HW1 solutions

Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with $\operatorname{Prob}\left(x=a_{i}\right)=p_{i}, i=1, \ldots, n$, where $a_{1}<a_{2}<\cdots<a_{n}$. Of course $p \in \mathbf{R}^{n}$ lies in the standard probability simplex $P=\left\{p \mid \mathbf{1}^{T} p=1, p \succeq 0\right\}$. Which of the following conditions are convex in p ? (That is, for which of the following conditions is the set of $p \in P$ that satisfy the condition convex?)

1. $\alpha \leq \mathbf{E} f(x) \leq \beta$, where $\mathbf{E} f(x)$ is the expected value of $f(x)$, i.e., $\mathbf{E} f(x)=\sum_{i=1}^{n} p_{i} f\left(a_{i}\right)$. (The function $f: \mathbf{R} \rightarrow \mathbf{R}$ is given.)
2. $\operatorname{Prob}(x>\alpha) \leq \beta$.
3. $\mathbf{E}\left|x^{3}\right| \leq \alpha \mathbf{E}|x|$.
4. $\mathbf{E} x^{2} \leq \alpha$.
5. $\mathbf{E} x^{2} \geq \alpha$.
6. $\operatorname{var}(x) \leq \alpha$, where $\operatorname{var}(x)=\mathbf{E}(x-\mathbf{E} x)^{2}$ is the variance of x.
7. $\operatorname{var}(x) \geq \alpha$.
8. quartile $(x) \geq \alpha$, where quartile $(x)=\inf \{\beta \mid \operatorname{Prob}(x \leq \beta) \geq 0.25\}$.
9. quartile $(x) \leq \alpha$.

Solution 1 We first note that the constraints $p_{i} \geq 0, i=1, \ldots, n$, define halfspaces, and $\sum_{i=1}^{n} p_{i}=1$ defines a hyperplane, so P is a polyhedron.

The first five constraints are, in fact, linear inequalities in the probabilities p_{i}.

1. $\mathbf{E} f(x)=\sum_{i=1}^{n} p_{i} f\left(a_{i}\right)$, so the constraint is equivalent to two linear inequalities

$$
\alpha \leq \sum_{i=1}^{n} p_{i} f\left(a_{i}\right) \leq \beta
$$

2. $\operatorname{Prob}(x \geq \alpha)=\sum_{i: a_{i} \geq \alpha} p_{i}$, so the constraint is equivalent to a linear inequality

$$
\sum_{i: a_{i} \geq \alpha} p_{i} \leq \beta
$$

3. The constraint is equivalent to a linear inequality

$$
\sum_{i=1}^{n} p_{i}\left(\left|a_{i}^{3}\right|-\alpha\left|a_{i}\right|\right) \leq 0
$$

4. The constraint is equivalent to a linear inequality

$$
\sum_{i=1}^{n} p_{i} a_{i}^{2} \leq \alpha
$$

5. The constraint is equivalent to a linear inequality

$$
\sum_{i=1}^{n} p_{i} a_{i}^{2} \geq \alpha
$$

The first five constraints therefore define convex sets.
6. The constraint

$$
\operatorname{var}(x)=\mathbf{E} x^{2}-(\mathbf{E} x)^{2}=\sum_{i=1}^{n} p_{i} a_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{2} \leq \alpha
$$

is not convex in general. As a counterexample, we can take $n=2, a_{1}=0, a_{2}=1$, and $\alpha=1 / 5 . \quad p=(1,0)$ and $p=(0,1)$ are two points that satisfy $\operatorname{var}(x) \leq \alpha$, but the convex combination $p=(1 / 2,1 / 2)$ does not.
7. This constraint is equivalent to

$$
\sum_{i=1}^{n} a_{i}^{2} p_{i}+\left(\sum_{i=1}^{n} a_{i} p_{i}\right)^{2}=b^{T} p+p^{T} A p \leq \alpha
$$

where $b_{i}=a_{i}^{2}$ and $A=a a^{T}$. This defines a convex set, since the matrix $a a^{T}$ is positive semidefinite.

Let us denote quartile $(x)=f(p)$ to emphasize it is a function of p.
8. The constraint $f(p) \geq \alpha$ is equivalent to

$$
\operatorname{Prob}(x \leq \beta)<0.25 \text { for all } \beta<\alpha
$$

If $\alpha \leq a_{1}$, this is always true. Otherwise, define $k=\max \left\{i \mid a_{i}<\alpha\right\}$. This is a fixed integer, independent of p. The constraint $f(p) \geq \alpha$ holds if and only if

$$
\operatorname{Prob}\left(x \leq a_{k}\right)=\sum_{i=1}^{k} p_{i}<0.25
$$

This is a strict linear inequality in p, which defines an open halfspace.
9. The constraint $f(p) \leq \alpha$ is equivalent to

$$
\operatorname{Prob}(x \leq \beta) \geq 0.25 \text { for all } \beta \geq \alpha
$$

This can be expressed as a linear inequality

$$
\sum_{i=k+1}^{n} p_{i} \geq 0.25
$$

(If $\alpha \leq a_{1}$, we define $k=0$.)

Exercise 2 (Euclidean distance matrices.) Let $x_{1}, \ldots, x_{n} \in \mathbf{R}^{k}$. The matrix $D \in \mathbf{S}^{n}$ defined by $D_{i j}=\left\|x_{i}-x_{j}\right\|_{2}^{2}$ is called a Euclidean distance matrix. It satisfies some obvious properties such as $D_{i j}=D_{j i}, D_{i i}=0, D_{i j} \geq 0$, and (from the triangle inequality) $D_{i k}^{1 / 2} \leq$ $D_{i j}^{1 / 2}+D_{j k}^{1 / 2}$. We now pose the question: When is a matrix $D \in \mathbf{S}^{n}$ a Euclidean distance matrix (for some points in \mathbf{R}^{k}, for some k)? A famous result answers this question: $D \in \mathbf{S}^{n}$ is a Euclidean distance matrix if and only if $D_{i i}=0$ and $x^{T} D x \leq 0$ for all x with $\mathbf{1}^{T} x=0$.

Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.
Solution 2 The set of Euclidean distance matrices in \mathbf{S}^{n} is a closed convex cone because it is the intersection of (infinitely many) halfspaces defined by the following homogeneous inequalities:

$$
e_{i}^{T} D e_{i} \leq 0, \quad e_{i}^{T} D e_{i} \geq 0, \quad x^{T} D x=\sum_{j, k} x_{j} x_{k} D_{j k} \leq 0,
$$

for all $i=1, \ldots, n$, and all x with $\mathbf{1}^{T} x=1$.
It follows that dual cone is given by

$$
K^{*}=\mathbf{C o}\left(\left\{-x x^{T} \mid \mathbf{1}^{T} x=1\right\} \bigcup\left\{e_{1} e_{1}^{T},-e_{1} e_{1}^{T}, \ldots, e_{n} e_{n}^{T},-e_{n} e_{n}^{T}\right\}\right)
$$

This can be made more explicit as follows. Define $V \in \mathbf{R}^{n \times(n-1)}$ as

$$
V_{i j}= \begin{cases}1-1 / n & i=j \\ -1 / n & i \neq j\end{cases}
$$

The columns of V form a basis for the set of vectors orthogonal to 1, i.e., a vector x satisfies $\mathbf{1}^{T} x=0$ if and only if $x=V y$ for some y. The dual cone is

$$
K^{*}=\left\{V W V^{T}+\operatorname{diag}(u) \mid W \preceq 0, u \in \mathbf{R}^{n}\right\} .
$$

Exercise 3 (Composition rules.) Show that the following functions are convex.

1. $f(x)=-\log \left(-\log \left(\sum_{i=1}^{m} e^{a_{i}^{T} x+b_{i}}\right)\right)$ on $\operatorname{dom} f=\left\{x \mid \sum_{i=1}^{m} e^{a_{i}^{T} x+b_{i}}<1\right\}$. You can use the fact that $\log \left(\sum_{i=1}^{n} e^{y_{i}}\right)$ is convex.
2. $f(x, u, v)=-\sqrt{u v-x^{T} x}$ on $\operatorname{dom} f=\left\{(x, u, v) \mid u v>x^{T} x, u, v>0\right\}$. Use the fact that $x^{T} x / u$ is convex in (x, u) for $u>0$, and that $-\sqrt{x_{1} x_{2}}$ is convex on \mathbf{R}_{++}^{2}.

Solution 3

1. $g(x)=\log \left(\sum_{i=1}^{m} e^{a_{i}^{T} x+b_{i}}\right)$ is convex (composition of the log-sum-exp function and an affine mapping), so $-g$ is concave. The function $h(y)=-\log y$ is convex and decreasing. Therefore $f(x)=h(-g(x))$ is convex.
2. We can express f as $f(x, u, v)=-\sqrt{u\left(v-x^{T} x / u\right)}$. The function $h\left(x_{1}, x_{2}\right)=-\sqrt{x_{1} x_{2}}$ is convex on \mathbf{R}_{++}^{2}, and decreasing in each argument. The functions $g_{1}(u, v, x)=u$ and $g_{2}(u, v, x)=v-x^{T} x / u$ are concave. Therefore $f(u, v, x)=h(g(u, v, x))$ is convex.

Exercise 4 (Problems involving $\ell_{1}-$ and ℓ_{∞}-norms.) Formulate the following problems as LPs. Explain in detail the relation between the optimal solution of each problem and the solution of its equivalent LP.

1. Minimize $\|A x-b\|_{\infty}$ (ℓ_{∞}-norm approximation).
2. Minimize $\|A x-b\|_{1}$ (ℓ_{1}-norm approximation).
3. Minimize $\|A x-b\|_{1}$ subject to $\|x\|_{\infty} \leq 1$.
4. Minimize $\|x\|_{1}$ subject to $\|A x-b\|_{\infty} \leq 1$.
5. Minimize $\|A x-b\|_{1}+\|x\|_{\infty}$.

In each problem, $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$ are given. (See \S ?? for more problems involving approximation and constrained approximation.)

Solution 4 Solution.

1. Equivalent to the $L P$

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A x-b \preceq t \mathbf{1} \\
& A x-b \geq-t \mathbf{1} .
\end{array}
$$

in the variables x, t. To see the equivalence, assume x is fixed in this problem, and we optimize only over t. The constraints say that

$$
-t \leq a_{k}^{T} x-b_{k} \leq t
$$

for each k, i.e., $t \geq\left|a_{k}^{T} x-b_{k}\right|$, i.e.,

$$
t \geq \max _{k}\left|a_{k}^{T} x-b_{k}\right|=\|A x-b\|_{\infty}
$$

Clearly, if x is fixed, the optimal value of the LP is $p^{\star}(x)=\|A x-b\|_{\infty}$. Therefore optimizing over t and x simultaneously is equivalent to the original problem.
2. Equivalent to the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} s \\
\text { subject to } & A x-b \preceq s \\
& A x-b \geq-s .
\end{array}
$$

Assume x is fixed in this problem, and we optimize only over s. The constraints say that

$$
-s_{k} \leq a_{k}^{T} x-b_{k} \leq s_{k}
$$

for each k, i.e., $s_{k} \geq\left|a_{k}^{T} x-b_{k}\right|$. The objective function of the LP is separable, so we achieve the optimum over s by choosing

$$
s_{k}=\left|a_{k}^{T} x-b_{k}\right|,
$$

and obtain the optimal value $p^{\star}(x)=\|A x-b\|_{1}$. Therefore optimizing over t and s simultaneously is equivalent to the original problem.
3. Equivalent to the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} y \\
\text { subject to } & -y \preceq A x-b \preceq y \\
& -\mathbf{1} \leq x \leq \mathbf{1},
\end{array}
$$

with variables $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$.
4. Equivalent to the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} y \\
\text { subject to } & -y \leq x \leq y \\
& -\mathbf{1} \leq A x-b \leq \mathbf{1}
\end{array}
$$

with variables x and y.
Another good solution is to write x as the difference of two nonnegative vectors $x=$ $x^{+}-x^{-}$, and to express the problem as

$$
\begin{array}{ll}
\text { minimize } & \mathbf{1}^{T} x^{+}+\mathbf{1}^{T} x^{-} \\
\text {subject to } & -\mathbf{1} \preceq A x^{+}-A x^{-}-b \preceq \mathbf{1} \\
& x^{+} \succeq 0, \quad x^{-} \succeq 0,
\end{array}
$$

with variables $x^{+} \in \mathbf{R}^{n}$ and $x^{-} \in \mathbf{R}^{n}$.
5. Equivalent to

$$
\begin{array}{ll}
\text { minimize } & \mathbf{1}^{T} y+t \\
\text { subject to } & -y \preceq A x-b \preceq y \\
& -t \mathbf{1} \preceq x \preceq t \mathbf{1},
\end{array}
$$

with variables x, y, and t.

Exercise 5 (Linear separation of two sets of ellipsoids.) Suppose we are given $K+L$ ellipsoids

$$
\mathcal{E}_{i}=\left\{P_{i} u+q_{i} \mid\|u\|_{2} \leq 1\right\}, \quad i=1, \ldots, K+L,
$$

where $P_{i} \in \mathbf{S}^{n}$. We are interested in finding a hyperplane that strictly separates $\mathcal{E}_{1}, \ldots, \mathcal{E}_{K}$ from $\mathcal{E}_{K+1}, \ldots, \mathcal{E}_{K+L}$, i.e., we want to compute $a \in \mathbf{R}^{n}, b \in \mathbf{R}$ such that

$$
a^{T} x+b>0 \text { for } x \in \mathcal{E}_{1} \cup \cdots \cup \mathcal{E}_{K}, \quad a^{T} x+b<0 \text { for } x \in \mathcal{E}_{K+1} \cup \cdots \cup \mathcal{E}_{K+L},
$$

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility problem.

Solution 5 Solution. We first note that the problem is homogeneous in a and b, so we can replace the strict inequalities $a^{T} x+b>0$ and $a^{T} x+b<0$ with $a^{T} x+b \geq 1$ and $a^{T} x+b \leq-1$, respectively.

The variables a and b must satisfy

$$
\inf _{\|u\|_{2} \leq 1}\left(a^{T} P_{i} u+a^{T} q_{i}\right) \geq 1, \quad 1, \ldots, L
$$

and

$$
\sup _{\|u\|_{2} \leq 1}\left(a^{T} P_{i} u+a^{T} q_{i}\right) \leq-1, \quad i=K+1, \ldots, K+L
$$

The lefthand sides can be expressed as

$$
\inf _{\|u\|_{2} \leq 1}\left(a^{T} P_{i} u+a^{T} q_{i}\right)=-\left\|P_{i}^{T} a\right\|_{2}+a^{T} q_{i}+b, \quad \sup _{\|u\|_{2} \leq 1}\left(a^{T} P_{i} u+a^{T} q_{i}\right)=\left\|P_{i}^{T} a\right\|_{2}+a^{T} q_{i}+b
$$

We therefore obtain a set of second-order cone constraints in a, b :

$$
\begin{aligned}
-\left\|P_{i}^{T} a\right\|_{2}+a^{T} q_{i}+b \geq 1, & i=1, \ldots, L \\
\left\|P_{i}^{T} a\right\|_{2}+a^{T} q_{i}+b \leq-1, & i=K+1, \ldots, K+L
\end{aligned}
$$

Exercise 6 (Dual of general LP.) Find the dual function of the LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x \preceq h \\
& A x=b .
\end{array}
$$

Give the dual problem, and make the implicit equality constraints explicit.

Solution 6 Solution.

1. The Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\lambda^{T}(G x-h)+\nu^{T}(A x-b) \\
& =\left(c^{T}+\lambda^{T} G+\nu^{T} A\right) x-h \lambda^{T}-\nu^{T} b,
\end{aligned}
$$

which is an affine function of x. It follows that the dual function is given by

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-\lambda^{T} h-\nu^{T} b & c+G^{T} \lambda+A^{T} \nu=0 \\ -\infty & \text { otherwise }\end{cases}
$$

2. The dual problem is

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0 .
\end{array}
$$

After making the implicit constraints explicit, we obtain

$$
\begin{array}{ll}
\text { maximize } & -\lambda^{T} h-\nu^{T} b \\
\text { subject to } & c+G^{T} \lambda+A^{T} \nu=0 \\
& \lambda \succeq 0 .
\end{array}
$$

