
REGULARIZED NONLINEAR ACCELERATION

DAMIEN SCIEUR, ALEXANDRE D’ASPREMONT, AND FRANCIS BACH

ABSTRACT. We describe a convergence acceleration technique for generic optimization problems. Our scheme
computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization
method. The weights in this average are computed via a simple linear system, whose solution can be updated
online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the
solution on the fly, while the original optimization method is running. Numerical experiments are detailed on
classical classification problems.

1. INTRODUCTION

Suppose we seek to solve the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex with parameter µ with respect to the Euclidean norm,
and has a Lipschitz continuous gradient with parameter L with respect to the same norm. Assume we solve
this problem using an iterative algorithm of the form

xi+1 = g(xi), for i = 1, ..., k, (2)

where xi ∈ Rn and k is the number of iterations. Here, we will focus on improving our estimates of the
solution to problem (1) by tracking only the sequence of iterates xi produced by an optimization algorithm,
without any further calls to oracles on g(x).

Since the publication of Nesterov’s optimal first-order smooth convex minimization algorithm [Nesterov,
1983], a significant effort has been focused on either providing more interpretable views on current accel-
eration techniques, or on replicating these complexity gains using different, more intuitive schemes. Early
efforts sought to directly extend the original acceleration result in [Nesterov, 1983] to broader function
classes [Nemirovskii and Nesterov, 1985], allow for generic metrics, line searches or simpler proofs [Beck
and Teboulle, 2009; Nesterov, 2003] or produce adaptive accelerated algorithms [Nesterov, 2015], etc. More
recently however, several authors [Drori and Teboulle, 2014; Lessard et al., 2016] have started using classi-
cal results from control theory to obtain numerical bounds on convergence rates that match the optimal rates.
Others have studied the second order ODEs obtained as the limit for small step sizes of classical accelerated
schemes, to better understand their convergence [Su et al., 2014; Wibisono and Wilson, 2015]. Finally, re-
cent results have also shown how to wrap classical algorithms in an outer optimization loop, to accelerate
convergence and reach optimal complexity bounds [Lin et al., 2015] for certain structured problems.

Here, we take a significantly different approach to convergence acceleration stemming from classical
results in numerical analysis. We use the iterates produced by any (converging) optimization algorithm, and
estimate the solution directly from this sequence, assuming only some regularity conditions on the function
to minimize. Our scheme is based on the idea behind Aitken’s ∆2-algorithm [Aitken, 1927], generalized
as the Shanks transform [Shanks, 1955], whose recursive formulation is known as the ε-algorithm [Wynn,

Date: June 13, 2016.
Key words and phrases. Acceleration, ε-algorithm, extrapolation.

1

1956] (see e.g. [Brezinski, 1977; Sidi et al., 1986] for a survey). In a nutshell, these methods fit geometrical
models to linearly converging sequences, then extrapolate their limit from the fitted model.

In a sense, this approach is more statistical in nature. It assumes an approximately linear model holds for
iterations near the optimum, and estimates this model using the iterates. In fact, Wynn’s algorithm [Wynn,
1956] is directly connected to the Levinson-Durbin algorithm [Levinson, 1949; Durbin, 1960] used to solve
Toeplitz systems recursively and fit autoregressive models (the Shanks transform solves Hankel systems,
but this is essentially the same problem [Heinig and Rost, 2011]). The key difference in these extrapolation
techniques is that estimating the autocovariance operator A is not required, as we only focus on the limit.
Moreover, the method presents strong links with the conjugate gradient when applied to unconstrained
quadratic optimization.

We start from a slightly different formulation of these techniques known as minimal polynomial extrapo-
lation (MPE) [Sidi et al., 1986; Smith et al., 1987] which uses the minimal polynomial of the linear operator
driving iterations to estimate the optimum by nonlinear averaging (i.e. using weights in the average which
are nonlinear functions of the iterates). So far, for all the techniques cited above, no proofs of convergence
of these estimates were given when the estimation process became unstable.

Our contribution here is first to give a novel formulation of approximate MPE. We then regularize this
procedure to produce explicit bounds on the distance to optimality by controlling stability, thus explicitly
quantifying the acceleration provided by these techniques. We show in several numerical examples that these
stabilized estimates often speed up convergence by an order of magnitude. Furthermore this acceleration
scheme runs in parallel with the original algorithm, providing improved estimates of the solution on the fly,
while the original method is progressing.

The paper is organized as follows. In Section 2.1 we recall basic results behind MPE for linear iterations
and introduce in Section 2.3 an approximate version of MPE, connecting it to the conjugate gradient method.
Then, in Section 2.4, we generalize these results to nonlinear iterations and show in Section 3.1, how to
fully control the impact of nonlinearity. We use these results to derive explicit bounds on the acceleration
performance of our estimates. Finally, we present numerical results in Section 4.

2. APPROXIMATE MINIMAL POLYNOMIAL EXTRAPOLATION

In what follows, we recall the key arguments behind minimal polynomial extrapolation (MPE) as derived
in [Cabay and Jackson, 1976] or also [Smith et al., 1987]. We then explain a variant called approximate
minimal polynomial extrapolation (AMPE) which allows to control the number of iterates used in the ex-
trapolation, hence reduces its computational complexity. We begin by a simple description of the method
for linear iterations, then extend these results to the generic nonlinear case. Finally, we characterize the
acceleration factor provided by a regularized version of AMPE, using regularity properties of the function
f(x), and the result of a Chebyshev-like, tractable polynomial optimization problem.

2.1. Linear Iterations. Let’s assume for now that the iterative algorithm in (2) is in fact linear, with

xi = A(xi−1 − x∗) + x∗, (3)

where A ∈ Rn×n (not necessarily symmetric) and x∗ ∈ Rn. We assume that 1 is not an eigenvalue of A (a
sufficient condition is that the spectral radius of A is below one, so the algorithm converges to x∗), implying
that the iterations in (3) admits a unique fixed point x∗.

Example: gradient method for minimizing a quadratic function. We illustrate (3) on a concrete example,
minimizing the quadratic function f(x) = 1

2‖Bx− b‖
2
2. The fixed-step gradient descend on f(x) works as

follows

xk+1 = xk −
1

L
∇f(xk),

2

where f(x) is a L-smooth convex function. This scheme becomes here

xk+1 = xk −
1

L
(Bxk − b)

Using optimality conditions on x∗, this is also

xk+1 = xk −
1

L
B(xk − x∗)

or again

xk+1 − x∗ =

(
I − 1

L
B

)
(xk − x∗),

which is exactly equation (3) with A = I − 1
LB.

2.2. Minimal polynomial extrapolation. We now recall the minimal polynomial extrapolation (MPE)
method as described in [Smith et al., 1987], starting with the following definition.

Definition 2.1. GivenA ∈ Rn×n, such that 1 is not an eigenvalue ofA and v ∈ Rn, the minimal polynomial
of A with respect to the vector v is the lowest degree polynomial p(x) such that

p(A)v = 0, p(1) = 1.

Note that the degree of p(x) is always less than n and that condition p(1) = 1 makes p unique. Note also
that assuming one is not an eigenvalue of A means p(1) 6= 0, since p(A) = 0 if and only if p(λi(A)) = 0
for i = 1, . . . , n, where λ(A) is the spectrum of A. This means that we can set p(1) = 1 without loss of
generality. Given an initial iterate x0, MPE starts by forming a matrix U whose columns are the increments
xi+1 − xi, with

Ui = xi+1 − xi = (A− I)(xi − x∗) = (A− I)Ai(x0 − x∗). (4)

Let p(x) =
∑k

i=0 cix
i be the minimal polynomial of A with respect to the vector U0, so

0 = p(A)U0 =
k∑
i=0

ciA
iU0 =

k∑
i=0

ciUi, and p(1) =
k∑
i=0

ci = 1. (5)

Writing U = [U0, U1, ..., Uk], this means we can find the coefficients of p by solving the linear system

Uc = 0, 1T c = 1.

In this case, the fixed point x∗ of (3) can be computed exactly as follows. We have

0 =

k∑
i=0

ciA
iU0 =

k∑
i=0

ciA
i(A− I)(x0 − x∗) = (A− I)

k∑
i=0

ciA
i(x0 − x∗)

= (A− I)
k∑
i=0

ci(xi − x∗),

hence, using the fact that one is not an eigenvalue of A, together with 1T c = p(1) = 1, we finally get

x∗ =
k∑
i=0

cixi.

This means that x∗ is obtained by averaging iterates using the coefficients in c, but the averaging is called
nonlinear here because the coefficients of c vary with the iterates themselves.

3

2.3. Approximate Minimal Polynomial Extrapolation (AMPE). Suppose now that we only compute a
fraction of the iterates xi used in the MPE procedure. While the number of iterates k might be smaller
than the degree of the minimal polynomial of A with respect to U0, we can still try to make the quantity
pk(A)U0 small, with pk(x) now a polynomial of degree at most k. The corresponding difference matrix
U = [U0, U1, ..., Uk] ∈ Rn×(k+1) is rectangular.

This is also known as the Eddy-Mešina method [Mešina, 1977; Eddy, 1979] or Reduced Rank Extrapo-
lation with arbitrary k (see [Smith et al., 1987, §10]). The objective here is similar to (5), but the system is
now overdetermined because k < deg(P). We will thus choose c to make ‖Uc‖2 = ‖p(A)U0‖2 as small as
possible, for some polynomial p such that p(1) = 1. We thus solve for

c∗ , argmin
1T c=1

‖Uc‖2 (AMPE)

in the variable c ∈ Rk+1. The optimal value of this problem is decreasing with k, satisfies ‖Uc∗‖2 = 0
when k is greater than the degree of the minimal polynomial at U0, and controls the approximation error
in x∗ through equation (4). This basic extrapolation algorithm suffers from stability issues and we will see
in further sections how to stabilize its solution.

2.3.1. Error bounds. We can get a crude bound on ‖Uc∗‖2 using Chebyshev polynomials, together with an
assumption on the range of the spectrum of the matrix A.

Proposition 2.2. Let A be symmetric, 0 � A � σI with σ < 1 and c∗ be the solution of (AMPE). Then∥∥∥∥∥
k∑
i=0

c∗ixi − x∗
∥∥∥∥∥
2

≤ κ(A− I)
2ζk

1 + ζ2k
‖x0 − x∗‖2 (6)

where κ(A− I) is the condition number of the matrix A− I and ζ is given by

ζ =
1−
√

1− σ
1 +
√

1− σ
, (7)

which is always smaller than σ.

Proof. Setting Ui = (A− I)(xi − x∗), we have∥∥∥∥∥
k∑
i=0

c∗ixi − x∗
∥∥∥∥∥
2

=

∥∥∥∥∥(I −A)−1
k∑
i=0

c∗iUi

∥∥∥∥∥
2

≤
∥∥(I −A)−1

∥∥
2
‖Uc∗‖2.

Assume A symmetric and 0 � A � σI ≺ I , we have

‖Uc∗‖2 = ‖p∗(A)U0‖2 ≤ ‖U0‖2 min
p∈R[x]
p(1)=1

‖p(A)‖2 ≤ ‖U0‖2 min
p∈R[x]
p(1)=1

max
0�A�σI

‖p(A)‖2. (8)

We have A = Qdiag(λ)QT where Q is unitary and λ ∈ Rn, hence

max
0�A�σI

‖p(A)‖2 = max
0�λ�σ1

‖p(diag(λ))‖2 = max
0�λ�σ1

max
i
|p(λi)| = max

0≤x≤σ
|p(x)|.

We then get
‖Uc∗‖2 ≤ ‖U0‖2 min

p∈R[x]
p(1)=1

max
0≤x≤σ

|p(x)|.

Now, Golub and Varga [1961] show that the polynomial optimization problem on the right-hand side can
be solved exactly using Chebyshev polynomials. Let Ck be the Chebyshev polynomial of degree k. By
definition, Ck(x) is a monic polynomial (i.e. a polynomial whose leading coefficient is one) which solves

Ck(x) = argmin
{p∈Rk[x]: pk=1}

max
x∈[0,1]

|p(x)|.

4

Golub and Varga [1961] use a variant of Ck(x) to solve the related minimax problem

min
p∈R[x]
p(1)=1

max
0≤x≤σ

|p(x)| (9)

whose solution is a rescaled Chebyshev polynomial given by

T (x) =
Ck(t(x))

Ck(t(1))
, where t(x) =

2x− σ
σ

, (10)

where t(x) is simply a linear mapping from interval [0, σ] to [0, 1]. Moreover,

min
p∈R[x]
p(1)=1

max
0≤x≤σ

|p(x)| = max
0≤x≤σ

|Tk(x)| = |Tk(σ)| = 2ζk

1 + ζ2k
, (11)

where ζ is given by

ζ =
1−
√

1− σ
1 +
√

1− σ
< σ < 1.

Since ‖U0‖2 = ‖(A− I)(x0 − x∗)‖2 ≤ ‖A− I‖2‖x0 − x∗‖, we can bound (8) by

‖Uc∗‖2 ≤ ‖U0‖2 min
p∈R[x]
p(1)=1

max
0≤x≤σ

|p(x)| ≤ 2ζk

1 + ζ2k
‖A− I‖2‖x0 − x∗‖2,

which yields the desired result.

Note that, when solving quadratic optimization problems (where gradient iterations are linear), the rate in
this bound matches that obtained using the optimal method in [Nesterov, 2003]. Outside of the normalization
constraint, this is very similar to the convergence analysis of Lanczos’ method.

2.3.2. AMPE versus conjugate gradient. The rate of convergence obtained above also matches that of the
conjugate gradient within a factor κ(A − I). Indeed, AMPE has a strong link with the conjugate gradient.
Denote ‖v‖B =

√
vTBv the norm induced by the positive definite matrix B. Also, assume we want to

solve Bx = b using conjugate gradient method. By definition, at the k-th iteration, the conjugate gradient
computes an approximation s of x∗ which follows

s = argmin
x∈Kk

‖x− x∗‖B,

where Kk = span{b, Bb, ..., Bk−1b} = span{Bx∗, B2x∗, ..., Bkx∗} is called a Krylov subspace. Since the
constraint x ∈ Kk impose us to build x from a linear combination of the basis of Kk, we can write

x =
k∑
i=1

ciB
ix∗ = q(B)x∗,

where q(x) is a polynomial of degree k. So the conjugate gradient method solves

s = argmin
q∈Rk[x]q(0)=0

‖q(B)x∗ − x∗‖B = argmin
q̂∈Rk[x]
q̂(0)=1

‖q̂(B)x∗‖B,

which is very similar to the equations in (AMPE). However, while conjugate gradient has access to an
oracle giving the result of the product between B and any vector v, the AMPE procedure can only use the
iterations produced by (3) (meaning that AMPE procedure do not require knowledge of B). Moreover, the
convergence of AMPE is analyzed in another norm (‖ · ‖2 instead of ‖ · ‖B), which explains why a condition
number appears in the rate of convergence of AMPE (6).

5

2.3.3. Chebyshev’s acceleration and Nesterov’s accelerated gradient. In proposition 2.2, we bounded the
rate of convergence of the AMPE procedure using Chebyshev polynomials. In fact, this is exactly the idea
behind Chebyshev’s semi-iterative method, which uses these coefficients in order to accelerate gradient
descent on quadratic functions. Here, we present Chebyshev semi-iterative acceleration and its analysis,
then use the same analysis on Nesterov’s method. These points were also discussed in [Hardt, 2013].

Assume as above that we use the gradient method to minimize f(x) = 1
2‖Bx− b‖2, we get the following

recurrence

xk+1 − x∗ =

(
I − 1

L
B

)
(xk − x∗) = A(xk − x∗).

Where A = I − 1
LB. We see easily that

xk = x∗ +Ak(x0 − x∗).
Since ‖A‖2 ≤ 1 − µ

L , the rate of convergence is ‖xk − x∗‖2 ≤ (1 − µ
L)k‖x0 − x∗‖2. Moreover, if we

combine linearly the vectors xi using coefficients ci from 0 to k, we get
k∑
i=0

cixi =
k∑
i=0

ciA
i(x0 − x∗) +

k∑
i=0

cix
∗ = pk(A)(x0 − x∗) + pk(1)x∗

If we force pk(1) = 1, we see that we need to make the value ‖pk(A)(x0 − x∗)‖2 as small as possible in
order to have the best approximation of x∗. Fixing the coefficients ci a priori (unlike AMPE method, which
computes these coefficient from the iterates xi) so that ‖pk(A)‖2 is small for anyA such that µI � A � LI ,
means solving

pk(x) = arg min
p∈R[x]
p(1)=1

max
0�A�σI

‖p (A)‖2 .

As above, the solution to this problem is pk(x) = Tk(x), defined in (10), using parameter σ = 1 − µ/L.
Furthermore, the Chebyshev polynomials can be constructed using a three-terms recurrence

Ck(x) = xCk−1(x)− Ck−2(x)

and the same holds for Tk(x) (see Appendix B for more details), with

αk = t(1)αk−1 − αk−2

zk−1 = yk−1 −
1

L
(Byk−1 − b)

yk =
αk−1
αk

(
2zk−1
σ
− yk−1

)
− αk−2

αk
yk−2

This scheme looks very similar to Nesterov’s accelerated gradient method, which reads

zk−1 = yk−1 −
1

L
(Byk−1 − b)

yk = zk−1 + βk(zk−1 − zk−2)
Compared with Chebyshev acceleration, Nesterov’s scheme is iteratively building a polynomial Nk(x) with
yk − y∗ = Nk (A) (y0 − x∗). If we replace zk by its definition in the expression of yk in the Nesterov’s
scheme we get the following recurrence of order two

yk − x∗ = (1 + βk)A(yk−1 − y∗)− βkA(yk−2 − y∗)
= A ((1 + βk)Nk−1 (A)− βkNk−2 (A)) (y0 − x∗).

which also reads
Nk(x) = x((1 + βk)Nk−1(x)− βkNk−2(x)),

with initial conditions N0(x) = 1 and N1(x) = x. Notice that as for Chebyshev polynomial, Nk(1) = 1 for
all k.

6

When minimizing smooth strongly convex functions with Nesterov’s method, we use

βk =

√
L−√µ
√
L+
√
µ
.

Moreover, empirically at least, the maximum value of Nk(x) in the interval [0, σ] is Nk(σ). We conjecture
that this always holds. We thus have the following recurrence

Nk(σ) = σ ((1 + β)Nk−1(σ)− βNk−2(σ))

To get linear convergence with rate r, we need Nk ≤ rNk−1 ≤ r2Nk−2, or again

Nk(σ) ≤ σ ((1 + β) rNk−2(σ)− βNk−2(σ)) = σ ((1 + β) r − β)Nk−2(σ).

Now, consider the condition
σ ((1 + β) r − β) ≤ r2.

We have that Nesterov’s coefficients and rate, i.e. β = (1−
√
µ/L)/(1 +

√
µ/L) and r = (1 −

√
µ/L),

satisfy this condition, showing that Nesterov’s method converges with a rate at least r = (1 −
√
µ/L) on

quadratic problems. This provides an alternate proof of Nesterov’s acceleration result on these problemss
using Chebyshev polynomials (provided the conjecture on N(σ) holds).

2.4. Nonlinear Iterations. We now go back to the general case where the iterative algorithm is nonlinear,
with

x̃i+1 = g(x̃i), for i = 1, ..., k, (12)
where x̃i ∈ Rn and function g(x) has a symmetric Jacobian at point x∗. We also assume that the method
has a unique fixed point written x∗ and linearize these iterations around x∗, to get

x̃i − x∗ = A(x̃i−1 − x∗) + ei, (13)

where A is now the Jacobian matrix (i.e. the first derivative) of g taken at the fixed point x∗ and ei ∈ Rn is
a second order error term ‖ei‖2 = O(‖x̃i−1 − x∗‖22). Note that, by construction, the linear and nonlinear
models share the same fixed point x∗. We write xi the iterates that would be obtained using the asymptotic
linear model (starting at x0)

xi − x∗ = A(xi−1 − x∗).
After k iterations, the accumulated error with respect to this asymptotic linear model is

x̃k − xk =

k∑
i=1

Ak−iei.

As in §2.1, we define the increment matrix U such that Ui = xi+1 − xi for i = 0, . . . , k − 1, and a matrix
Ũ constructed from x̃ in a similar way. Writing E = Ũ − U the corresponding error matrix, we have

Ej+1 =

j+1∑
i=1

Aj−i+1ei −
j∑
i=1

Aj−iei = (A− I)

(
j∑
i=1

Aj−iei

)
+ ej+1, j = 0, . . . , k − 1.

Assuming that A is a contraction, i.e. that ‖A‖2 < 1, we can derive a crude bound on ‖E‖2 using the fact
that

‖Ej+1‖2 ≤ ‖A− I‖2
j∑
i=1

‖A‖j−i2 ‖ei‖2 + ‖ej+1‖2 ≤
(1 + ‖I −A‖2) maxi=1,...,j+1 ‖ei‖2

1− ‖A‖2
,

which yields the following bound on the spectral norm of E

‖E‖2 ≤
√
k (1 + ‖I −A‖2) maxi=1,...,k ‖ei‖2

1− ‖A‖2
. (14)

7

Running the algorithm described in (12), we thus observe the iterates x̃i and build Ũ from their differences.
As in (AMPE) we then compute c̃ using matrix Ũ and finally estimate

x̃∗ =
k∑
i=0

c̃j x̃j .

In this case, our estimate for x∗ is based on the coefficient c̃, computed using the iterates x̃i. The error
induced in this estimate by the nonlinearity can be decomposed as∥∥∥∥∥

k∑
i=0

c̃ix̃i − x∗
∥∥∥∥∥
2

≤

∥∥∥∥∥
k∑
i=0

(c̃i − ci)xi

∥∥∥∥∥
2

+

∥∥∥∥∥
k∑
i=0

c̃i(x̃i − xi)

∥∥∥∥∥
2

+

∥∥∥∥∥
k∑
i=0

cixi − x∗
∥∥∥∥∥
2

. (15)

and we begin by showing the following proposition computing the perturbation ∆c = c̃∗− c∗ of the optimal
solution c∗ induced byE = Ũ−U , which will allow us to bound the first term on the right-hand side of (15).

Proposition 2.3. Let c∗ be the optimal solution to (AMPE)

c∗ = argmin
1T c=1

‖Uc‖2

for some matrix U ∈ Rn,k. Suppose U becomes Ũ = U + E, let M = ŨT Ũ and write the perturbation
matrix P = ŨT Ũ − UTU , with c∗ + ∆c the perturbed solution to (AMPE), then

∆c = −
(
I − M−111T

1TM−11

)
M−1Pc∗ (16)

where (
I − M−111T

1TM−11

)
is a projector of rank k − 1.

Proof. Let µ be the dual variable corresponding to the equality constraint. Both c∗ + ∆c and µ∗ + ∆µ
must satisfy the KKT system [

2M 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

(
0
1

)
,

writing P = UTE + ETU + ETE, this means again[
2M 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

[
2P 0
0 0

](
c∗ + ∆c
µ∗ + ∆µ

)
+

[
2UTU 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

(
2P (c∗ + ∆c)

0

)
+

[
2UTU 1
1T 0

](
∆c
∆µ

)
+

(
0
1

)
hence [

2M 1
1T 0

](
∆c
∆µ

)
=

(
−2Pc∗

0

)
The block matrix can be inverted explicitly, with[

2M 1
1T 0

]−1
=

1

1TM−11

[
1
2M

−1 ((1TM−11)I − 11TM−1
)

M−11
1TM−1 −2

]
leading to an expression of ∆c and ∆µ in terms of c∗ and µ∗:(

∆c
∆µ

)
=

1

1TM−11

[
1
2M

−1 ((1TM−11)I − 11TM−1
)

M−11
1TM−1 −2

](
−2Pc∗

0

)
8

After some simplification, we get

∆c = −
(
I − M−111T

1TM−11

)
M−1Pc∗ = −WM−1Pc∗

where W is a projector of rank k − 1, which is the desired result.

We see here that this perturbation can be arbitrarily large, which is the key issue with the convergence
results in [Smith et al., 1987, §7]. Even if ‖c∗‖2 and ‖P‖2 are small, M−1 is usually ill-conditioned. In
fact, it can be shown that UTU , which is the square of a Krylov matrix, has a condition number typically
growing exponentially with the dimension [Tyrtyshnikov, 1994]. Moreover, the eigenvalues are perturbed
by P which can make the situation even worse.

3. REGULARIZED MINIMAL POLYNOMIAL EXTRAPOLATION

In the section that follows, we show how to regularize (AMPE) to solve the stability issues detailed above
and better control the error term in (16).

3.1. Regularized AMPE. The condition number of the matrix UTU in problem (AMPE) can be arbitrary
large which, together with nonlinear errors, can lead to highly unstable solutions c∗. We thus study a
regularized formulation of problem (AMPE), which reads

minimize cT (UTU + λI)c
subject to 1T c = 1

(RMPE)

The solution of this problem may be computed by solving a linear system, and the regularization parameter
controls the norm of the solution, as shown in the following lemma which will allow us to bound the second
term on the right-hand side of (15).

Lemma 3.1. Let c∗λ be the optimal solution of problem (RMPE) with λ > 0. Then

c∗λ =
(UTU + λI)−11

1T (UTU + λI)−11
(17)

Therefore

‖c∗λ‖2 ≤
√
λ+ ‖U‖22

kλ
. (18)

Proof. Let c∗λ the optimal solution of the primal and ν∗λ the optimal dual variable of problem (RMPE).
Let Mλ = UTU + λI . Then both c∗λ and ν∗λ must satisfy the KKT system[

2Mλ 1
1T 0

](
c∗λ
µ∗λ

)
=

(
0
1

)
hence (

c∗λ
µ∗λ

)
=

[
2Mλ 1
1T 0

]−1(
0
1

)
.

This block matrix can be inverted explicitly, with[
2Mλ 1
1T 0

]−1
=

1

1TM−1λ 1

[
1
2M

−1
λ ((1TM−1λ 1)I − 11TM−1λ) M−1λ 1

1TM−1λ −2

]
,

leading to

c∗λ =
M−1λ 1

1TM−1λ 1
.

9

Since

‖M−1λ ‖2 ≤
1

σmin(UTU) + λ
≤ 1

λ

and

1TM−1λ 1 ≥ ‖1‖2

σmax(Mλ)
≥ k

‖U‖22 + λ

we obtain

‖c∗λ‖2 =
‖M−1/2λ M

−1/2
λ 1‖2

1TM−1λ 1
≤
‖M−1λ ‖

1/2
2√

1TM−1λ 1
≤
√
λ+ ‖U‖22

kλ

which is the desired result.

This allows us to obtain the following immediate corollary extending Proposition 2.3 to the regularized
AMPE problem in (RMPE) where λ now explicitly controls the perturbation of c.

Corollary 3.2. Let c∗λ, defined in (17), be the solution of problem (RMPE). Then the solution of prob-
lem (RMPE) for the perturbed matrix Ũ = U + E is given by c∗λ + ∆cλ where

∆cλ = −WM−1λ Pc∗λ = −M−1λ W TPc∗λ and ‖∆c∗λ‖2 ≤
‖P‖2
λ
‖c∗λ‖2

where Mλ = (UTU + P + λI) and W =

(
I − M−1

λ 11T

1TM−1
λ 1

)
is a projector of rank k − 1.

These results lead us to the Regularized Approximate Minimal Polynomial Extrapolation method de-
scribed as Algorithm 1. Its computational complexity (with online updates or in batch mode) is O(nk2)
and explicit numerical procedures (batch and online) are discussed in Section 3.5 below. Note that the al-
gorithm never calls the oracle g(x) which means that, in an optimization context, this acceleration method
does not require access to either f(x) or ∇f(x) to compute the extrapolation. Moreover, unlike classical
accelerated techniques, it does not rely on a priori information on the function, e.g. access to the smoothness
parameter L and or the strong convexity parameter µ as in the algorithm in [Nesterov, 1983].

Algorithm 1 Regularized Approximate Minimal Polynomial Extrapolation (RMPE)

Input: Sequence {x0, x1, ..., xk+1}, parameter λ > 0
Compute U = [x1 − x0, ..., xk+1 − xk]
Solve the linear system (UTU + λI)z = 1
Set c = z/(zT1)

Return
∑k

i=0 cixi
Output: Approximation of the fixed point x∗

3.2. Convergence Bounds on Regularized AMPE. To fully characterize convergence of our estimate se-
quence, we still need to bound the last term on the right-hand side of (15), namely ‖

∑k
i=0 cixi − x∗‖2. A

coarse bound can be provided using Chebyshev polynomials, however the norm of the Chebyshev coeffi-
cients grows exponentially with k, which one of the root causes of instability in the classical Eddy-Mešina
algorithm [Mešina, 1977; Eddy, 1979]. Here, we refine this bound to improve our estimate of acceleration
performance.

Consider the following Chebyshev-like optimization problem, written

S(k, α) , min
{q∈Rk[x]: q(1)=1}

{
max
x∈[0,σ]

((1− x)q(x))2 + α‖q‖22
}
, (19)

10

where Rk[x] is the set of polynomials of degree at most k and q ∈ Rk+1 is the vector of coefficients of the
polynomial q(x). This problem can be solved exactly as it can be reduced to a semidefinite program, which
will be detailed explicitly in Section 3.6. We now show our main result which describes how S(k, α) bounds
the error between our estimate of the optimum constructed using the solution of (RMPE) on the iterates x̃i,
and the optimum x∗ of problem (1).

Proposition 3.3. Let matrices X = [x0, x1, ..., xk], X̃ = [x0, x̃1, ..., x̃k], E = (X − X̃) and scalar κ =
‖(A− I)−1‖2. Suppose c̃∗λ solves problem (RMPE)

minimize cT (ŨT Ũ + λI)c
subject to 1T c = 1

in the variable c ∈ Rk+1, with parameters Ũ ∈ Rn×(k+1), then

c̃∗λ =
(ŨT Ũ + λI)−11

1T (ŨT Ũ + λI)−11
(20)

Assume A = g′(x∗) symmetric with 0 � A � σI where σ < 1. Then

‖X̃c̃∗λ − x∗‖2 ≤

(
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2
)1
2(
S(k, λ/‖x0 − x∗‖22)

) 1
2‖x0 − x∗‖2

with the perturbation matrix P = ŨT Ũ − UTU , and S(k, α) is defined in (19) above.

Proof. Writing the error decomposition (15) in matrix format, we get

‖X̃c̃∗λ − x∗‖2 ≤ ‖Xc∗λ − x∗‖2 + ‖(X −X∗)∆c‖2 + ‖E c̃∗λ‖2.
The first term can be bounded as follows

‖Xc∗λ − x∗‖2 ≤ κ‖Uc∗λ‖2

≤ κ
√
‖Uc∗λ‖22 + (λ− λ)‖c∗λ‖22

≤ κ
√
‖(A− I)p(A)‖22‖x0 − x∗‖22 + λ‖c∗λ‖22 − λ‖c∗λ‖22

≤ κ
√
S(k, λ/‖x0 − x∗‖22)‖x0 − x∗‖22 − λ‖c∗λ‖22.

The second one becomes, using Corollary 3.2,

‖(X −X∗)∆c∗λ‖2 ≤ κ‖U∆c∗λ‖2
≤ κ‖U(UTU + λI + P)−1W̃ TP‖2‖c∗λ‖2
≤ κ‖U(UTU + λI + P)−1‖2‖P‖2‖c∗λ‖2.

Let us write (UTU + λI + P)−1 = [(UTU + λI)−1 + S] for some perturbation S. Indeed,

((UTU + λI)−1 + S)(UTU + λI + P) = I,

leads to
S = −(UTU + λI)−1P (UTU + λI + P)−1.

Plugging this expression in ‖U(UTU + λI + P)−1‖2 we obtain

‖U(UTU + λI + P)−1‖2 = ‖U(UTU + λI)−1(I − P (UTU + λI + P)−1)‖2
≤ ‖U(UTU + λI)−1‖2

(
1 + ‖P‖2‖(UTU + λI + P)−1‖2

)
≤ σ

σ2 + λ

(
1 +
‖P‖2
λ

)
.

11

For some value of σ ∈ [σ
1/2
min(UTU), σ

1/2
max(UTU)]. The maximum is attained at σ =

√
λ, so it becomes

‖U(UTU + λI + P)−1‖2 ≤
1

2
√
λ

(
1 +
‖P‖2
λ

)
.

So the second term can be bounded by

‖(X −X∗)∆c∗λ‖2 ≤ κ
‖P‖2
2
√
λ

(
1 +
‖P‖2
λ

)
‖c∗λ‖.

The third term can be bounded as follows

‖E c̃∗λ‖2 ≤ ‖E‖2(‖c∗λ‖2 + ‖∆c∗λ‖2)

≤ ‖E‖2
(

1 +
‖P‖2
λ

)
‖c∗λ‖2.

If we combine all bounds, we obtain

‖X̃c̃∗λ−x∗‖22 ≤ κ
√
S(k, λ/‖x0 − x∗‖22)‖x0 − x∗‖22 − λ‖c∗λ‖22 +‖c∗λ‖2

(
1 +
‖P‖2
λ

)(
‖E‖2 + κ

‖P‖2
2
√
λ

)
.

To make this bound uniform in ‖c∗λ‖2, we maximize it according to this term. For simplicity, let us write it
using parameters a, b and c = ‖c∗λ‖2, to get

κ
√
a2 − λc2 + bc.

We want to solve
max

0≤c≤(a/
√
λ)
κ
√
a2 − λc2 + bc,

in the variable c. The solution is given by

c =
a√
λ

b√
κ2λ+ b2

∈
[
0,

a√
λ

]
.

and the optimal value becomes

max
0≤c≤(a/

√
λ)
κ
√
a2 − λc2 + bc =

a√
λ

√
κ2λ+ b2.

Replacing a, b by their actual values, we have

‖X̃c̃∗λ − x∗‖2 ≤
√
S(k, λ/‖x0 − x∗‖22)‖x0 − x

∗‖2

√
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2

,

which is the desired result.

3.3. Explicit Bounds for the Gradient Method. Here, we make the bound in Proposition 3.3 more explicit
when using the simple gradient method on smooth, strongly convex functions with Lipschitz-continuous
Hessian. In this scenario, the fixed point iteration becomes

x̃k+1 = x̃k −
1

L
∇f(x̃k)

where µI � ∇2f(x) � LI . Also, for simplicity, we assume λmin(∇2f(x∗)) = µ and λmax(∇2f(x∗)) =
L. This restriction can easily be lifted and produces much simpler expressions. The general case where
λmin(∇2f(x∗)) ≥ µ and/or λmax(∇2f(x∗)) ≤ L leads to tighter bounds but does not change the general
conclusion. We will also assume the Lipschitz-continuity of the Hessian, i.e.

‖∇2f(y)−∇2f(x)‖2 ≤M‖y − x‖2
12

Using these assumptions, the rate of convergence of the gradient method [Nesterov, 2003] is

‖x̃k − x∗‖2 ≤

(√
L− µ
L+ µ

)k
‖x0 − x∗‖2 = rk‖x0 − x∗‖2

Note that (1/L) is not the optimal fixed-step gradient method, but this version simplifies the analysis. The
asymptotic linear model is here

x̃k+1 = x̃k −
1

L
∇f(x̃k)

= x̃k −
1

L

(
∇f(x∗) +∇2f(x∗)(x̃k − x∗) +O(‖x̃k − x∗‖22)

)
= x̃k −

1

L
∇2f(x∗)(x̃k − x∗) +O(‖x̃k − x∗‖22)

x̃k+1 − x∗ = A(x̃k − x∗) +O(‖x̃k − x∗‖22),

where A = I − 1
L∇

2f(x∗), meaning that ‖A‖2 ≤ 1− µ
L . The asymptotic model is thus written

xk+1 = x∗ +A(xk − x∗)

Using this recursion (see Appendix A for full details), we can bound ‖X̃ −X∗‖2, ‖U‖2, ‖E‖2 and ‖E‖2 as
follows

‖X̃ −X∗‖2 ≤ 1− rk

1− r
‖x0 − x∗‖2

‖U‖2 ≤ L

µ

(
1−

(
1− µ

L

)k)
‖x0 − x∗‖2

‖E‖2 ≤
(

1 +
L

µ

)2 M

2L

(
1

2
−
(

1− µ

L

)k
+

1

2

(
1− µ

L

1 + µ
L

)k)
‖x0 − x∗‖22

‖E‖2 ≤ 2‖E‖2

Plugging these quantities in the bounds of Proposition 3.3 allows us to explicitly characterize acceleration
performance on the gradient method. Setting for instance L = 100, µ = 10,M = 10−1, ‖x0−x∗‖2 = 10−4

and finally λ = ‖P‖2. In Figure 1 (Left) we plot the relative value for λ (i.e. ‖P‖2/‖x0 − x∗‖2) used in
regularizing (20), while the speedup factor forecast by the bound in Proposition 3.3 compared to the gradient
method is plotted in Figure 1 (Right). While the speedup implied in the bound is highly conservative, it
remains significantly larger than one for a range of values of k.

3.4. Asymptotic behavior. We will now analyze the asymptotic behavior of the bound in Proposition 3.3,
assuming

‖E‖2 = O(‖x0 − x∗‖22), ‖U‖2 = O(‖x0 − x∗‖2) ⇒ ‖P‖2 = O(‖x0 − x∗‖32),

which holds for example when minimizing a smooth strongly convex function with Lipschitz-continuous
Hessian using fixed-step gradient method (as discussed in Section 3.3 above). We will now show that when
‖x0−x∗‖2 is close to zero, we recover the rate of Chebyshev acceleration up to a constant depending of the
regularization. So, according to Proposition (2.2), when ‖x0− x∗‖2 is close to zero, the regularized version
of AMPE tends to converge as fast as AMPE up to a small constant. These results leads us to the following
corollary.

Corollary 3.4. Assume we used the gradient method with stepsize in]0, 2
L [on a L-smooth µ-strongly convex

function f with Lipschitz-continuous Hessian of constant M . Then the asymptotic convergence of RMPE
13

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

V
al

u
e

o
f
λ
/‖
x
0
−

x
∗
‖2

k

0 5 10 15 20 25 30
0

0.5

1

1.5

2

S
p
ee

d
u
p

fa
ct

o
r

k

Grad.

Nest.

RMPE

FIGURE 1. Left: Relative value for the regularization parameter λ used in the theoretical
bound. Right: Convergence speedup relative to the gradient method, for Nesterov’s accel-
erated method and the theoretical RMPE bound in Proposition 3.3. We see that our (highly
conservative) bound shows a significant speedup when k is well chosen.

algorithm (i.e. when x0 is close to x∗), with parameter k and λ = β‖P‖2, is controlled by

‖X̃c̃∗λ − x∗‖2 ≤

(
1 +

(1 + 1
β)2

4β2

)1/2

κTk(σ)‖x0 − x∗‖

where T (σ), defined in (11), satisfies

|Tk(σ)| = 2ζk

1 + ζ2k

in the Chebyshev acceleration bound, and σ = 1− µ
L is the rate of convergence of the asymptotic model of

the gradient descend and κ = L
µ is the condition number of the function f(x).

Proof. Let ‖x0 − x∗‖2 → 0 (i.e. we start closer and closer to the optimal point) and assume λ = β‖P‖2
for β > 0. In this case, we can approximate the term

lim
‖x0−x∗‖2→0

√
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2

= lim
‖x0−x∗‖2→0

√√√√κ2 +
1

β‖P‖2

(
1 +

1

β

)2
(
‖E‖2 + κ

√
‖P‖2

2
√
β

)2

= lim
‖x0−x∗‖2→0

√√√√κ2 +

(
1 +

1

β

)2
(
‖E‖2

β
√
‖P‖2

+ κ
1

2β

)2

Since ‖E‖ = O(‖x− x∗‖22) and
√
‖P‖2 = O(‖x− x∗‖

3
2
2), the limit becomes√

κ2 +

(
1 +

1

β

)2(κ

2β

)2

= κ

(
1 +

(1 + 1
β)2

4β2

)1/2

.

14

Moreover, we have λ
‖x0−x∗‖22

→ 0 since

lim
‖x0−x∗‖2→0

λ

‖x0 − x∗‖22
= lim
‖x0−x∗‖2→0

‖P‖2
β‖x0 − x∗‖22

= lim
‖x0−x∗‖2→0

O(‖x0 − x∗‖3)
O(‖x0 − x∗‖22)

= 0,

so the asymptotic relative rate of convergence of the extrapolation method becomes

lim
‖x0−x∗‖2→0

‖X̃c̃∗λ − x∗‖2
‖x0 − x∗‖2

≤ κ

(
1 +

(1 + 1
β)2

4β2

)1/2√
S (k, 0)

We can compare the values
√
S (k, 0) and Tk(σ) in (11), with√

S (k, 0) =

√
min

{q∈Rk[x]: q(1)=1}

{
max
x∈[0,σ]

((1− x)q(x))2
}

≤

√{
max
x∈[0,σ]

((1− x)T (x))2
}

≤

√{
max
x∈[0,σ]

(T (x))2
}

= T (σ).

Finally,

lim
‖x0−x∗‖2→0

‖X̃c̃∗λ − x∗‖2
‖x0 − x∗‖2

≤

(
1 +

(1 + 1
β)2

4β2

)1/2

κT (σ)

which is the desired result.

3.5. Computational Complexity of the RMPE Algorithm. In Algorithm 1, computing the coefficients c̃∗λ
means solving the k × k system (ŨT Ũ + λI)z = 1. We then get c̃∗λ = z/(1T z). This can be done in both
batch and online mode.

3.5.1. Online updates. Here, we receive the vectors ui one by one from the optimization algorithm. In this
case, we perform low-rank updates on the Cholesky factorization of the system matrix. At iteration i, we
have the Cholesky factorization LLT = ŨT Ũ + λI . We receive a new vector u+ and we want

L+L
T
+ =

[
L 0
aT b

] [
LT a
0 b

]
=

[
ŨT Ũ + λI ŨTu+
(ŨTu+)T uT+u+ + λ

]
.

We can explicitly solve this system in variables a and b, and the solutions are

a = L−1ŨTu+, b = aTa+ λ.

The complexity of this update is thus O(in+ i2), i.e. the matrix-vector multiplication of ŨTu+ and solving
the triangular system. Since we need to do it k times, the final complexity is thus O(nk2 + k3). Notice that,
at the end, it takes only O(k2) iteration to solve the system LLT z = 1.

3.5.2. Batch mode. The complexity is divided in two parts: First, we need to build the linear system itself.
Since U ∈ Rn×k, it takes O(nk2) flops to perform the multiplication. Then we need to solve the linear
system (ŨT Ũ + λI)z = 1 which can be done by a direct solver like Gaussian elimination (if k is small) or
Cholesky factorization, or using an iterative method like conjugate gradient method. It takes O(k3) flops to
solve the linear system in the worst case, meaning that the complexity at the end isO(nk2+k3). In practice,
the eigenvalues of the system tend to be clustered around λ, which means that the conjugate gradient solver
converges very quickly to a good solution.

15

3.6. Regularized Chebyshev Polynomials. We first briefly recall basic results on Sum of Squares (SOS)
polynomials and moment problems [Nesterov, 2000; Lasserre, 2001; Parrilo, 2000], which will allow us to
formulate problem (19) as a (tractable) semidefinite program. A univariate polynomial is positive if and only
if it is a sum of squares. Furthermore, if we let m(x) = (1, x, . . . , xk)T we have, for any p(x) ∈ R2k[x],

p(x) ≥ 0, for all x ∈ R
m

p(x) = m(x)TCm(x), for some C � 0,

which means that checking if a polynomial is positive on the real line is equivalent to solving a linear matrix
inequality (see e.g. [Ben-Tal and Nemirovski, 2001, §4.2] for details). We can thus write the problem of
computing the maximum of a polynomial over the real line as

minimize t
subject to t− p(x) = m(x)TCm(x), for all x ∈ R

C � 0,
(21)

which is a semidefinite program in the variables p ∈ Rk+1, C ∈ Sk+1 and t ∈ R, because the first contraint
is equivalent to a set of linear equality constraints. Then, showing that p(x) ≥ 0 on the segment [0, σ] is
equivalent to showing that the rational fraction

p

(
σx2

1 + x2

)
is positive on the real line, or equivalently, that the polynomial

(1 + x2)k p

(
σx2

1 + x2

)
is positive on the real line. Overall, this implies that problem (19) can be written

S(k, α) = min. t2 + α2‖q‖22
s.t. (1 + x2)k+1

((
1− σx2

1+x2

)
q
(
σx2

1+x2

))
= m(x)TCm(x), for all x ∈ R

1T q = 1, C � 0,

(22)

which is a semidefinite program in the variables q ∈ Rk+1, C ∈ Sk+2 and t ∈ R.

3.7. Adaptive regularization. In section 3.2 we have seen that λ controls the tradeoff between precision
in the coefficient c̃∗λ and regularization. We can explicitly minimize the bound in Proposition (3.3), but
this assumes a lot of prior knowledge about the function, and the resulting bound is very conservative. In
practice, we can often pick a much smaller λ than the one which minimize the theoretical bound.

We use an adaptive algorithm in the parameter λ using a simple line-search technique between two pa-
rameters λ0 and λmin (the gap between the two value can be big). This is a simple dichotomy strategy: we
start at some λ0, and compute the associated c∗λ. Then, we compute the coefficients for a smaller λ, say
λ/2, and compare the two values f(Xc∗λ) and f(Xc∗λ/2). If the value increase when λ becomes smaller or
if λ < λmin we stop, otherwise we repeat the process. Even if an access to the oracle f(x) is needed, we
use it as a complete black-box. Moreover, we still do not need to access to the oracle∇f(x).

4. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the RMPE acceleration method detailed in Algorithm 1,
using the line-search strategy detailed in Section 3.7.

16

4.1. Minimizing logistic regression. We begin by testing our methods on a regularized logistic regression
problem written

f(w) =
m∑
i=1

log
(
1 + exp(−yizTi w)

)
+
τ

2
‖w‖22,

where Z = [z1, ..., zm]T ∈ Rm×n is the design matrix and y is a {−1, 1}m vector of labels. The Lipchitz
constant of the logistic regression is L = ‖Z‖22/4 + τ and the strong convexity parameter is µ = τ . We
solve this problem using several algorithms:

• Fixed-step gradient method for smooth strongly convex functions [Nesterov, 2003, Th. 2.1.15] with
iterations

xk+1 = xk −
2

L+ µ
∇f(xk)

• Accelerated gradient method for smooth strongly convex functions [Nesterov, 2003, Th. 2.2.3] with
iterations

xk+1 = yk −
1

L
∇f(yk)

yk+1 = xk+1 +

√
L−√µ
√
L+
√
µ

(xk+1 − xk)

• The adaptive RMPE algorithm, detailed in Section 3.7, with restart each k iteration.
The results are reported in Figure 2. Using very few iterates, the solution computed using our estimate

(a nonlinear average of the gradient iterates) are markedly better than those produced by the accelerated
method. This is only partially reflected by the theoretical bound from Proposition 3.3 which shows signif-
icant speedup in some regions but remains highly conservative (cf. Figure 1). Also, Figure 3 shows the
impact of regularization: The (unregularized) AMPE process becomes unstable because of the condition
number of matrix M , which significantly impacts the precision of the estimate.

5. CONCLUSION AND PERSPECTIVES

In this paper, we developed a method which is able to accelerate, under some regularity conditions, the
convergence of a sequence {xi}without any knowledge of the algorithm which generated this sequence. The
regularization parameter used in the acceleration method can be computed easily using some inexact line-
search. The algorithm itself is simple as it only requires solving a small linear system. Also, we showed
(using gradient method on logistic regression) that the strategy which consists in restarting the algorithm
after an extrapolation method can lead to significantly improved convergence rates. Future work will consist
in improving the performance of the algorithm by exploiting the structure of the noise matrix E in some
cases (for example, using gradient method, the norm of the column Ek in the matrix E is decreasing when k
grows), extending the algorithm to the stochastic case and to the non-symmetric case, and to refine the term
(19) present in the theoretical bound.

17

0 2 4 6 8 10

x 10
4

10
−2

10
0

10
2

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

RMPE 5

RMPE 10

0 2000 4000 6000 8000 10000

10
1

10
2

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

RMPE 5

RMPE 10

FIGURE 2. Solving logistic regression on UCI Madelon dataset (500 features, 2000 sam-
ples) using the gradient method, Nesterov’s accelerated method and RMPE with k = 5, 10,
with penalty parameter τ = 102 so the condition number becomes 1.2 × 109 (Left), and
τ = 10−3 in order to have a condition number equal to 1.2×1014 (Right). In this graph, we
see that our algorithm has a similar behavior to the conjugate gradient: unlike Nesterov’s
method, where we need to provide information on the spectrum of the function (i.e. param-
eters µ and L), the RMPE algorithm adapts itself to the spectrum of g(x∗) and exploits the
good local strong convexity of the objective, without any prior information.

0 2 4 6 8 10

x 10
4

10
−2

10
0

10
2

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

AMPE 10

RMPE 10

FIGURE 3. Logistic regression on Madelon UCI Dataset, solved using the gradient method,
Nesterov’s method and AMPE (i.e. RMPE with λ = 0). The condition number is equal to
1.2× 109. We see that without regularization, AMPE is becomes unstable as ‖(ŨT Ũ)−1‖2
gets too large (cf. Proposition 2.3).

18

0 200 400 600 800 1000
10

−10

10
−5

10
0

10
5

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

RMPE 5

RMPE 10

0 1 2 3

x 10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

RMPE 5

RMPE 10

FIGURE 4. Logistic regression on Sonar Scaled UCI Dataset (60 features, 208 data points),
solved using several algorithms. Left: the penalty parameter has been set to 10−1 in order
to have a condition number equal to 1.4× 104. Right: penalty parameter equal to 10−6, so
the condition number is equal to 1.4× 109.

0 200 400 600 800 1000
10

−10

10
−5

10
0

10
5

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov

RMPE 5

RMPE 10

0 2000 4000 6000 8000 10000
10

−2

10
0

10
2

10
4

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient

Nesterov str. conv

Nesterov conv

RMPE 5

RMPE 10

FIGURE 5. Logistic regression on Sido0 Scaled UCI Dataset (4932 features, 12678 data
points), solved using several algorithms. Left: the penalty parameter has been set to 102 in
order to have a condition number equal to 1.57 × 105. Right: penalty parameter equal to
10−1, so the condition number is equal to 1.57× 108.

19

REFERENCES

Aitken, A. C. [1927], ‘On Bernoulli’s numerical solution of algebraic equations’, Proceedings of the Royal
Society of Edinburgh 46, 289–305.

Beck, A. and Teboulle, M. [2009], ‘A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems’, SIAM Journal on Imaging Sciences 2(1), 183–202.

Ben-Tal, A. and Nemirovski, A. [2001], Lectures on modern convex optimization : analysis, algorithms,
and engineering applications, MPS-SIAM series on optimization, SIAM.

Brezinski, C. [1977], ‘Accélération de la convergence en analyse numérique’, Lecture notes in mathematics
(ISSN 0075-8434 (584).

Cabay, S. and Jackson, L. [1976], ‘A polynomial extrapolation method for finding limits and antilimits of
vector sequences’, SIAM Journal on Numerical Analysis 13(5), 734–752.

Drori, Y. and Teboulle, M. [2014], ‘Performance of first-order methods for smooth convex minimization: a
novel approach’, Mathematical Programming 145(1-2), 451–482.

Durbin, J. [1960], ‘The fitting of time-series models’, Revue de l’Institut International de Statistique
pp. 233–244.

Eddy, R. [1979], ‘Extrapolating to the limit of a vector sequence’, Information linkage between applied
mathematics and industry pp. 387–396.

Golub, G. H. and Varga, R. S. [1961], ‘Chebyshev semi-iterative methods, successive overrelaxation iterative
methods, and second order richardson iterative methods’, Numerische Mathematik 3(1), 157–168.

Hardt, M. [2013], ‘The zen of gradient descent’, Mimeo .
Heinig, G. and Rost, K. [2011], ‘Fast algorithms for Toeplitz and Hankel matrices’, Linear Algebra and its

Applications 435(1), 1–59.
Lasserre, J. B. [2001], ‘Global optimization with polynomials and the problem of moments’, SIAM Journal

on Optimization 11(3), 796–817.
Lessard, L., Recht, B. and Packard, A. [2016], ‘Analysis and design of optimization algorithms via integral

quadratic constraints’, SIAM Journal on Optimization 26(1), 57–95.
Levinson, N. [1949], ‘The Wiener RMS error criterion in filter design and prediction, appendix b of wiener,

n.(1949)’, Extrapolation, Interpolation, and Smoothing of Stationary Time Series .
Lin, H., Mairal, J. and Harchaoui, Z. [2015], A universal catalyst for first-order optimization, in ‘Advances

in Neural Information Processing Systems’, pp. 3366–3374.
Mešina, M. [1977], ‘Convergence acceleration for the iterative solution of the equations x = ax + f ’,

Computer Methods in Applied Mechanics and Engineering 10(2), 165–173.
Nemirovskii, A. and Nesterov, Y. E. [1985], ‘Optimal methods of smooth convex minimization’, USSR

Computational Mathematics and Mathematical Physics 25(2), 21–30.
Nesterov, Y. [1983], ‘A method of solving a convex programming problem with convergence rate O(1/k2)’,

Soviet Mathematics Doklady 27(2), 372–376.
Nesterov, Y. [2000], Squared functional systems and optimization problems, in ‘High performance opti-

mization’, Springer, pp. 405–440.
Nesterov, Y. [2003], Introductory Lectures on Convex Optimization, Springer.
Nesterov, Y. [2015], ‘Universal gradient methods for convex optimization problems’, Mathematical Pro-

gramming 152(1-2), 381–404.
Parrilo, P. [2000], Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness

and Optimization, PhD thesis, California Institute of Technology.
Shanks, D. [1955], ‘Non-linear transformations of divergent and slowly convergent sequences’, Journal of

Mathematics and Physics 34(1), 1–42.
Sidi, A., Ford, W. F. and Smith, D. A. [1986], ‘Acceleration of convergence of vector sequences’, SIAM

Journal on Numerical Analysis 23(1), 178–196.

20

Smith, D. A., Ford, W. F. and Sidi, A. [1987], ‘Extrapolation methods for vector sequences’, SIAM review
29(2), 199–233.

Su, W., Boyd, S. and Candes, E. [2014], A differential equation for modeling nesterov’s accelerated gradient
method: Theory and insights, in ‘Advances in Neural Information Processing Systems’, pp. 2510–2518.

Tyrtyshnikov, E. E. [1994], ‘How bad are Hankel matrices?’, Numerische Mathematik 67(2), 261–269.
Wibisono, A. and Wilson, A. C. [2015], ‘On accelerated methods in optimization’, arXiv preprint

arXiv:1509.03616 .
Wynn, P. [1956], ‘On a device for computing the em(sn) transformation’, Mathematical Tables and Other

Aids to Computation 10(54), 91–96.

ACKNOWLEDGEMENTS

AA is at CNRS, attached to the Département d’Informatique at École Normale Supérieure in Paris, INRIA
- Sierra team, PSL Research University. The authors would like to acknowledge support from a starting grant
from the European Research Council (ERC project SIPA), as well as support from the chaire Économie des
nouvelles données with the data science joint research initiative with the fonds AXA pour la recherche and
a gift from Société Générale Cross Asset Quantitative Research.

APPENDIX A. COMPUTATION OF ERROR BOUNDS WHEN ACCELERATING GRADIENT METHOD

Here, we fully explicit the bounds used in Section 3.4 for the simple gradient method on smooth, strongly
convex functions with Lipschitz-continuous Hessian.

A.1. Upper bound for ‖X − X∗‖2 and ‖U‖2. Since we assumed that we used the gradient method, the
sequence ‖x̃k − x∗‖2 is monotone, following

‖x̃k+1 − x∗‖ ≤ r‖x̃k − x∗‖
In this case, we can bound easily ‖X −X∗‖2 with

‖X̃ −X∗‖2 ≤
k∑
i=0

‖x̃i − x∗‖2

=
1− rk

1− r
‖x0 − x∗‖2

Moreover, in the asymptotic model we have

‖xk+1 − x∗‖2 = ‖A(xk − x∗)‖2 ≤ ‖A‖2‖xk − x∗‖2
where A = I − 1

L∇
2f(x∗), so ‖A‖2 ≤ 1− L

µ . In that case,

‖U‖2 ≤ ‖A− I‖2
k∑
i=0

‖xi − x∗‖2

≤
k∑
i=0

‖A‖i‖x0 − x∗‖2

≤ 1− ‖A‖k2
1− ‖A‖2

‖x0 − x∗‖2

≤ L

µ

(
1−

(
1− µ

L

)k)
‖x0 − x∗‖2

21

A.2. Upper bound for ‖E‖2 = ‖X̃ −X‖2 and ‖E‖2 = ‖Ũ − U‖. Since Ei = x̃i − xi, we have

‖E‖2 ≤
k∑
i=0

‖x̃i − xi‖2

We will express ‖x̃i+1 − xi+1‖2 in function of ‖x̃0 − x0‖2 using a recursion with ‖x̃i − xi‖2:

x̃i+1 − xi+1 = x̃i −
1

L
∇f(x̃i)− xi +

1

L
∇2f(x∗)(xi − x∗)

= x̃i − xi −
1

L
(∇f(x̃i)−∇2f(x∗)(xi − x∗))

=

(
I − ∇

2f(x∗)

L

)
(x̃i − xi)−

1

L
(∇f(x̃i)−∇2f(x∗)(x̃i − x∗))

Since our function has a Lipschitz-continuous Hessian, it is possible to show that (Nesterov [2003], Lemma 1.2.4)∥∥∇f(y)−∇f(x)−∇2f(x)(y − x)
∥∥
2
≤ M

2
‖y − x‖2. (23)

We can thus bound the norm of the error at the ith iteration

‖xi+1 − x̃i+1‖2 ≤
∥∥∥∥I − ∇2f(x∗)

L
)

∥∥∥∥
2

‖xi − x̃i‖2 +
1

L

∥∥∇f(x̃i)−∇2f(x∗)(x̃i − x∗)
∥∥
2

=

∥∥∥∥I − ∇2f(x∗)

L
)

∥∥∥∥
2

‖xi − x̃i‖2 +
1

L

∥∥∇f(x̃i)−∇f(x∗)−∇2f(x∗)(x̃i − x∗)
∥∥
2

By equation (23), we have

‖xi+1 − x̃i+1‖2 ≤ (1− µ

L
)‖xi − x̃i‖2 +

M

2L
‖x̃i − x∗‖22

≤ (1− µ

L
)‖xi − x̃i‖2 +

M

2L
(r2)i‖x0 − x∗‖22

=
M

2L

i∑
j=1

(1− µ

L
)i−j(r2)j‖x0 − x∗‖22

The sum starts at j = 1 because, by definition, ‖e0‖2 = ‖x̃0 − x0‖2 = 0. We can simplify this expression
using the following property:

r2

1− µ
L

=
1

1 + µ
L

< 1, (24)

then bound ‖xi+1 − x̃i+1‖2 as follows.

‖xi+1 − x̃i+1‖2 ≤
(

1− µ

L

)i M
2L

i∑
j=1

(
r2

1− µ
L

)j
‖x0 − x∗‖22

≤
(

1− µ

L

)i M
2L

 i∑
j=0

(
r2

1− µ
L

)j ‖x0 − x∗‖22.
By equation 24, we can simplify the bound:(

1− µ

L

)i M
2L

 i∑
j=0

(
r2

1− µ
L

)j ‖x0 − x∗‖22 =
(

1− µ

L

)i M
2L

 i∑
j=0

(
1

1 + µ
L

)j ‖x0 − x∗‖22
22

We have thus

|xi+1 − x̃i+1‖2 ≤
(

1− µ

L

)i M
2L

 i∑
j=0

(
1

1 + µ
L

)j ‖x0 − x∗‖22
=

(
1− µ

L

)i M
2L

1−
(

1
1+ µ

L

)i
1− 1

1+ µ
L

 ‖x0 − x∗‖22
=

M

2L

(1− µ
L)i −

(
1− µ

L

1+ µ
L

)i
1− 1

1+ µ
L

 ‖x0 − x∗‖22
=

(
1 +

L

µ

)
M

2L

(
(1− µ

L
)i −

(
1− µ

L

1 + µ
L

)i)
‖x0 − x∗‖22.

By summing these error terms, we get

‖E‖2 ≤
k∑
i=0

‖xi − x̃i‖2

≤
(

1 +
L

µ

)
M

2L

(
k∑
i=0

(1− µ

L
)i −

k∑
i=0

(
1− µ

L

1 + µ
L

)i)
‖x0 − x∗‖22

=

(
1 +

L

µ

)
M

2L

(
L

µ

(
1−

(
1− µ

L
)k
))
− L

2µ

(
1−

(
1− µ

L

1 + µ
L

)k))
‖x0 − x∗‖22

≤
(

1 +
L

µ

)2 M

2L

(
1−

(
1− µ

L

)k
− 1

2

(
1−

(
1− µ

L

1 + µ
L

)k))
‖x0 − x∗‖22

=

(
1 +

L

µ

)2 M

2L

(
1

2
−
(

1− µ

L

)k
+

1

2

(
1− µ

L

1 + µ
L

)k)
‖x0 − x∗‖22

We finally have
‖Ũ − U‖2 = ‖E‖2 ≤ 2‖E‖2 = ‖X̃ −X‖2.

APPENDIX B. TWO-TERMS RECURENCE FOR CHEBYSHEV’S ACCELERATION

In this section we will details all steps to go from the theoretical definition of Chebyshev’s acceleration

yk = Tk(A)(x0 − x∗)
to the two-terms recurence

αk = t(1)αk−1 − αk−2

zk−1 = yk−1 −
1

L
(Ayk−1 − b)

yk =
αk−1
αk

(
2zk−1
σ
− yk−1

)
− αk−2

αk
yk−2

Define αk = Ck(t(1)). Then, by definition of Tk(x),

αkTk(x) = Ck(t(x))
23

So, we get easily a three-term recurrence for Tk(x)

αkTk(x) = Ck(t(x))

= t(x)Ck−1(t(x))− Ck−2(t(x))

= t(x)αk−1Tk−1(x)− αk−2Tk−2(x)

and also for αk:

αk = Ck(t(1)) = t(1)αk−1Ck−1(t(1))− αk−2Ck−2(t(1))

= t(1)αk−1 − αk−2
We will now see that we can form yk =

∑k
i=0 cixi using only yk−1 and yk−2, where xk comes from the

gradient method and ci are the coefficients of Tk(x). We have

yk − x∗ = Tk (A) (x0 − x∗)

=
1

αk
(t (A)αk−1Tk−1(A)(x0 − x∗)− αk−2Tk−2(A)(x0 − x∗))

=
1

αk
(αk−1t (A) (yk−1 − x∗)− αk−2(yk−2 − x∗))

We need now to compute t (A) yk−1. Since t(x) = 2x−σ
σ , we have

t (A) (yk−1 − x∗) =
2 (A) (yk−1 − x∗)− σ(yk−1 − x∗)

σ

However, we have access to x∗ +A(yk−1 − x∗), since it correspond to a gradient step. Define

zk−1 = x∗ +A(yk−1 − x∗)
So,

t (A) (yk−1 − x∗) =
2(zk−1 − x∗)− σ(yk−1 − x∗)

σ
=

2zk−1 − σyk−1
σ

− t(1)x∗

If we plug this expression in the three-term recurrence,

yk − x∗ =
1

αk

(
αk−1

(
2zk−1 − σyk−1

σ
− t(1)x∗

)
− αk−2(yk−2 − x∗)

)
Using the definition of αk, we can eliminate x∗ in both side. This leads to the following scheme.

zk−1 = yk−1 −
1

L
(Byk−1 − b)

yk =
αk−1
αk

(
2zk−1
σ
− yk−1

)
− αk−2

αk
yk−2

24

INRIA & D.I.,
ÉCOLE NORMALE SUPÉRIEURE, PARIS, FRANCE.
E-mail address: damien.scieur@inria.fr

CNRS & D.I., UMR 8548,
ÉCOLE NORMALE SUPÉRIEURE, PARIS, FRANCE.
E-mail address: aspremon@ens.fr

INRIA & D.I.
ÉCOLE NORMALE SUPÉRIEURE, PARIS, FRANCE.
E-mail address: francis.bach@inria.fr

25

	1. Introduction
	2. Approximate Minimal Polynomial Extrapolation
	2.1. Linear Iterations
	2.2. Minimal polynomial extrapolation
	2.3. Approximate Minimal Polynomial Extrapolation (AMPE)
	2.4. Nonlinear Iterations

	3. Regularized Minimal Polynomial Extrapolation
	3.1. Regularized AMPE
	3.2. Convergence Bounds on Regularized AMPE
	3.3. Explicit Bounds for the Gradient Method
	3.4. Asymptotic behavior
	3.5. Computational Complexity of the RMPE Algorithm
	3.6. Regularized Chebyshev Polynomials
	3.7. Adaptive regularization

	4. Numerical Experiments
	4.1. Minimizing logistic regression

	5. Conclusion and Perspectives
	References
	Acknowledgements
	Appendix A. Computation of error bounds when accelerating gradient method
	A.1. Upper bound for "026B30D X-X*"026B30D 2 and "026B30D U"026B30D 2
	A.2. Upper bound for "026B30D E"026B30D 2 = "026B30D -X"026B30D 2 and "026B30D E"026B30D 2 = "026B30D -U"026B30D

	Appendix B. Two-terms recurence for Chebyshev's acceleration

