
A direct formulation for sparse PCA

using semidefinite programming

A. d’Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet

ORFE, Princeton University & EECS, U.C. Berkeley

Available online at www.princeton.edu/~aspremon

1

www.princeton.edu/~aspremon

Introduction

Principal Component Analysis (PCA): classic tool in multivariate data
analysis

• Input: a covariance matrix A

• Output: a sequence of factors ranked by variance

• Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model.

2

Introduction

Numerically: just an eigenvalue decomposition of the covariance matrix:

A =

n
∑

i=1

λixix
T
i

where. . .

• The factors xi are uncorrelated

• The result of the PCA is usually not sparse, i.e. each factor is a linear
combination of all the variables in the model.

Can we get sparse factors instead?

3

Sparse PCA: Applications

Why sparse factors?

• Financial time series analysis: sparse factors often mean less assets in the
portfolio, hence less fixed transaction costs

• Multiscale data processing: get sparse structure from motion data, ...

• Gene expression data: each variable is a particular gene, sparse factors
highlight the action of a few genes, making interpretation easier

• Image processing: sparse factors involve only specific zones or objects in
the image.

4

Applications, previous works

Further details. . .

• Financial time series analysis, dimensionality reduction, hedging, etc
(Rebonato (1998),...)

• Multiscale data processing (Chennubhotla & Jepson (2001),...)

• Gene expression data (survey by Wall, Rechtsteiner & Rocha (2002), ...)

• Signal & image processing, vision, OCR, ECG (Johnstone & Lu (2003))

5

A: rank one approximation

Problem definition:

• Here, we focus on the first factor x, computed as the solution of:

min
x∈R

‖A − xxT‖F

where ‖X‖F is the Frobenius norm of X, i.e. ‖X‖F =
√

Tr(X2)

• In this case, we get an exact solution λmax(A)x1x
T
1 where λmax(X) is the

maximum eigenvalue and x1 is the associated eigenvector.

6

Variational formulation

We can rewrite the previous problem as:

max xTAx
subject to ‖x‖2 = 1.

(1)

This problem is easy, its solution is again λmax(A) at x1.

Here however, we want a little bit more. . . We look for a sparse solution and
solve instead:

max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,
(2)

where Card(x) denotes the cardinality (number of non-zero elements) of x.
This is non-convex and numerically hard.

7

Related literature

Previous work:

• Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

• A non-convex method called SCoTLASS by Jolliffe & Uddin (2003).
(Same problem formulation)

• Zou, Hastie & Tibshirani (2004): a regression based technique called
sparse PCA (S-PCA) (SPCA). Based on the fact that PCA can be written
as a regression-type (non convex) optimization problem, using LASSO
Tibshirani (1996) a l1 norm penalty.

Performance:

• These methods are either very suboptimal or nonconvex

• Regression: works for large scale examples

8

Semidefinite relaxation

9

Semidefinite relaxation

Start from:
max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

let X = xxT , and write everything in terms of the matrix X:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT .

This is strictly equivalent!

10

Semidefinite relaxation

Why? If X = xxT , then:

• in the objective: xTAx = Tr(AX)

• the constraint Card(x) ≤ k becomes Card(X) ≤ k2

• the constraint ‖x‖2 = 1 becomes Tr(X) = 1.

We can go a little further and replace X = xxT by an equivalent
X � 0, Rank(X) = 1, to get:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

(3)

Again, this is the same problem!

11

Semidefinite relaxation

Numerically, this is still hard:

• The Card(X) ≤ k2 is still non-convex

• So is the constraint Rank(X) = 1

but, we have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint
Tr(X) = 1.

To solve this problem efficiently, we need to relax the two non-convex
constraints above.

12

Semidefinite relaxation

Easy to do here. . .

If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. We transform the

non-convex problem into a convex relaxation:

• Replace Card(X) ≤ k2 by the weaker (but convex) 1
T |X|1 ≤ k

• Simply drop the rank constraint

Our problem becomes now:

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

(4)

This is a convex program and can be solved efficiently.

13

Semidefinite programming

In fact, we get a semidefinite program in the variable X ∈ Sn, which can
be solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd &
Tutuncu (1996).

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0.

• Polynomial complexity. . .

• Problem here: the program has O(n2) dense constraints on the matrix X
(sampling fails, . . .).

In practice, hard to solve problems with large n without additional work.

14

Singular Value Decomposition

Same technique works for Singular Value Decomposition instead of PCA.

• The variational formulation of SVD is here:

min ‖A − uvT‖F

subject to Card(u) ≤ k1

Card(v) ≤ k2,

in the variables (u, v) ∈ Rm × Rn where k1 ≤ m, k2 ≤ n are fixed.

• This can be relaxed as the following semidefinite program:

max Tr(ATX12)
subject to X � 0, Tr(Xii) = 1

1
T |Xii|1 ≤ ki, i = 1, 2

1
T |X12|1 ≤

√
k1k2,

in the variable X ∈ Sm+n with blocks Xij for i, j = 1, 2.

15

Large-scale problems

16

IP versus first-order methods

Interior Point methods for semidefinite/cone programs

• Produce a solution up to machine precision

• Compute a Newton step at each iteration: costly

In our case:

• We are not really interested in getting a solution up to machine precision

• The problems are too big to compute a Newton step. . .

Solution: use first-order techniques. . .

17

First-order methods

Basic model for the problem: black-box oracle producing

• the function value f(x)

• a subgradient g(x) ∈ ∂f(x)

f is here convex, non-smooth. Using only this info, we need O(1/ε2) steps
to find an ε-optimal solution.

However, if the function is convex with a Lipschitz-continuous gradient with
constant L then

• we need only O
(

√

L/ε
)

steps to get an ε-optimal solution.. . .

Smoothness brings a massive improvement in complexity. . .

18

Sparse PCA?

In our case, we look at a penalized version of the relaxed sparse PCA
problem:

max
U

Tr(AU) − 1
T |U |1 : U � 0, TrU = 1. (5)

Difference?

• If we can solve the dual, these two formulations are equivalent.

• Otherwise: scale A. . .

Problem here, the function to minimize is not smooth! Can we hope to do
better than the worst case complexity of O(1/ε2)?

Nesterov (2003): the answer is yes, exploits particular problem structure. . .

19

Sparse PCA?

We can rewrite our problem as a convex-concave game:

max
{U�0, Tr U=1}

Tr(AU) − 1
T |U |1 = min

X∈Q1

max
U∈Q2

〈X, U〉 + Tr(AU)

where

• Q1 = {X ∈ Sn : |Xij| ≤ 1, 1 ≤ i, j ≤ n}

• Q2 = {U ∈ Sn : TrU = 1}

20

Sparse PCA: complexity

Why a convex-concave game?

• Recent result by Nesterov (2003) shows that this specific structure can be
exploited to significantly reduce the complexity compared to the black-box
case

• All the algorithm steps can be worked out explicitly in this case

Result:

• Complexity down to O (1/ε) instead of O(1/ε2)!

21

Smooth minimization of non-smooth functions

What makes the algorithm in Nesterov (2003) work:

• First use the convex-concave game structure to regularize the function.
(Inf-convolution with strictly convex function, à la Moreau-Yosida. See for
example Lemaréchal & Sagastizábal (1997))

• Then use the optimal first-order minimization algorithm in Nesterov
(1983) to minimize the smooth approximation.

The method works particularly well if:

• All the steps in the regularization can be performed in closed-form

• All the auxiliary minimization sub-problems can be solved in closed-form

This is the case here. . .

22

Complexity

• Max number of iterations is given by

N = 4‖B‖1,2

√

D1D2

σ1σ2

· 1

ε
,

with

D1 = n2/2, σ1 = 1, D2 = log(n), σ2 = 1, ‖B‖1,2 = 1.

• Since each iteration costs O(n3) flops, the worst-case flop count to get a
ε-optimal solution is given by

O

(

n4
√

log n

ε

)

23

Robustness & sparse decomposition

24

Duality - robustness

We look at the penalized problem:

max. Tr(AU) − ρ1T |U |1
s.t. TrU = 1

U � 0

which can be written:

max
{Tr U=1, U�0}

min
{|Xij|≤ρ}

Tr((A + X)U)

or also:
min{|Xij|≤ρ} λmax(A + X)

This dual has a very natural interpretation. . .

25

Duality - robustness

min{|Xij|≤ρ} λmax(A + X)

• Worst-case robust maximum eigenvalue problem

• Uniformly distributed noise with magnitude ρ on the coefficients of the
covariance matrix A

We ask for sparsity, we get robustness at the same time. . .

26

Sparse PCA: stopping the decomposition

Standard PCA:

• Finite decomposition, will stop after at most n eigenvectors are found

• Orthogonal decomposition

However, use the robustness interpretation:

• Run the decomposition

• Test if maxij |Aij| ≤ ρ.

• If yes the matrix is undistinguishable from the noise, stop. . .

27

Numerical results

28

Numerical results

Compare with existing techniques. . .

• PITPROPS data from Zou et al. (2004)

• Compare regression technique and semidefinite relaxation (DSPCA)
detailed here

Test a sparse PCA on the PITPROPS data:

• Match the explained variance for each factor

• Minimize factor cardinality using regression & DSPCA

29

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
6

8

10

12

14

16

18

Number of principal components

C
u
m

u
la

ti
ve

ca
rd

in
al

it
y

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Number of principal components

C
u
m

u
la

ti
ve

ex
p
la

in
ed

va
ri
an

ce

Cumulative cardinality and cumulative explained variance for SPCA and
DSPCA as a function of the number of principal components: black line for
normal PCA, blue for SPCA and red for DSPCA (full for k1 = 5 and
dash-dot for k1 = 6).

30

Sparse factors. . .

Example:

• Use a covariance matrix from forward rates with maturity 1Y to 10Y

• Compute first factor normally (average of rates)

• Apply the DSPCA technique to get a sparse second factor

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

0

0.005

0.01

0.015

0.02

0.025

0.03

31

Second Factor

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
PCA: 16%
DSPCA: 14%

maturity

lo
ad

in
g
s

The second factor is much sparser than in the PCA case, explained variance
goes from 16% to 14%. . .

32

Cardinality versus k: model

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0). We then define the
matrix A as:

A = UTU + 15 vvT

here U ∈ S10 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

• Try k = 1, . . . , 10

• For each k, sample a 100 matrices A

• Plot average solution cardinality (and standard dev. as error bars)

33

Cardinality versus k

0 2 4 6 8 10 12
0

2

4

6

8

10

12

k

ca
rd

in
al

it
y

Figure 1: Cardinality versus k.

(k + 1) is a good predictor of the cardinality. . .

34

Sparsity versus # iterations

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 0) ∈ R20. We
then define the matrix A as:

A = UTU + 100 vvT

here U ∈ S20 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AU) − ρ1T |U |1
s.t. TrU = 1

U � 0

for ρ = 5.

35

Sparsity versus # iterations

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

PCA
DSPCA

i

lo
ad

in
g
s

Number of iterations: 10,000 to 100,000. Computing time: 12” to 110”.

36

Conclusion

• Semidefinite relaxation for sparse PCA

• Robustness & sparsity at the same time (cf. dual)

• Can solve large-scale problems with optimal first-order method by
Nesterov (2003)

37

References

Cadima, J. & Jolliffe, I. T. (1995), ‘Loadings and correlations in the
interpretation of principal components’, Journal of Applied Statistics
22, 203–214.

Chennubhotla, C. & Jepson, A. (2001), Sparse PCA: Extracting multi-scale
structure from data, in ‘International Conference on Computer Vision’,
IEEE, Vancouver, Canada, pp. 641–647.

Johnstone, I. & Lu, A. Y. (2003), Sparse principal components analysis, in
‘FDA Workshop’, Gainesville.

Jolliffe, I. T. & Uddin, M. (2003), ‘A modified principal component
technique based on the lasso’, Journal of Computational and Graphical
Statistics 12, 531–547.

Lemaréchal, C. & Sagastizábal, C. (1997), ‘Practical aspects of the

38

Moreau-Yosida regularization: theoretical preliminaries’, SIAM Journal
on Optimization 7(2), 367–385.

Nesterov, Y. (1983), ‘A method of solving a convex programming problem
with convergence rate O(1/k2)’, Soviet Math. Dokl. 27(2), 372–376.

Nesterov, Y. (2003), ‘Smooth minimization of nonsmooth functions’, CORE
discussion paper 2003/12 (Accepted by Math. Prog.) .

Rebonato, R. (1998), Interest-Rate Options Models, Financial Engineering,
Wiley.

Sturm, J. F. (1999), ‘Using sedumi 1.0x, a matlab toolbox for optimization
over symmetric cones’, Optimization Methods and Software
11, 625–653.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’,
Journal of the Royal statistical society, series B 58(267-288).

39

Toh, K. C., Todd, M. J. & Tutuncu, R. H. (1996), Sdpt3 – a matlab
software package for semidefinite programming, Technical report, School
of Operations Research and Industrial Engineering, Cornell University.

Wall, M. E., Rechtsteiner, A. & Rocha, L. M. (2002), Singular value
decomposition and principal component analysis, Technical Report
ArXiv physics/0208101, Los Alamos National Laboratory.

Zou, H., Hastie, T. & Tibshirani, R. (2004), ‘Sparse principal component
analysis’, Technical report, statistics department, Stanford University .

40

