Optimisation et simulation numérique

Lecture 2

Duality

Outline

- Lagrange dual problem
- weak and strong duality
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbb{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is linear in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave
lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$
- if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$:

$$
\|x\|-y^{T} x=t\left(\|u\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets

dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\operatorname{diag}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-\mathbf{1}^{T} \nu$ if $W+\boldsymbol{\operatorname { d i a g }}(\nu) \succeq 0$
example: $\nu=-\lambda_{\min }(W) 1$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

The dual problem

Lagrange dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ, ν are dual feasible if $\lambda \succeq 0,(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit example: standard form LP and its dual (page 7)

$$
\begin{array}{llll}
\text { minimize } & c^{T} x & \text { maximize } & -b^{T} \nu \\
\text { subject to } & A x=b & \text { subject to } & A^{T} \nu+c \succeq 0 \\
& x \succeq 0 & &
\end{array}
$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\mathbf{1}^{T} \nu \\
\text { subject to } & W+\operatorname{diag}(\nu) \succeq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 9
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: e.g., can replace $\operatorname{int} \mathcal{D}$ with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Feasibility problems

feasibility problem \mathbf{A} in $x \in \mathbb{R}^{n}$.

$$
f_{i}(x)<0, \quad i=1, \ldots, m, \quad h_{i}(x)=0, \quad i=1, \ldots, p
$$

feasibility problem \mathbf{B} in $\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}$.

$$
\lambda \succeq 0, \quad \lambda \neq 0, \quad g(\lambda, \nu) \geq 0
$$

where $g(\lambda, \nu)=\inf _{x}\left(\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)$

- feasibility problem B is convex (g is concave), even if problem A is not
- A and B are always weak alternatives: at most one is feasible proof: assume \tilde{x} satisfies A, λ, ν satisfy B

$$
0 \leq g(\lambda, \nu) \leq \sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x})<0
$$

- A and B are strong alternatives if exactly one of the two is feasible (can prove infeasibility of A by producing solution of B and vice-versa).

Inequality form LP

primal problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \preceq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- from Slater's condition: $p^{\star}=d^{\star}$ if $A \tilde{x} \prec b$ for some \tilde{x}
- in fact, $p^{\star}=d^{\star}$ always

A nonconvex problem with strong duality

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A x+2 b^{T} x \\
\text { subject to } & x^{T} x \leq 1
\end{array}
$$

nonconvex if $A \nsucceq 0$
dual function: $g(\lambda)=\inf _{x}\left(x^{T}(A+\lambda I) x+2 b^{T} x-\lambda\right)$

- unbounded below if $A+\lambda I \nsucceq 0$ or if $A+\lambda I \succeq 0$ and $b \notin \mathcal{R}(A+\lambda I)$
- minimized by $x=-(A+\lambda I)^{\dagger} b$ otherwise: $g(\lambda)=-b^{T}(A+\lambda I)^{\dagger} b-\lambda$
dual problem and equivalent SDP:

$$
\begin{array}{lll}
\text { maximize } & -b^{T}(A+\lambda I)^{\dagger} b-\lambda & \text { maximize }
\end{array}-t-\lambda ~ 子 ~\left[\begin{array}{cc}
A+\lambda I & b \\
\text { subject to } & A+\lambda I \succeq 0
\end{array} \text { subject to }\left[\begin{array}{cc}
b^{T} & t
\end{array}\right] \succeq 0\right.
$$

strong duality although primal problem is not convex (not easy to show)

Complementary slackness

Assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

hence, the two inequalities hold with equality
■ x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$

- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. Primal feasibility: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. Dual feasibility: $\lambda \succeq 0$
3. Complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. Gradient of Lagrangian with respect to x vanishes (first order condition):

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

If $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$
If Slater's condition is satisfied, x is optimal if and only if there exist λ, ν that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem

Summary:

- When strong duality holds, the KKT conditions are necessary conditions for optimality
- If the problem is convex, they are also sufficient
example: water-filling (assume $\alpha_{i}>0$)

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

x is optimal iff $x \succeq 0, \mathbf{1}^{T} x=1$, and there exist $\lambda \in \mathbb{R}^{n}, \nu \in \mathbb{R}$ such that

$$
\lambda \succeq 0, \quad \lambda_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\lambda_{i}=\nu
$$

- if $\nu<1 / \alpha_{i}: \lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$
- if $\nu \geq 1 / \alpha_{i}: \lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$
- determine ν from $\mathbf{1}^{T} x=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(x) & \text { maximize } & g(\lambda, \nu) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m & \text { subject to } \quad \lambda \succeq 0 \\
& h_{i}(x)=0, \quad i=1, \ldots, p & &
\end{array}
$$

perturbed problem and its dual

$$
\begin{array}{lll}
\text { min. } & f_{0}(x) & \max \\
\text { s.t. } & f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m & \text { s.t. } \quad \lambda \succeq 0 \\
& h_{i}(x)=v_{i}, \quad i=1, \ldots, p &
\end{array}
$$

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^{\star}(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Perturbation and sensitivity analysis

global sensitivity result Strong duality holds for unperturbed problem and $\lambda^{\star}, \nu^{\star}$ are dual optimal for unperturbed problem. Apply weak duality to perturbed problem:

$$
\begin{aligned}
p^{\star}(u, v) & \geq g\left(\lambda^{\star}, \nu^{\star}\right)-u^{T} \lambda^{\star}-v^{T} \nu^{\star} \\
& =p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} \nu^{\star}
\end{aligned}
$$

local sensitivity: if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

$$
\text { minimize } \quad f_{0}(A x+b)
$$

- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless
reformulated problem and its dual

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(y) & \text { maximize }
\end{array} b^{T} \nu-f_{0}^{*}(\nu)
$$

dual function follows from

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(f_{0}(y)-\nu^{T} y+\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}-f_{0}^{*}(\nu)+b^{T} \nu & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

norm approximation problem: minimize $\|A x-b\|$

$$
\begin{aligned}
& \text { minimize }\|y\| \\
& \text { subject to } y=A x-b
\end{aligned}
$$

can look up conjugate of $\|\cdot\|$, or derive dual directly

$$
\begin{aligned}
g(\nu) & =\inf _{x, y}\left(\|y\|+\nu^{T} y-\nu^{T} A x+b^{T} \nu\right) \\
& = \begin{cases}b^{T} \nu+\inf _{y}\left(\|y\|+\nu^{T} y\right) & A^{T} \nu=0 \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}b^{T} \nu & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

(see page 6)
dual of norm approximation problem

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \nu \\
\text { subject to } & A^{T} \nu=0, \quad\|\nu\|_{*} \leq 1
\end{array}
$$

Implicit constraints

LP with box constraints: primal and dual problem

$$
\begin{array}{llll}
\text { minimize } & c^{T} x & \text { maximize } & -b^{T} \nu-\mathbf{1}^{T} \lambda_{1}-\mathbf{1}^{T} \lambda_{2} \\
\text { subject to } & A x=b & \text { subject to } & c+A^{T} \nu+\lambda_{1}-\lambda_{2}=0 \\
& -\mathbf{1} \preceq x \preceq \mathbf{1} & & \lambda_{1} \succeq 0, \quad \lambda_{2} \succeq 0
\end{array}
$$

reformulation with box constraints made implicit

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x)= \begin{cases}c^{T} x & -\mathbf{1} \preceq x \preceq \mathbf{1} \\
\infty & \text { otherwise }\end{cases} \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
\begin{aligned}
g(\nu) & =\inf _{-1 \preceq x \preceq 1}\left(c^{T} x+\nu^{T}(A x-b)\right) \\
& =-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}
\end{aligned}
$$

dual problem: maximize $-b^{T} \nu-\left\|A^{T} \nu+c\right\|_{1}$

Problems with generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\preceq_{K_{i}}$ is generalized inequality on $\mathbb{R}^{k_{i}}$
definitions are parallel to scalar case:

- Lagrange multiplier for $f_{i}(x) \preceq_{K_{i}} 0$ is vector $\lambda_{i} \in \mathbb{R}^{k_{i}}$
- Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, is defined as

$$
L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

■ dual function $g: \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, is defined as

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)=\inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \cdots, \lambda_{m}, \nu\right)
$$

lower bound property: if $\lambda_{i} \succeq_{K_{i}^{*}} 0$, then $g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \leq p^{\star}$ proof: if \tilde{x} is feasible and $\lambda \succeq_{K_{i}^{*}} 0$, then

$$
\begin{aligned}
f_{0}(\tilde{x}) & \geq f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \\
& \geq \inf _{x \in \mathcal{D}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
& =g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)
\end{aligned}
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right)$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g\left(\lambda_{1}, \ldots, \lambda_{m}, \nu\right) \\
\text { subject to } & \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

- weak duality: $p^{\star} \geq d^{\star}$ always
- strong duality: $p^{\star}=d^{\star}$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $\left(F_{i}, G \in \mathbf{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq G
\end{array}
$$

- Lagrange multiplier is matrix $Z \in \mathbf{S}^{k}$
- Lagrangian $L(x, Z)=c^{T} x+\operatorname{Tr}\left(Z\left(x_{1} F_{1}+\cdots+x_{n} F_{n}-G\right)\right)$
- dual function

$$
g(Z)=\inf _{x} L(x, Z)= \begin{cases}-\operatorname{Tr}(G Z) & \operatorname{Tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\ -\infty & \text { otherwise }\end{cases}
$$

dual SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{Tr}(G Z) \\
\text { subject to } & Z \succeq 0, \quad \operatorname{Tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n
\end{array}
$$

$p^{\star}=d^{\star}$ if primal SDP is strictly feasible ($\exists x$ with $\left.x_{1} F_{1}+\cdots+x_{n} F_{n} \prec G\right)$

Duality: SOCP example

Let's consider the following Second Order Cone Program (SOCP):

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m,
\end{array}
$$

with variable $x \in \mathbb{R}^{n}$. Let's show that the dual can be expressed as

$$
\begin{array}{ll}
\underset{ }{\operatorname{maximize}} & \sum_{i=1}^{m}\left(b_{i}^{T} u_{i}+d_{i} v_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(A_{i}^{T} u_{i}+c_{i} v_{i}\right)+f=0 \\
& \left\|u_{i}\right\|_{2} \leq v_{i}, \quad i=1, \ldots, m,
\end{array}
$$

with variables $u_{i} \in \mathbb{R}^{n_{i}}, v_{i} \in \mathbb{R}, i=1, \ldots, m$ and problem data given by $f \in \mathbb{R}^{n}$, $A_{i} \in \mathbb{R}^{n_{i} \times n}, b_{i} \in \mathbb{R}^{n_{i}}, c_{i} \in \mathbb{R}$ and $d_{i} \in \mathbb{R}$.

Duality: SOCP

We can derive the dual in the following two ways:

1. Introduce new variables $y_{i} \in \mathbb{R}^{n_{i}}$ and $t_{i} \in \mathbb{R}$ and equalities $y_{i}=A_{i} x+b_{i}$, $t_{i}=c_{i}^{T} x+d_{i}$, and derive the Lagrange dual.
2. Start from the conic formulation of the SOCP and use the conic dual. Use the fact that the second-order cone is self-dual:

$$
t \geq\|x\| \Longleftrightarrow t v+x^{T} y \geq 0, \text { for all } v, y \text { such that } v \geq\|y\|
$$

The condition $x^{T} y \leq t v$ is a simple Cauchy-Schwarz inequality

Duality: SOCP

We introduce new variables, and write the problem as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \left\|y_{i}\right\|_{2} \leq t_{i}, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, t_{i}=c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

The Lagrangian is

$$
\begin{aligned}
& L(x, y, t, \lambda, \nu, \mu) \\
& \qquad=c^{T} x+\sum_{i=1}^{m} \lambda_{i}\left(\left\|y_{i}\right\|_{2}-t_{i}\right)+\sum_{i=1}^{m} \nu_{i}^{T}\left(y_{i}-A_{i} x-b_{i}\right)+\sum_{i=1}^{m} \mu_{i}\left(t_{i}-c_{i}^{T} x-d_{i}\right) \\
& =\quad\left(c-\sum_{i=1}^{m} A_{i}^{T} \nu_{i}-\sum_{i=1}^{m} \mu_{i} c_{i}\right)^{T} x+\sum_{i=1}^{m}\left(\lambda_{i}\left\|y_{i}\right\|_{2}+\nu_{i}^{T} y_{i}\right)+\sum_{i=1}^{m}\left(-\lambda_{i}+\mu_{i}\right) t_{i} \\
& \quad-\sum_{i=1}^{n}\left(b_{i}^{T} \nu_{i}+d_{i} \mu_{i}\right) .
\end{aligned}
$$

Duality: SOCP

The minimum over x is bounded below if and only if

$$
\sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\mu_{i} c_{i}\right)=c .
$$

To minimize over y_{i}, we note that

$$
\inf _{y_{i}}\left(\lambda_{i}\left\|y_{i}\right\|_{2}+\nu_{i}^{T} y_{i}\right)= \begin{cases}0 & \left\|\nu_{i}\right\|_{2} \leq \lambda_{i} \\ -\infty & \text { otherwise } .\end{cases}
$$

The minimum over t_{i} is bounded below if and only if $\lambda_{i}=\mu_{i}$.

Duality: SOCP

The Lagrange dual function is

$$
g(\lambda, \nu, \mu)= \begin{cases}-\sum_{i=1}^{n}\left(b_{i}^{T} \nu_{i}+d_{i} \mu_{i}\right) & \text { if } \sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\mu_{i} c_{i}\right)=c \\ & \left\|\nu_{i}\right\|_{2} \leq \lambda_{i}, \quad \mu=\lambda \\ -\infty & \text { otherwise }\end{cases}
$$

which leads to the dual problem

$$
\begin{array}{ll}
\text { maximize } & -\sum_{i=1}^{n}\left(b_{i}^{T} \nu_{i}+d_{i} \lambda_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\lambda_{i} c_{i}\right)=c \\
& \left\|\nu_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m .
\end{array}
$$

which is again an SOCP

Duality: SOCP

We can also express the SOCP as a conic form problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & -\left(c_{i}^{T} x+d_{i}, A_{i} x+b_{i}\right) \preceq_{K_{i}} 0, \quad i=1, \ldots, m .
\end{array}
$$

The Lagrangian is given by:

$$
\begin{aligned}
L\left(x, u_{i}, v_{i}\right) & =c^{T} x-\sum_{i}\left(A_{i} x+b_{i}\right)^{T} u_{i}-\sum_{i}\left(c_{i}^{T} x+d_{i}\right) v_{i} \\
& =\left(c-\sum_{i}\left(A_{i}^{T} u_{i}+c_{i} v_{i}\right)\right)^{T} x-\sum_{i}\left(b_{i}^{T} u_{i}+d_{i} v_{i}\right)
\end{aligned}
$$

for $\left(v_{i}, u_{i}\right) \succeq_{K_{i}^{*}} 0$ (which is also $\left.v_{i} \geq\left\|u_{i}\right\|\right)$

Duality: SOCP

With

$$
L\left(x, u_{i}, v_{i}\right)=\left(c-\sum_{i}\left(A_{i}^{T} u_{i}+c_{i} v_{i}\right)\right)^{T} x-\sum_{i}\left(b_{i}^{T} u_{i}+d_{i} v_{i}\right)
$$

the dual function is given by:

$$
g(\lambda, \nu, \mu)= \begin{cases}-\sum_{i=1}^{n}\left(b_{i}^{T} \nu_{i}+d_{i} \mu_{i}\right) & \text { if } \sum_{i=1}^{m}\left(A_{i}^{T} \nu_{i}+\mu_{i} c_{i}\right)=c \\ -\infty & \text { otherwise }\end{cases}
$$

The conic dual is then:

$$
\begin{array}{ll}
\operatorname{maximize} & -\sum_{i=1}^{n}\left(b_{i}^{T} u_{i}+d_{i} v_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(A_{i}^{T} u_{i}+v_{i} c_{i}\right)=c \\
& \left(v_{i}, u_{i}\right) \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

Proof

Convex problem \& constraint qualification

Strong duality

Slater's constraint qualification

Convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

The problem satisfies Slater's condition if it is strictly feasible, i.e.,

$$
\exists x \in \operatorname{int} \mathcal{D}: \quad f_{i}(x)<0, \quad i=1, \ldots, m, \quad A x=b
$$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- there exist many other types of constraint qualifications

KKT conditions for convex problem

If $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{\nu})$ with $(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$ feasible.

If Slater's condition is satisfied, x is optimal if and only if there exist λ, ν that satisfy KKT conditions

- Slater implies strong duality (more on this now), and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem

Summary

- For a convex problem satisfying constraint qualification, the KKT conditions are necessary \& sufficient conditions for optimality.

Unconstrained minimization

Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

$$
\operatorname{minimize} \quad f(x)
$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^{\star}=\inf _{x} f(x)$ is attained (and finite)

unconstrained minimization methods

- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S=\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{dom} f=\mathbb{R}^{n}$
- true if $f(x) \rightarrow \infty$ as $x \rightarrow \mathbf{b d} \operatorname{dom} f$
examples of differentiable functions with closed sublevel sets:

$$
f(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)\right), \quad f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

Strong convexity and implications

f is strongly convex on S if there exists an $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I \quad \text { for all } x \in S
$$

implications

- for $x, y \in S$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|x-y\|_{2}^{2}
$$

hence, S is bounded

- $p^{\star}>-\infty$, and for $x \in S$,

$$
f(x)-p^{\star} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

useful as stopping criterion (if you know m)

Descent methods

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \quad \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x, x:=x+t \Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f\left(x^{+}\right)<f(x)$ implies $\nabla f(x)^{T} \Delta x<0$ (i.e., Δx is a descent direction)

General descent method.
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t=\operatorname{argmin}_{t>0} f(x+t \Delta x)$
backtracking line search (with parameters $\alpha \in(0,1 / 2), \beta \in(0,1)$)

- starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- graphical interpretation: backtrack until $t \leq t_{0}$

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$
given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search
a problem in \mathbb{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

interpretation: for small $v, f(x+v) \approx f(x)+\nabla f(x)^{T} v$; direction $\Delta x_{\text {nsd }}$ is unit-norm step with most negative directional derivative (unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

satisfies $\nabla f(x)^{T} \Delta_{\text {sd }}=-\|\nabla f(x)\|_{*}^{2}$
steepest descent method

- general descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent
- Euclidean norm: $\Delta x_{\text {sd }}=-\nabla f(x)$
- quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}\left(P \in \mathbf{S}_{++}^{n}\right): \Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)$
- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\left(\partial f(x) / \partial x_{i}\right) e_{i}$, where $\left|\partial f(x) / \partial x_{i}\right|=\|\nabla f(x)\|_{\infty}$
unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_{1}-norm:

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}

properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x) .
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.
affine invariant, i.e., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
y^{(k)}=T^{-1} x^{(k)}
$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant $L>0$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

(L measures how well f can be approximated by a quadratic function) outline: there exist constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\|\nabla f(x)\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Classical convergence analysis

damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ

■ if $p^{\star}>-\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{\star}\right) / \gamma$ iterations
quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$

- all iterations use step size $t=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{l}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
$$

Classical convergence analysis

conclusion: number of iterations until $f(x)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)

Examples

example in \mathbb{R}^{2} (page 50)

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbb{R}^{100} (page 51)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbb{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is
convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Equality Constraints

Equality Constraints

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{Rank} A=p$
- we assume p^{\star} is finite and attained
optimality conditions: x^{\star} is optimal iff there exists a ν^{\star} such that

$$
\nabla f\left(x^{\star}\right)+A^{T} \nu^{\star}=0, \quad A x^{\star}=b
$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & A x=b
\end{array}
$$

optimality condition:

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$
A x=0, \quad x \neq 0 \quad \Longrightarrow \quad x^{T} P x>0
$$

- equivalent condition for nonsingularity: $P+A^{T} A \succ 0$

Eliminating equality constraints

represent solution of $\{x \mid A x=b\}$ as

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbb{R}^{n-p}\right\}
$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbb{R}^{n \times(n-p)}$ is nullspace of $A(\boldsymbol{\operatorname { R a n k }} F=n-p$ and $A F=0)$

reduced or eliminated problem

$$
\operatorname{minimize} \quad f(F z+\hat{x})
$$

- an unconstrained problem with variable $z \in \mathbb{R}^{n-p}$
- from solution z^{\star}, obtain x^{\star} and ν^{\star} as

$$
x^{\star}=F z^{\star}+\hat{x}, \quad \nu^{\star}=-\left(A A^{T}\right)^{-1} A \nabla f\left(x^{\star}\right)
$$

example: optimal allocation with resource constraint

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \\
\text { subject to } & x_{1}+x_{2}+\cdots+x_{n}=b
\end{array}
$$

eliminate $x_{n}=b-x_{1}-\cdots-x_{n-1}$, i.e., choose

$$
\hat{x}=b e_{n}, \quad F=\left[\begin{array}{c}
I \\
-\mathbf{1}^{T}
\end{array}\right] \in \mathbb{R}^{n \times(n-1)}
$$

reduced problem:

$$
\operatorname{minimize} f_{1}\left(x_{1}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)+f_{n}\left(b-x_{1}-\cdots-x_{n-1}\right)
$$

(variables x_{1}, \ldots, x_{n-1})

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right]
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v)

$$
\begin{array}{ll}
\operatorname{minimize} & \widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+(1 / 2) v^{T} \nabla^{2} f(x) v \\
\text { subject to } & A(x+v)=b
\end{array}
$$

- equations follow from linearizing optimality conditions

$$
\nabla f\left(x+\Delta x_{\mathrm{nt}}\right)+A^{T} w=0, \quad A\left(x+\Delta x_{\mathrm{nt}}\right)=b
$$

Newton decrement

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

properties

- gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{A y=b} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- directional derivative in Newton direction:

$$
\left.\frac{d}{d t} f\left(x+t \Delta x_{\mathrm{nt}}\right)\right|_{t=0}=-\lambda(x)^{2}
$$

- in general, $\lambda(x) \neq\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with $A x=b$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement $\Delta x_{\mathrm{nt}}, \lambda(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- a feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant

Newton step at infeasible points

2nd interpretation of page 72 extends to infeasible x (i.e., $A x \neq b$)
linearizing optimality conditions at infeasible x (with $x \in \operatorname{dom} f$) gives

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \tag{1}\\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x) \\
A x-b
\end{array}\right]
$$

primal-dual interpretation

- write optimality condition as $r(y)=0$, where

$$
y=(x, \nu), \quad r(y)=\left(\nabla f(x)+A^{T} \nu, A x-b\right)
$$

- linearizing $r(y)=0$ gives $r(y+\Delta y) \approx r(y)+\operatorname{Dr}(y) \Delta y=0$:

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
\Delta \nu_{\mathrm{nt}}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+A^{T} \nu \\
A x-b
\end{array}\right]
$$

same as (1) with $w=\nu+\Delta \nu_{\mathrm{nt}}$

Solving KKT systems

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

solution methods

- LDL $^{\top}$ factorization
- elimination (if H nonsingular)

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

- elimination with singular H : write as

$$
\left[\begin{array}{cc}
H+A^{T} Q A & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{c}
g+A^{T} Q h \\
h
\end{array}\right]
$$

with $Q \succeq 0$ for which $H+A^{T} Q A \succ 0$, and apply elimination

Equality constrained analytic centering

primal problem: minimize $-\sum_{i=1}^{n} \log x_{i}$ subject to $A x=b$ dual problem: maximize $-b^{T} \nu+\sum_{i=1}^{n} \log \left(A^{T} \nu\right)_{i}+n$
three methods for an example with $A \in \mathbb{R}^{100 \times 500}$, different starting points Newton method with equality constraints (requires $x^{(0)} \succ 0, A x^{(0)}=b$)

Barrier Method

Barrier Method

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{2}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{Rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, \quad i=1, \ldots, m, \quad A \tilde{x}=b
$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & F x \preceq g \\
& A x=b
\end{array}
$$

with $\operatorname{dom} f_{0}=\mathbb{R}_{++}^{n}$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞}-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (2) via indicator function:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where $I_{-}(u)=0$ if $u \leq 0, I_{-}(u)=\infty$ otherwise (indicator function of \mathbb{R}_{-}) approximation via logarithmic barrier

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-(1 / t) \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of

$$
\begin{array}{ll}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)

- central path is $\left\{x^{\star}(t) \mid t>0\right\}$
example: central path for an LP

$\operatorname{minimize}$	$c^{T} x$
subject to	$a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6$

hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

$x=x^{\star}(t)$ if there exists a w such that

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)+A^{T} w=0, \quad A x=b
$$

- therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$
L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}(x)+\nu^{\star}(t)^{T}(A x-b)
$$

where we define $\lambda_{i}^{\star}(t)=1 /\left(-t f_{i}\left(x^{\star}(t)\right)\right.$ and $\nu^{\star}(t)=w / t$

- this confirms the intuitive idea that $f_{0}\left(x^{\star}(t)\right) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$
\begin{aligned}
p^{\star} & \geq g\left(\lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =L\left(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =f_{0}\left(x^{\star}(t)\right)-m / t
\end{aligned}
$$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=\lambda^{\star}(t), \nu=\nu^{\star}(t)$ satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
2. dual constraints: $\lambda \succeq 0$
3. approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.

repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase $t . t:=\mu t$.

- terminates with $f_{0}(x)-p^{\star} \leq \epsilon$ (stopping criterion follows from $\left.f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq m / t\right)$
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10-20$
- several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

plus the initial centering step (to compute $x^{\star}\left(t^{(0)}\right)$)

centering problem

$$
\operatorname{minimize} \quad t f_{0}(x)+\phi(x)
$$

see convergence analysis of Newton's method

- $t f_{0}+\phi$ must have closed sublevel sets for $t \geq t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $t f_{0}+\phi$

Examples

inequality form LP ($m=100$ inequalities, $n=50$ variables)

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminates when $t=10^{8}$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$
geometric program ($m=100$ inequalities and $n=50$ variables)
$\begin{array}{ll}\text { minimize } & \log \left(\sum_{k=1}^{5} \exp \left(a_{0 k}^{T} x+b_{0 k}\right)\right) \\ \text { subject to } & \log \left(\sum_{k=1}^{5} \exp \left(a_{i k}^{T} x+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m\end{array}$

family of standard LPs $\left(A \in \mathbb{R}^{m \times 2 m}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

$m=10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Feasibility and phase I methods

feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{3}
\end{equation*}
$$

phase I: computes strictly feasible starting point for barrier method basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \\
& A x=b \tag{4}
\end{array}
$$

- if x, s feasible, with $s<0$, then x is strictly feasible for (3)
- if optimal value \bar{p}^{\star} of (4) is positive, then problem (3) is infeasible
- if $\bar{p}^{\star}=0$ and attained, then problem (3) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (3) is infeasible
example: family of linear inequalities $A x \preceq b+\gamma \Delta b$
- data chosen to be strictly feasible for $\gamma>0$, infeasible for $\gamma \leq 0$

■ use basic phase I, terminate when $s<0$ or dual objective is positive

number of iterations roughly proportional to $\log (1 /|\gamma|)$

polynomial-time complexity of barrier method

- for $\mu=1+1 / \sqrt{m}$:

$$
N=O\left(\sqrt{m} \log \left(\frac{m / t^{(0)}}{\epsilon}\right)\right)
$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu=10, \ldots, 20$)

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $\left(\sum_{i} \theta_{i}\right) / t<\epsilon$.
4. Increase $t . t:=\mu t$.

- only difference is duality gap m / t on central path is replaced by $\sum_{i} \theta_{i} / t$
- number of outer iterations:

$$
\left\lceil\frac{\log \left(\left(\sum_{i} \theta_{i}\right) /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

- complexity analysis via self-concordance applies to SDP, SOCP

Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbb{R}^{6})

semidefinite program (100 variables, LMI constraint in \mathbf{S}^{100})

family of SDPs $\left(A \in \mathbf{S}^{n}, x \in \mathbb{R}^{n}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} x \\
\text { subject to } & A+\operatorname{diag}(x) \succeq 0
\end{array}
$$

$n=10, \ldots, 1000$, for each n solve 100 randomly generated instances

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

Interior-point methods: summary

- Interior point methods (IPM) are very reliable on small scale problems.
- Example: SDP of dimension 100, SOCP with less than a thousand variables.
- Most conic problems with a couple of hundred variables can formulated and solved very quickly using preprocessors such as CVX.
- IPM often efficient on larger problems if KKT system has some structure (sparsity, blocks, etc).
- Large scale linear programs with thousands of variables are routinely solved by free or commercial solvers using IPM (e.g. SDPT3, MOSEK, GLPK, CPLEX, etc.).
- Much larger sparse LPs can also be solved efficiently using the same techniques.
- Not workable for very large problems.
- For some problems, e.g. semidefinite programs, exploiting structure in IPM is hard.
- First order methods (using the gradient only) seem to be the only option for extremely large problems

Semidefinite programming: CVX

Solving the maxcut relaxation

$$
\begin{array}{ll}
\max & \operatorname{Tr}(X C) \\
\text { s.t. } & \operatorname{diag}(X)=\mathbf{1} \\
& X \succeq 0,
\end{array}
$$

is written as follows in CVX/MATLAB

```
cvx_begin
. variable X(n,n) symmetric
. maximize trace(C*X)
. subject to
. diag(X)==1
. X==semidefinite(n)
cvx_end
```

