer preference
ii. Convex relaxations
iii. Option pricing

3. Extension: moment problems

(a) Harmonic analysis and positive semidefinite functions
(b) The option pricing problem revisited

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 3



Examples...
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Predicting Consumer Preference

• one model consumer, whose choices are repeatable

• his/her preferences are driven by an utility function u

• we get data on the consumer preferences among a set of goods baskets
a1, . . . , am with

u(ai) ≥ u(aj), i, j = 1, . . . ,m, (i, j) ∈ P

• strict appetite for goods and diversification mean u is monotone and
concave

• the objective is to predict the consumer’s preference on a new basket of
goods versus the baskets a1, . . . , am
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Convex Relaxations

minimize Card(x)
subject to x ∈ C,

• most concave minimization problems are very hard...

• Fazel, Hindi & Boyd (2000): if C is convex, approximate solution replaces
the objective by its convex envelope, i.e. its largest convex lower bound
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Basket Option Pricing

• given a set of market prices p1, . . . , pk corresponding to the payoffs
(wT

i x−Ki)+ at maturity

• in a one period model, compute arbitrage bounds on the price p0 of
another basket, i.e. solve

max./min. Eπ(wT
0 x−K0)+

subject to Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m,

where the variable is π ∈ K, a probability measure with support in R
n
+
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Convexity Constraints: Main Result

consider the general Shape Constrained Problem (SCP):

minimize cTz
subject to Az ≤ b, Cz = d

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , g

T
k

]T

gi subgradient of f at xi i = 1, . . . , k
f convex

in the variables f ∈ C (Rn), z ∈ R(n+1)k, g1, . . . , gk ∈ Rn

• we can discretize and sample the convexity constraints to get a
polynomial size LP

• the solution will be a lower bound on the optimum of the original SCP
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• we only enforce the convexity and subgradient constraints at the points
(xi)i=1,...,k and get the following LP

minimize cTz
subject to Cz = d, Az ≤ b

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , g

T
k

]T

〈gi, xj − xi〉 ≤ f(xj) − f(xi) i, j = 1, . . . , k

in the variables f(xi)i=1,...,k and g in Rn × Rn×k

• we note zopt =
[

fopt(x1), . . . , f
opt(xk), (g

opt
1 )T , . . . , (gopt

k )T
]T

the
optimal solution to this LP

• the optimal solution of the finite LP gives a lower bound on the optimal
value of the SCP
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• from zopt, we construct a feasible point of the SCP and define:

s(x) = max
i=1,...,k

{

fopt(xi) +
〈

gopt
i , x− xi

〉}

• by construction, s(xi) solves the finite LP with:

s(xi) = fopt(xi), i = 1, . . . , k

• s(x) is convex and monotone as the pointwise maximum of monotone
affine functions

• so s(x) is also a feasible point of the SCP

this means that s(x) is an optimal solution of the original SCP...
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Applications

• utility function assessment example adapted from Meyer & Pratt (1968),
see also Pratt, Raiffa & Schlaifer (1964), Keeney & Raiffa (1993) and
Keeney (1977), mostly parametric solutions...

• application on options pricing is based on Breeden & Litzenberger (1978),
Buchen & Kelly (1996), Laurent & Leisen (2000) and Bertsimas &
Popescu (2002), in dimension one...

• SCP also appear in nonlinear pricing and multidimensional screening
problems, see Mirrlees (1971), Wilson (1993), Rochet & Chone (1998),
Rochet & Stole (2000)

• applications on imaging and statistics (survival distributions) in Hansen &
Lauritzen (1998) and Groeneboom, Jongbloed & Wellner (2001)
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Predicting Consumer Preference

model assumptions:

• we have m baskets of goods a1, . . . , am ∈ [0, 1]n

• a consumer chooses among these goods based on a utility function u

• strict appetite for goods means u is monotone nondecreasing

• we also suppose u is concave: this models satiation, i.e. decreasing
marginal utility as the amount of goods increases

• concavity also describes an appetite for diversification
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Consumer Preference: Data

• the utility function is unknown...

• we are only given the consumer’s preferences on the set of baskets

ai % aj, with (i, j) in a set P ⊆ {1, . . . ,m} × {1, ...,m}

• logically, P is transitive...

• this means that the preference information P gives us at most
m(m− 1)/2 inequalities on the utility function u at the points
a1, . . . , am ∈ [0, 1]n:

u(ai) ≥ u(aj), i, j = 1, . . . ,m, (i, j) ∈ P
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Consumer Preference: Objective

consider a new basket a0, using monotonicity, concavity and the preference
relations in P, what can we infer on the consumer’s preferences between a0

and the other ak?

• if for every concave, monotone function u that is consistent with the
preferences P we have

u(a0) ≥ u(ak), for some k ∈ [1,m]

then we know that the consumer will always prefer the basket a0.

• idem if we always have u(a0) ≤ u(ak)...

• if u(a0) ≤ u(ak) for some functions u and u(a0) ≥ u(ak) for others, then
we can’t conclude on the consumer’s preference
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Consumer Preference: Solution

to solve the preference problem we for the following SCP:

minimize/maximize u(a0) − u(ak)
subject to u concave and nondecreasing

u(ai) ≥ u(aj), i, j = 1, . . . ,m, (i, j) ∈ P
u(0) = 0, u(1) = 1

with (infinite-dimensional) variable u : Rn → R, and we can find an optimal
solution (utility function here) by solving the following finite LP:

minimize/maximize û0 − ûk

subject to ûi ≥ ûj, i, j = 1, . . . ,m, (i, j) ∈ P
ûi ≤ ûj + gT

j (ai − aj), i, j = 0, . . . ,m+ 2
gi � 0, i = 0, . . . ,m+ 2
ûm+1 = 0, ûm+2 = 1

with variables û0, . . . , ûm+2 ∈ R and g0, . . . , gm+2 ∈ Rn
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Example

• for simplicity, we consider baskets of two goods...

• we compute 40 random points in [0, 1]2

• to generate the consumer preference data P, we compare the baskets
using the utility function

u(x1, x2) = (1.1x
1/2
1 + 0.8x

1/2
2 )/1.9.

• we plot these goods baskets, and a few level curves of the utility function
u, in figure 1
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Figure 1: Forty goods baskets a1, . . . , a40, shown as
circles. The 0.1, 0.2, . . . , 0.9 level curves of the true
utility function u are shown as dashed lines. This utility
function is used to find the consumer preference data
P among the 40 baskets.
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Figure 2: for a new goods basket (0.5, 0.5). The
original baskets are displayed as open circles if they
are definitely rejected, as solid black circles if they are
definitely preferred, and as squares when no conclusion
can be made. The level curve of the underlying utility
function, that passes through (0.5, 0.5), is shown as a
dashed curve
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Convex Relaxations

0 x

1

−1 1

Card(x)

|x|

simple result on convex lower bounds of concave functions on polyhedral
convex sets (see Veinott (2003) for example):

f : C → R be a concave function on C ⊂ Rn, a (bounded) polyhedral
convex set. Then the convex envelope of f is equal to the convex
polyhedral function h with vertices defined by the set

S = {(x, f (x)) : x vertex of C} .
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Option Pricing: Basket Options

• we note the asset prices x1, . . . , xk, the payoff at maturity of a basket call
is given by:

(

k
∑

i=1

wiSi −K

)

+

where w1, . . . , wk are the basket’s weights and K is the option’s strike
price

• examples include: Index options, spread options, swaptions, ...

• we note C(w,K) the price of such an option
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History

• we are given basket option prices and we are interested in computing
arbitrage bounds on the price of another option

• static arbitrage bounds for options on a single asset are well-known (see
for example Breeden & Litzenberger (1978), Bertsimas & Popescu (2002)
or Laurent & Leisen (2000))...

• bounds for some continuous time models are known too (simplest
example: the bounds obtained by varying the volatility in the
unidimensional Black & Scholes (1973) model match the static bounds)

• what happens for baskets, in dimension n?
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Problem Statement

solve the following program:

max./min. Eπ(wT
0 x−K0)+

subject to Eπ(wT
i x−Ki)+ = pi, i = 1, . . . ,m,

in the variable π ∈ K, where K is the set of probability measures with
support included in R

n
+

• objective: compute upper and lower bounds on the price of an European
basket call option with strike K0 and weight vector w0

• inputs: p ∈ R
m
+ , K ∈ R

m, w ∈ R
n, wi ∈ R

n, for i = 1, . . . ,m and
K0 ≥ 0

• assumptions: one period model, no transaction costs, perfect liquidity, but
no particular assumption on π
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Static Bound

Static Bound

Arbitrage free prices

Price

Arbitrage opportunities

Arbitrage opportunities

Model prices
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Option Pricing: Motivation

• diagnostic: what happens when model calibration fails?

• low quality data: difference in time, missing quotes, illiquidity etc...

• sparse data: arbitrage free interpolation of basket option prices

• synthesize an option from liquid ones: spark/crack spreads on the
NYMEX, real options ...

• market idea of correlation?
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Dimension One

• the problem directly reduces to a SCP...

• Breeden & Litzenberger (1978), Buchen & Kelly (1996) simply impose
convexity in K:

π(K) =
∂2C(K)

∂K2
≥ 0 where C(K) = Eπ(x−K)+

and use this to recover the distribution

• further developed by Laurent & Leisen (2000) who detail necessary and
sufficient conditions for the absence of arbitrage and calibrate a discrete
mulitperiod model

• Bertsimas & Popescu (2002) mix this with moments constraints, and
show that the multivariate problem is NP-Hard
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Multidimensional Problem

max./min.

∫

Rn
+

(wT
0 x−K0)+π(x)dx

subject to

∫

Rn
+

(wT
i x−Ki)+π(x)dx = pi, i = 1, . . . ,m

∫

Rn
+

π(x)dx = 1

three possible approaches:

• infinite LP or semi-infinite program (see Hettich & Kortanek (1993)

• integral transform inversion problem (tomography, ... see Henkin &
Shananin (1990))

• generalized moment problem (see Bertsimas & Popescu (2002))
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LP Solution

special case: we examine the simpler problem of computing bounds on:

Eπ(wTx−K0)+

given the 2n constraints

Eπ(xi −Ki)+ = pi, Eπxi = qi, i = 1, . . . , n,

on n forwards and n options on each individual asset.
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LP Solution: Upper Bound

• the dual of the upper bound problem is

dsup = inf
λ+µ≥w

sup
x≥0

λTp+ µTq + (wTx−K0)+ − λT (x−K)+ − µTx,

• decompose domain into

DI = {x : xi > Ki, i ∈ I, 0 ≤ xi ≤ Ki, i ∈ J} ,

• write
(

wTx−K
)

+
= maxt∈[0,1] t

(

wTx−K
)
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LP Solution: Upper Bound

• the dual of the resulting problem can be solved explicitly

• finally...

dsup = max
0≤j≤n+1

wTp+
∑

i

wi min(qi − pi, βjKi) − βjK0,

with the convention β0 = 0, βn+1 = 1

• We can check that the above bound satisfies some basic properties: it is
convex in w and concave in p, q. Also, when w = ei (the i-th unit vector),
and K0 = Ki, we obtain dsup = pi, while for Ki = 0, we obtain dsup = qi.
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LP Solution: Lower Bound

• the lower bound is computed from the dual (portfolio) problem:

dinf = sup
λ+µ≤w

inf
x≥0

λTp+ µTq + (wTx−K0)+ − λT (x−K)+ − µTx,

• similar techniques show that the solution can be computed from the
following LP:

sup
λ,µ,α0,...,αn

λTp+ µT (q −K) + h

subject to λ+ µ ≤ w
h ≤ α0(w

TK −K0) − (α0w − µ)T
+K, 0 ≤ α0 ≤ 1

h ≤ αi(w
TK −K0) −

∑

j 6=i(αiwj − µj)+Kj

(λi + µi)+/wi ≤ αi ≤ 1, i = 1, ..., n

• perfect duality not guaranteed here: lower bound on lower bound
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Integral Transform Solution

• we can write the set off call prices as:

C(w,K) = Eπ(wTx−K)+

=

∫

Rn
+

(wTx−K)+dπ(x),

and think of Cπ(w,K) as a particular integral transform of the measure π

• at least formally, we have:

∂2C(w,K)

∂K2
=

∫

Rn
+

δ(wTx−K)π(x)dx

• this means that ∂2C(w,K)/∂K2 is the Radon transform (see Helgason
(1999) or Ramm & Katsevich (1996)) of the measure π
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Integral Transform: a Range Characterization Problem...

• the general pricing problem can written as the following infinite
dimensional problem:

min./max. C(w0,K0)
subject to C(wi,Ki) = pi, i = 1, . . . ,m

C(w,K) ∈ RC,

• here, RC is the range of the (linear) integral transform

C : K → RC

π → C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)
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Integral Transform: Range Characterization

Range characterized by Henkin & Shananin (1990). A function can be
written

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)

with w ∈ R
n
+ and K > 0, if and only if:

• C(w,K) is convex and homogenous of degree one;

• limK→∞C(w,K) = 0 and limK→0+
∂C(w,K)

∂K = −1

• F (w) =

∫ ∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞
0 (Rn

+)

• For some w̃ ∈ R
n
+ the inequalities: (−1)

k+1
Dξ1...Dξk

F (λw̃) ≥ 0, for all
positive integers k and λ ∈ R++ and all ξ1, . . . , ξk in R

n
+.

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 36



Integral Transform: Relaxation

Simply drop the last two constraints: If a function C(w,K), with w ∈ R
n
+

and K > 0 belongs to RC and can be represented as

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x),

then necessarily

• C(w,K) is convex and homogenous of degree one;

• for every w ∈ R
n
++, we have

lim
K→∞

C(w,K) = 0 and lim
K→0+

∂C(w,K)

∂K
= −1

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 37



Integral Transform: Relaxation

• the constraint C(w,K) ∈ RC becomes C(w,K) convex, homogeneous...
this turns the problem into a shape constrained problem

• this relaxation is equivalent to the following linear program:

max./min. p0

subject to 〈gi, (wj,Kj) − (wi,Ki)〉 ≤ pj − pi, i, j = 0, . . . ,m+ n+ 1
gi,j ≥ 0
−1 ≤ gi,n+1 ≤ 0
〈gi, (wi,Ki)〉 = pi, i = 0, ...,m+ n+ 1, j = 1, ..., n

where the variables gi are subgradients
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Integral Transform: Tightness

• in the case where only options are given, the relaxation is tight

• when forwards and options are given, the upper bound is tight while the
lower bound is not

• in general, only upper bound on upper bound, lower bound on lower bound
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Numerical Example

• the xi are the simulated Black & Scholes (1973) lognormal asset prices at
maturity, with S the initial stock values

• the numerical values used here are S = {0.7, 0.5, 0.4, 0.4, 0.4},
w0 = {0.2, 0.2, 0.2, 0.2, 0.2}, T = 5 years and the covariance matrix is
given by:

V =
11

100













0.64 0.59 0.32 0.12 0.06
0.59 1 0.67 0.28 0.13
0.32 0.67 0.64 0.29 0.14
0.12 0.28 0.29 0.36 0.11
0.06 0.13 0.14 0.11 0.16













• all individual options are ATM, hence K = {0.7, 0.5, 0.4, 0.4, 0.4}

• we get p = {0.0161, 0.0143, 0.0093, 0.0070, 0.0047}
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Figure 3: Upper and lower price bounds.
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Extension...

• the bounds computed using the previous LP relaxation are tight in some
particular cases

• can we improve their performance in the general case?

• how do we get the super/subreplicating portfolio?

• the method in Bertsimas & Popescu (2002) only gives relaxations for the
case x ∈ Rn

• the last two conditions (smoothness and total positivity) in the Radon
range characterization could be implemented by interpolation, but this
cannot guarantee a lower bound...
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Extension: a Moment Problem?

• Berstein-Bochner results answer the question of when a function f(t) is a
characteristic function

f(t) =

∫

R

e2πixtdπ(x)

• can we obtain the same kind of result for the call payoff?

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)

• the solution is harmonic analysis on semigroups, more tractable than total
positivity in Henkin & Shananin (1990) (but same origin)...
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Harmonic Analysis on Semigroups

some quick definitions...

• a pair (S, ·) is called a semigroup iff:

◦ if s, t ∈ S then s · t is also in S

◦ there is a neutral element e ∈ S such that e · s = s for all s ∈ S

• the dual S
∗ of S is the set of semicharacters, i.e. applications χ : S → R

such that

◦ χ(s)χ(t) = χ(s · t) for all s, t ∈ S

◦ χ(e) = 1, where e is the neutral element in S

• a function α is called an absolute value on S iff

◦ α(e) = 1
◦ α(s · t) ≤ α(s)α(t), for all s, t ∈ S
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Harmonic Analysis on Semigroups

last definitions (honest)...

• a function f : S → R is positive semidefinite iff for every family {si} ⊂ S

the matrix with elements f(si · sj) is positive semidefinite

• a function f is bounded with respect to the absolute value α iff there is a
constant C > 0 such that

|f(s)| ≤ Cα(s), s ∈ S

• f is exponentially bounded iff it is bounded with respect to an absolute
value
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Harmonic Analysis on Semigroups: Central Result

central result, see Berg, Christensen & Ressel (1984) based on Choquet’s
theorem:

• the set of exponentially bounded positive definite functions is a Bauer
simplex whose extreme points are the bounded semicharacters...

• this means that we have the following representation:

f(s) =

∫

S∗

χ(s)dµ(χ), for all s ∈ S

where µ is a Radon measure on S
∗
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Harmonic Analysis on Semigroups: Simple Examples

• Berstein’s theorem for the Laplace transform

S = (R+,+), χx(t) = e−xt and f(t) =

∫

R+

e−xtdµ(x)

• with involution, Bochner’s theorem for the Fourier transform

S = (R,+), χx(t) = e2πixt and f(t) =

∫

R

e2πixtdµ(x)

• Hamburger’s solution to the unidimensional moment problem

S = (N,+), χx(k) = xk and f(k) =

∫

R

xkdµ(x)

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 48



Outline

1. Problem statement and motivation

2. Convexity constraints

(a) Main result
(b) Applications:

i. Consumer preference
ii. Convex relaxations
iii. Option pricing

3. Extension: moment problems

(a) Harmonic analysis and positive semidefinite functions
(b) The option pricing problem revisited

A. d’Aspremont, PhD Orals Exam, October 7 2003, Stanford University. 49



The Option Pricing Problem Revisited

• the basket option payoffs (wTx−K)+ are not ideal in this setting

• solution, use straddles: |wTx−K|

• as straddles are just the sum of a call and a put, their price can be
computed from that of the corresponding call and forward by call-put
parity

• the fact that |wTx−K|2 is a polynomial keeps the complexity low
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Payoff Semigroup

• the fundamental semigroup S is here the multiplicative payoff semigroup
generated by the cash, the forwards, the straddles

1 xi |wT
j x−Kj|

• the semicharacters are the functions χx : S → R which evaluate the
payoffs at a certain point x

χx(s) = s(x), for all s ∈ S
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The Option Pricing Problem Revisited

• the original static arbitrage problem can be reformulated as an SCP

max./min. f(|wT
0 x−K0|)

subject to f(|wT
i x−Ki|) = pi, i = 1, . . . ,m

f(s) = Eπ[s], s ∈ S (f moment function)

• the variable is now f : S → R, a function that associates to each payoff s
in S, its price f(s)

• the representation result in Berg et al. (1984) shows when a (price)
function f : S → R can be represented as

f(s) = Eπ[s]
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Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in
Rn

+, and note ei for i = 0, . . . , n+m the forward and option payoff functions
we get:

A function f(s) : S → R can be represented as

f(s) = Eν[s(x)], for all s ∈ S,

for some measure ν with compact support, if and only if:

(i) f(s) is positive semidefinite

(ii) f(eis) is positive semidefinite for i = 0, . . . , n+m

(iii)
(

βf(s) −
∑n+m

i=0 f(eis)
)

f is positive semidefinite

this turns the basket arbitrage problem into a semidefinite program
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Option Pricing: a Semidefinite Program

we get a relaxation by only sampling the elements of S up to a certain
degree, the variable is then the vector f(s) with

s = (1, x1, . . . , xn, |w
T
0 x−K0|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . . , |w
T
mx−Km|N)

this is a semidefinite program

minimize f(|wT
0 x−K0|)

subject to MN(f(s)) � 0
MN(f(sjs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=0 sk)s)
)

� 0

f(sj) = pj, for j = 1, . . . , n+m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(sks))ij = f(sksisj)
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Classical Duality

• the general program is:

sup
π∈K

∫

Rn
+

ψ(x)π(x)dx subject to

∫

Rn
+

φ(x)π(x)dx = p,

∫

Rn
+

π(x)dx = 1

where ψ(x) = (wT
0 x−K0)+ and φ(x)i = (wT

i x−Ki)+

• Lagrangian:

L(π, λ, λ0) =

∫

Rn
+

(

ψ(x) − λTφ(x) − λ0

)

π(x)dx+ λTp+ λ0,

• the dual is a portfolio problem:

inf
λ0,λ

λTp+ λ0 : λTφ(x) + λ0 ≥ ψ(x) for every x ∈ Rn
+
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Conic Duality

let Σ ⊂ A(S) be the set of polynomials that are sums of squares of
polynomials in A(S), and P the set of positive semidefinite sequences on S

• instead of the conic duality between probability measures and positive
portfolios

p(x) ≥ 0 ⇔

∫

p(x)dν ≥ 0, for all measures ν

• we use the duality between positive semidefinite sequences P and sums of
squares polynomials Σ

p ∈ Σ ⇔ 〈f, p〉 ≥ 0 for all f ∈ P

with p =
∑

i qiχsi
and f : S → R, where 〈f, p〉 =

∑

i qif(si)
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Option Pricing: Dual

• the classic dual is a hedging problem

maximize λn+m+1 +
∑n+m

i=1 λipi

subject to |wT
0 x−K0| −

∑n+m
i=1 λisi(x) − λn+m+1 ≥ 0

• it becomes...

maximize
∑n+m

j=1 pjλj + λn+m+1

subject to |wT
0 x−K0| −

∑n+m
j=1 λjsj(x) − λn+m+1

= q0(x) +
∑n+m

j=1 qj(x)sj(x) + (β −
∑n+m

k=0 sk(x))qn+1(x)

in the variables λ ∈ Rn+m+1 and qj ∈ Σ for j = 0, . . . , (n+ 1)
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Option Pricing: Numerical Example

• two assets: x1, x2, we look for bounds on the price of |x1 + x2 −K|

• simple discrete model for the assets:

x = {(0, 0), (0, 3), (3, 0), (1, 2), (5, 4)}

with probability
p = (.2, .2, .2, .3, .1)

• the forward prices are given, together with the following straddles:

|x1 − .9|, |x1 − 1|, |x2 − 1.9|, |x2 − 2|, |x2 − 2.1|
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Figure 4: Upper and lower price bounds on a straddle.
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Option Pricing: Caveats

• size: grows exponentially with the number of assets...

• bad conditioning: as inverse problems, the programs naturally tend to be
ill-conditioned

• transaction costs: proportional transaction costs are usually OK, fixed are
much harder
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Option Pricing: Possible Extensions

• minimum entropy prices

• triangular FOREX arbitrage relationship: if x1 is USD/EUR and x2 is
EUR/GBP, then an option on the USD/GBP is written as (x1x2 −K)+

• swaptions are baskets, size limit?

• exploit sparsity, only 1% nonzero entries

• what happens when the payoff is not algebraic?
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Conclusion

• some infinite dimensional LPs reduce to finite ones

• easy, constructive proof...

• applications on the basket arbitrage problem

• extension to moment problem gives a set of arbitrarily precise relaxations
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Thanks!

• Stephen Boyd

• Committee: Darrell Duffie, Laurent El Ghaoui, Ben Van Roy, James
Primbs

• Group, Prof. Gray’s group ...

• Friends ...

• Clementine (btw: if you need an architect...)
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