An Optimal Affine Invariant Smooth Minimization Algorithm.

Alexandre d'Aspremont, CNRS \& École Polytechnique.

Joint work with Martin Jaggi. Support from ERC SIPA.

A Basic Convex Problem

Solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in Q,
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

- Here, $f(x)$ is convex, smooth.
- Assume $Q \subset \mathbb{R}^{n}$ is compact, convex and simple.

Complexity

Newton's method. At each iteration, take a step in the direction

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

Assume that

- the function $f(x)$ is self-concordant, i.e. $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$,
- the set Q has a self concordant barrier $g(x)$.
[Nesterov and Nemirovskii, 1994] Newton's method produces an ϵ optimal solution to the barrier problem

$$
\min _{x} h(x) \triangleq f(x)+t g(x)
$$

for some $t>0$, in at most

$$
\frac{20-8 \alpha}{\alpha \beta(1-2 \alpha)^{2}}\left(h\left(x_{0}\right)-h^{*}\right)+\log _{2} \log _{2}(1 / \epsilon) \text { iterations }
$$

where $0<\alpha<0.5$ and $0<\beta<1$ are line search parameters.

Complexity

Newton's method. Basically

$$
\text { \# Newton iterations } \leq 375\left(h\left(x_{0}\right)-h^{*}\right)+6
$$

- Empirically valid, up to constants.
- Independent from the dimension n .
- Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

- Form the Hessian.
- Solve the Newton (or KKT) system $\nabla^{2} f(x) \Delta x_{\mathrm{nt}}=-\nabla f(x)$.

Affine Invariance

Set $x=A y$ where $A \in \mathbb{R}^{n \times n}$ is nonsingular

minimize	$f(x)$			
subject to	$x \in Q$,	\quad becomes \quad	minimize	$\hat{f}(y)$
:---	:---			
subject to	$y \in \hat{Q}$,			

in the variable $y \in \mathbb{R}^{n}$, where $\hat{f}(y) \triangleq f(A y)$ and $\hat{Q} \triangleq A^{-1} Q$.

- Identical Newton steps, with $\Delta x_{\mathrm{nt}}=A \Delta y_{\mathrm{nt}}$
- Identical complexity bounds $375\left(h\left(x_{0}\right)-h^{*}\right)+6$ since $h^{*}=\hat{h}^{*}$

Newton's method is invariant w.r.t. an affine change of coordinates. The same is true for its complexity analysis.

Large-Scale Problems

The challenge now is scaling.
"Real men/women solve optimization problems with terabytes of data."
(Michael Jordan, Paris, 2013.)

- Newton's method (and derivatives) solve all reasonably large problems.
- Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?

Frank-Wolfe

Conditional gradient. At each iteration, solve

$$
\begin{array}{ll}
\text { minimize } & \left\langle\nabla f\left(x_{k}\right), u\right\rangle \\
\text { subject to } & u \in Q
\end{array}
$$

in $u \in \mathbb{R}^{n}$. Define the curvature

$$
C_{f} \triangleq \sup _{\substack{s, x \in \mathcal{M}, \alpha \in[0,1], y=x+\alpha(s-x)}} \frac{1}{\alpha^{2}}(f(y)-f(x)-\langle y-x, \nabla f(x)\rangle)
$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$
N_{\max }=\frac{4 C_{f}}{\epsilon}
$$

iterations.

- C_{f} is affine invariant but the bound is suboptimal in ϵ.
- If $f(x)$ has a Lipschitz gradient, the lower bound is $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Optimal First-Order Methods

Smooth Minimization algorithm in [Nesterov, 1983] to solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in Q,
\end{array}
$$

- Choose a norm $\|\cdot\| . \nabla f(x)$ Lipschitz with constant L w.r.t. $\|\cdot\|$

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L\|y-x\|^{2}, \quad x, y \in Q
$$

- Choose a prox function $d(x)$ for the set Q, with

$$
\frac{\sigma}{2}\left\|x-x_{0}\right\|^{2} \leq d(x)
$$

for some $\sigma>0$.

Optimal First-Order Methods

Smooth minimization algorithm [Nesterov, 2005]

Input: x_{0}, the prox center of the set Q.
1: for $k=0, \ldots, N$ do
2: \quad Compute $\nabla f\left(x_{k}\right)$.
3: \quad Compute $y_{k}=\operatorname{argmin}_{y \in Q}\left\{\left\langle\nabla f\left(x_{k}\right), y-x_{k}\right\rangle+\frac{1}{2} L\left\|y-x_{k}\right\|^{2}\right\}$.
4: Compute $z_{k}=\operatorname{argmin}_{x \in Q}\left\{\sum_{i=0}^{k} \alpha_{i}\left[f\left(x_{i}\right)+\left\langle\nabla f\left(x_{i}\right), x-x_{i}\right\rangle\right]+\frac{L}{\sigma} d(x)\right\}$.
5: \quad Set $x_{k+1}=\tau_{k} z_{k}+\left(1-\tau_{k}\right) y_{k}$.
6: end for
Output: $x_{N}, y_{N} \in Q$.
Produces an ϵ-solution in at most

$$
\sqrt{\frac{8 L}{\epsilon} \frac{d\left(x^{\star}\right)}{\sigma}}
$$

iterations. Optimal in ϵ, but not affine invariant.
Heavily used: TFOCS, NESTA, Structured ℓ_{1}, \ldots

Optimal First-Order Methods

Choosing norm and prox can have a big impact. Consider the following matrix game problem

$$
\min _{\left\{\mathbf{1}^{T} x=1, x \geq 0\right\}} \max _{\left\{\mathbf{1}^{T} x=1, x \geq 0\right\}} x^{T} A y
$$

- Euclidean prox. pick $\|\cdot\|_{2}$ and $d(x)=\|x\|_{2}^{2} / 2$, after regularization, the complexity bound is

$$
N_{\max }=\frac{4\|A\|_{2}}{N+1}
$$

- Entropy prox. pick $\|\cdot\|_{1}$ and $d(x)=\sum_{i} x_{i} \log x_{i}+\log n$, the bound becomes

$$
N_{\max }=\frac{4 \sqrt{\log n \log m} \max _{i j}\left|A_{i j}\right|}{N+1}
$$

which can be significantly smaller.

Speedup is roughly \sqrt{n} when A is Bernoulli. . .

Choosing the norm

Invariance means $\|\cdot\|$ and $d(x)$ constructed using only f and the set Q.
Minkovski gauge. Assume Q is centrally symmetric with non-empty interior.
The Minkowski gauge of Q is a norm

$$
\|x\|_{Q} \triangleq \inf \{\lambda \geq 0: x \in \lambda Q\}
$$

Lemma

Affine invariance. The function $f(x)$ has Lipschitz continuous gradient with respect to the norm $\|\cdot\|_{Q}$ with constant $L_{Q}>0$, i.e.

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L_{Q}\|y-x\|_{Q}^{2}, \quad x, y \in Q
$$

if and only if the function $f(A w)$ has Lipschitz continuous gradient with respect to the norm $\|\cdot\|_{A^{-1} Q}$ with the same constant L_{Q}.

A similar result holds for strong convexity. Note that $\|x\|_{Q}^{*}=\|x\|_{Q^{\circ}}$.

Choosing the prox.

How do we choose the prox.? Start with two definitions.

Definition

Banach-Mazur distance. Suppose $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ are two norms on a space E, the distortion $d\left(\|\cdot\|_{X},\|\cdot\|_{Y}\right)$ is the

$$
\text { smallest product } a b>0 \text { such that } \frac{1}{b}\|x\|_{Y} \leq\|x\|_{X} \leq a\|x\|_{Y}, \text { for all } x \in E .
$$

$\log \left(d\left(\|\cdot\|_{X},\|\cdot\|_{Y}\right)\right)$ is the Banach-Mazur distance between X and Y.

Choosing the prox.

Regularity constant. Regularity constant of $(E,\|\cdot\|)$, defined in [Juditsky and Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach $(E,\|\|$.$) . The smallest constant \Delta>0$ for which there exists a smooth norm $p(x)$ such that

- The prox $p(x)^{2} / 2$ has a Lipschitz continuous gradient w.r.t. the norm $p(x)$, with constant μ where $1 \leq \mu \leq \Delta$,
- The norm $p(x)$ satisfies

$$
\|x\| \leq p(x) \leq\|x\|\left(\frac{\Delta}{\mu}\right)^{1 / 2}, \quad \text { for all } x \in E
$$

i.e. $d(p(x),\|\cdot\|) \leq \sqrt{\Delta / \mu}$.

Complexity

Using the algorithm in [Nesterov, 2005] to solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in Q .
\end{array}
$$

Proposition [d'Aspremont and Jaggi, 2013]

Affine invariant complexity bounds. Suppose $f(x)$ has a Lipschitz continuous gradient with constant L_{Q} with respect to the norm $\|\cdot\|_{Q}$ and the space $\left(\mathbb{R}^{n},\|\cdot\|_{Q}^{*}\right)$ is D_{Q}-regular, then the smooth algorithm in [Nesterov, 2005] will produce an ϵ solution in at most

$$
N_{\max }=\sqrt{\frac{4 L_{Q} D_{Q}}{\epsilon}}
$$

iterations. Furthermore, the constants L_{Q} and D_{Q} are affine invariant.

We can show $C_{f} \leq L_{Q} D_{Q}$, but it is not clear if the bound is attained. . .

Complexity

A few more facts about L_{Q} and $D_{Q} \ldots$

Suppose we scale $Q \rightarrow \alpha Q$, with $\alpha>0$,

- the Lipschitz constant $L_{\alpha Q}$ satisfies $\alpha^{2} L_{Q} \leq L_{\alpha Q}$.
- the smoothness term D_{Q} remains unchanged.
- Given our choice of norm (hence L_{Q}), $L_{Q} D_{Q}$ is the best possible bound.

Also, from [Juditsky and Nemirovski, 2008], in the dual space

- The regularity constant decreases on a subspace F, i.e. $D_{Q \cap F} \leq D_{Q}$.
- From D regular spaces $\left(E_{i},\|\cdot\|\right)$, we can construct a $2 D+2$ regular product space $E \times \ldots \times E_{m}$.

Complexity, ℓ_{1} example

Minimizing a smooth convex function over the unit simplex

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & \mathbf{1}^{T} x \leq 1, x \geq 0
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

- Choosing $\|\cdot\|_{1}$ as the norm and $d(x)=\log n+\sum_{i=1}^{n} x_{i} \log x_{i}$ as the prox function, complexity bounded by

$$
\sqrt{8 \frac{L_{1} \log n}{\epsilon}}
$$

(note L_{1} is lowest Lipschitz constant among all ℓ_{p} norm choices.)

- Symmetrizing the simplex into the ℓ_{1} ball. The space $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ is $2 \log n$ regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen here is $\|\cdot\|_{\alpha}^{2} / 2$, with $\alpha=2 \log n /(2 \log n-1)$ and our complexity bound is

$$
\sqrt{16 \frac{L_{1} \log n}{\epsilon}}
$$

In practice

Easy and hard problems.

- The parameter L_{Q} satisfies

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L_{Q}\|y-x\|_{Q}^{2}, \quad x, y \in Q,
$$

On easy problems, $\|\cdot\|$ is large in directions where ∇f is large, i.e. the sublevel sets of $f(x)$ and Q are aligned.

- For l_{p} spaces for $p \in[2, \infty]$, the unit balls B_{p} have low regularity constants,

$$
D_{B_{p}} \leq \min \{p-1,2 \log n\}
$$

while $D_{B_{1}}=n$ (worst case). By duality, problems over unit balls B_{q} for $q \in[1,2]$ are easier.

- Optimizing over cubes is harder.

Conclusion

- Affine invariant complexity bound for the optimal algorithm [Nesterov, 1983]

$$
N_{\max }=\sqrt{\frac{4 L_{Q} D_{Q}}{\epsilon}}
$$

- Matches best known bounds on key examples.

Open problems.

- Prove optimality of product $L_{Q} D_{Q}$. Matches curvature C_{f} ?
- Symmetrize non-symmetric sets Q.
- Systematic, tractable procedure for smoothing Q.

References

Alexandre d'Aspremont and Martin Jaggi. An optimal affine invariant smooth minimization algorithm. arXiv preprint arXiv:1301.0465, 2013. A. Juditsky and A.S. Nemirovski. Large deviations of vector-valued martingales in 2-smooth normed spaces. arXiv preprint arXiv:0809.0813, 2008.
Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2): 372-376, 1983.
Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005.
Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.

