A direct formulation for sparse PCA using semidefinite programming

A. d'Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet

ORFE, Princeton University \& EECS, U.C. Berkeley

Available online at www.princeton.edu/~aspremon

Introduction

Principal Component Analysis (PCA): classic tool in multivariate data analysis

- Input: a covariance matrix A
- Output: a sequence of factors ranked by variance
- Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing the information (variance) contained in the simplified model.

Introduction

Numerically: just an eigenvalue decomposition of the covariance matrix:

$$
A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}
$$

where. . .

- The factors x_{i} are uncorrelated
- The result of the PCA is usually not sparse, i.e. each factor is a linear combination of all the variables in the model.

Can we get sparse factors instead?

Sparse PCA: Applications

Why sparse factors?

- Financial time series analysis: sparse factors often mean less assets in the portfolio, hence less fixed transaction costs
- Multiscale data processing: get sparse structure from motion data, ...
- Gene expression data: each variable is a particular gene, sparse factors highlight the action of a few genes, making interpretation easier
- Image processing: sparse factors involve only specific zones or objects in the image.

Applications, previous works

Further details. . .

- Financial time series analysis, dimensionality reduction, hedging, etc (Rebonato (1998),...)
- Multiscale data processing (Chennubhotla \& Jepson (2001),...)
- Gene expression data (survey by Wall, Rechtsteiner \& Rocha (2002), ...)
- Signal \& image processing, vision, OCR, ECG (Johnstone \& Lu (2003))

A : rank one approximation

Problem definition:

- Here, we focus on the first factor x, computed as the solution of:

$$
\min _{x \in \mathbf{R}}\left\|A-x x^{T}\right\|_{F}
$$

where $\|X\|_{F}$ is the Frobenius norm of X, i.e. $\|X\|_{F}=\sqrt{\operatorname{Tr}\left(X^{2}\right)}$

- In this case, we get an exact solution $\lambda^{\max }(A) x_{1} x_{1}^{T}$ where $\lambda^{\max }(X)$ is the maximum eigenvalue and x_{1} is the associated eigenvector.

Variational formulation

We can rewrite the previous problem as:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \tag{1}
\end{array}
$$

This problem is easy, its solution is again $\lambda^{\max }(A)$ at x_{1}.
Here however, we want a little bit more. . . We look for a sparse solution and solve instead:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \tag{2}\\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

where $\operatorname{Card}(x)$ denotes the cardinality (number of non-zero elements) of x. This is non-convex and numerically hard.

Related literature

Previous work:

- Cadima \& Jolliffe (1995): the loadings with small absolute value are thresholded to zero.
- A non-convex method called SCoTLASS by Jolliffe \& Uddin (2003). (Same problem formulation)
- Zou, Hastie \& Tibshirani (2004): a regression based technique called sparse PCA (S-PCA) (SPCA). Based on the fact that PCA can be written as a regression-type (non convex) optimization problem, using LASSO Tibshirani (1996) a l_{1} norm penalty.

Performance:

- These methods are either very suboptimal or nonconvex
- Regression: works for large scale examples

Semidefinite relaxation

Semidefinite relaxation

Start from:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

let $X=x x^{T}$, and write everything in terms of the matrix X :

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T}
\end{array}
$$

This is strictly equivalent!

Semidefinite relaxation

Why? If $X=x x^{T}$, then:

- in the objective: $x^{T} A x=\operatorname{Tr}(A X)$
- the constraint $\operatorname{Card}(x) \leq k$ becomes $\operatorname{Card}(X) \leq k^{2}$
- the constraint $\|x\|_{2}=1$ becomes $\operatorname{Tr}(X)=1$.

We can go a little further and replace $X=x x^{T}$ by an equivalent $X \succeq 0, \quad \boldsymbol{\operatorname { R a n k }}(X)=1$, to get:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \tag{3}\\
& X \succeq 0, \operatorname{Rank}(X)=1
\end{array}
$$

Again, this is the same problem!

Semidefinite relaxation

Numerically, this is still hard:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex
- So is the constraint $\operatorname{Rank}(X)=1$
but, we have made some progress:
- The objective $\operatorname{Tr}(A X)$ is now linear in X
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

To solve this problem efficiently, we need to relax the two non-convex constraints above.

Semidefinite relaxation

Easy to do here. . .
If $u \in \mathbf{R}^{p}, \mathbf{C a r d}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. We transform the non-convex problem into a convex relaxation:

- Replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex) $\mathbf{1}^{T}|X| \mathbf{1} \leq k$
- Simply drop the rank constraint

Our problem becomes now:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \tag{4}\\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

This is a convex program and can be solved efficiently.

Semidefinite programming

In fact, we get a semidefinite program in the variable $X \in \mathbf{S}^{n}$, which can be solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd \& Tutuncu (1996).

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0
\end{array}
$$

- Polynomial complexity. . .
- Problem here: the program has $O\left(n^{2}\right)$ dense constraints on the matrix X (sampling fails, . . .).

In practice, hard to solve problems with large n without additional work.

Singular Value Decomposition

Same technique works for Singular Value Decomposition instead of PCA.

- The variational formulation of SVD is here:

$$
\begin{array}{ll}
\min & \left\|A-u v^{T}\right\|_{F} \\
\text { subject to } & \operatorname{Card}(u) \leq k_{1} \\
& \operatorname{Card}(v) \leq k_{2},
\end{array}
$$

in the variables $(u, v) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$ where $k_{1} \leq m, k_{2} \leq n$ are fixed.

- This can be relaxed as the following semidefinite program:

$$
\begin{array}{ll}
\max & \operatorname{Tr}\left(A^{T} X_{12}\right) \\
\text { subject to } & X \succeq 0, \operatorname{Tr}\left(X_{i i}\right)=1 \\
& \mathbf{1}^{T}\left|X_{i i}\right| \mathbf{1} \leq k_{i}, \quad i=1,2 \\
& \mathbf{1}^{T}\left|X_{12}\right| \mathbf{1} \leq \sqrt{k_{1} k_{2}},
\end{array}
$$

in the variable $X \in \mathbf{S}^{m+n}$ with blocks $X_{i j}$ for $i, j=1,2$.

Large-scale problems

IP versus first-order methods

Interior Point methods for semidefinite/cone programs

- Produce a solution up to machine precision
- Compute a Newton step at each iteration: costly

In our case:

- We are not really interested in getting a solution up to machine precision
- The problems are too big to compute a Newton step. . .

Solution: use first-order techniques. . .

First-order methods

Basic model for the problem: black-box oracle producing

- the function value $f(x)$
- a subgradient $g(x) \in \partial f(x)$
f is here convex, non-smooth. Using only this info, we need $O\left(1 / \varepsilon^{2}\right)$ steps to find an ε-optimal solution.

However, if the function is convex with a Lipschitz-continuous gradient with constant L then

- we need only $O(\sqrt{L / \varepsilon})$ steps to get an ε-optimal solution.. . .

Smoothness brings a massive improvement in complexity. . .

Sparse PCA?

In our case, we look at a penalized version of the relaxed sparse PCA problem:

$$
\begin{equation*}
\max _{U} \operatorname{Tr}(A U)-\mathbf{1}^{T}|U| \mathbf{1}: U \succeq 0, \quad \operatorname{Tr} U=1 \tag{5}
\end{equation*}
$$

Difference?

- If we can solve the dual, these two formulations are equivalent.
- Otherwise: scale A. .

Problem here, the function to minimize is not smooth! Can we hope to do better than the worst case complexity of $O\left(1 / \varepsilon^{2}\right)$?

Nesterov (2003): the answer is yes, exploits particular problem structure. . .

Sparse PCA?

We can rewrite our problem as a convex-concave game:

$$
\max _{\{U \succeq 0, \operatorname{Tr} U=1\}} \operatorname{Tr}(A U)-\mathbf{1}^{T}|U| \mathbf{1}=\min _{X \in \mathcal{Q}_{1}} \max _{U \in \mathcal{Q}_{2}}\langle X, U\rangle+\operatorname{Tr}(A U)
$$

where

- $\mathcal{Q}_{1}=\left\{X \in \mathcal{S}^{n}:\left|X_{i j}\right| \leq 1,1 \leq i, j \leq n\right\}$
- $\mathcal{Q}_{2}=\left\{U \in \mathcal{S}^{n}: \operatorname{Tr} U=1\right\}$

Sparse PCA: complexity

Why a convex-concave game?

- Recent result by Nesterov (2003) shows that this specific structure can be exploited to significantly reduce the complexity compared to the black-box case
- All the algorithm steps can be worked out explicitly in this case

Result:

- Complexity down to $O(1 / \varepsilon)$ instead of $O\left(1 / \varepsilon^{2}\right)$!

Smooth minimization of non-smooth functions

What makes the algorithm in Nesterov (2003) work:

- First use the convex-concave game structure to regularize the function. (Inf-convolution with strictly convex function, à la Moreau-Yosida. See for example Lemaréchal \& Sagastizábal (1997))
- Then use the optimal first-order minimization algorithm in Nesterov (1983) to minimize the smooth approximation.

The method works particularly well if:

- All the steps in the regularization can be performed in closed-form
- All the auxiliary minimization sub-problems can be solved in closed-form

This is the case here. . .

Complexity

- Max number of iterations is given by

$$
N=4\|B\|_{1,2} \sqrt{\frac{D_{1} D_{2}}{\sigma_{1} \sigma_{2}}} \cdot \frac{1}{\epsilon}
$$

with

$$
D_{1}=n^{2} / 2, \quad \sigma_{1}=1, \quad D_{2}=\log (n), \quad \sigma_{2}=1, \quad\|B\|_{1,2}=1
$$

- Since each iteration costs $O\left(n^{3}\right)$ flops, the worst-case flop count to get a ε-optimal solution is given by

$$
O\left(\frac{n^{4} \sqrt{\log n}}{\epsilon}\right)
$$

Robustness \& sparse decomposition

Duality - robustness

We look at the penalized problem:

$$
\begin{array}{ll}
\max . & \operatorname{Tr}(A U)-\rho \mathbf{1}^{T}|U| \mathbf{1} \\
\text { s.t. } & \operatorname{Tr} U=1 \\
& U \succeq 0
\end{array}
$$

which can be written:

$$
\max _{\{\operatorname{Tr} U=1, U \succeq 0\}} \min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \operatorname{Tr}((A+X) U)
$$

or also:

$$
\min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+X)
$$

This dual has a very natural interpretation. . .

Duality - robustness

$$
\min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+X)
$$

- Worst-case robust maximum eigenvalue problem
- Uniformly distributed noise with magnitude ρ on the coefficients of the covariance matrix A

We ask for sparsity, we get robustness at the same time. . .

Sparse PCA: stopping the decomposition

Standard PCA:

- Finite decomposition, will stop after at most n eigenvectors are found
- Orthogonal decomposition

However, use the robustness interpretation:

- Run the decomposition
- Test if $\max _{i j}\left|A_{i j}\right| \leq \rho$.
- If yes the matrix is undistinguishable from the noise, stop. . .

Numerical results

Numerical results

Compare with existing techniques. . .

- PITPROPS data from Zou et al. (2004)
- Compare regression technique and semidefinite relaxation (DSPCA) detailed here

Test a sparse PCA on the PITPROPS data:

- Match the explained variance for each factor
- Minimize factor cardinality using regression \& DSPCA

Cumulative cardinality and cumulative explained variance for SPCA and DSPCA as a function of the number of principal components: black line for normal PCA, blue for SPCA and red for DSPCA (full for $k_{1}=5$ and dash-dot for $k_{1}=6$).

Sparse factors. . .

Example:

- Use a covariance matrix from forward rates with maturity 1 Y to 10 Y
- Compute first factor normally (average of rates)
- Apply the DSPCA technique to get a sparse second factor

Second Factor

The second factor is much sparser than in the PCA case, explained variance goes from 16% to 14%. .

Cardinality versus k : model

Start with a sparse vector $v=(1,0,1,0,1,0,1,0,1,0)$. We then define the matrix A as:

$$
A=U^{T} U+15 v v^{T}
$$

here $U \in \mathbf{S}^{10}$ is a random matrix (uniform coefs in $[0,1]$).
We solve:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

- $\operatorname{Tr} y k=1, \ldots, 10$
- For each k, sample a 100 matrices A
- Plot average solution cardinality (and standard dev. as error bars)

Cardinality versus k

Figure 1: Cardinality versus k.
$(k+1)$ is a good predictor of the cardinality. . .

Sparsity versus \# iterations

Start with a sparse vector $v=(1,0,1,0,1,0,1,0,1,0, \ldots, 0) \in \mathbf{R}^{20}$. We then define the matrix A as:

$$
A=U^{T} U+100 v v^{T}
$$

here $U \in \mathbf{S}^{20}$ is a random matrix (uniform coefs in $[0,1]$).

We solve:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A U)-\rho \mathbf{1}^{T}|U| \mathbf{1} \\
\text { s.t. } & \operatorname{Tr} U=1 \\
& U \succeq 0
\end{array}
$$

for $\rho=5$.

Sparsity versus \# iterations

Number of iterations: 10,000 to 100,000 . Computing time: $12^{\prime \prime}$ to $110^{\prime \prime}$.

Conclusion

- Semidefinite relaxation for sparse PCA
- Robustness \& sparsity at the same time (cf. dual)
- Can solve large-scale problems with optimal first-order method by Nesterov (2003)

References

Cadima, J. \& Jolliffe, I. T. (1995), 'Loadings and correlations in the interpretation of principal components', Journal of Applied Statistics 22, 203-214.

Chennubhotla, C. \& Jepson, A. (2001), Sparse PCA: Extracting multi-scale structure from data, in 'International Conference on Computer Vision', IEEE, Vancouver, Canada, pp. 641-647.

Johnstone, I. \& Lu, A. Y. (2003), Sparse principal components analysis, in 'FDA Workshop', Gainesville.

Jolliffe, I. T. \& Uddin, M. (2003), 'A modified principal component technique based on the lasso', Journal of Computational and Graphical Statistics 12, 531-547.

Lemaréchal, C. \& Sagastizábal, C. (1997), 'Practical aspects of the

Moreau-Yosida regularization: theoretical preliminaries', SIAM Journal on Optimization 7(2), 367-385.

Nesterov, Y. (1983), 'A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)^{\prime}$, Soviet Math. Dokl. 27(2), 372-376.

Nesterov, Y. (2003), 'Smooth minimization of nonsmooth functions', CORE discussion paper 2003/12 (Accepted by Math. Prog.) .

Rebonato, R. (1998), Interest-Rate Options Models, Financial Engineering, Wiley.

Sturm, J. F. (1999), 'Using sedumi 1.0x, a matlab toolbox for optimization over symmetric cones', Optimization Methods and Software 11, 625-653.

Tibshirani, R. (1996), 'Regression shrinkage and selection via the lasso', Journal of the Royal statistical society, series B 58(267-288).

Toh, K. C., Todd, M. J. \& Tutuncu, R. H. (1996), Sdpt3 - a matlab software package for semidefinite programming, Technical report, School of Operations Research and Industrial Engineering, Cornell University.

Wall, M. E., Rechtsteiner, A. \& Rocha, L. M. (2002), Singular value decomposition and principal component analysis, Technical Report ArXiv physics/0208101, Los Alamos National Laboratory.

Zou, H., Hastie, T. \& Tibshirani, R. (2004), 'Sparse principal component analysis', Technical report, statistics department, Stanford University .

