HW1 solutions

Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable
with Prob(z = a;) = p;, i =1,...,n, where a1 < ay < -+ < a,. Of course p € R" lies in the
standard probability simplex P = {p | 17p = 1, p = 0}. Which of the following conditions
are convex in p? (That is, for which of the following conditions is the set of p € P that
satisfy the condition convex?)

1. a <Ef(z) < S, where Ef(z) is the expected value of f(x), i.e., Ef(z) = > | pif(a;).
(The function f: R — R is given.)

2. Prob(z > a) < f.

3. E|z?| < aE|z|.

4. Ex? < a.

5. Ex? > a.

6. var(z) < a, where var(z) = E(z — Ez)? is the variance of z.

7. var(z) > a.

8. quartile(z) > «, where quartile(x) = inf{f | Prob(z < ) > 0.25}.
9. quartile(z) < a.

Solution 1 We first note that the constraints p; > 0, + = 1,...,n, define halfspaces, and
> pi =1 defines a hyperplane, so P is a polyhedron.
The first five constraints are, in fact, linear inequalities in the probabilities p;.

1. Ef(z) =30 pif(a;), so the constraint is equivalent to two linear inequalities
a <> pif(a) < B
i=1

2. Prob(x > a) =}, >, Di, s0 the constraint is equivalent to a linear inequality

Zpiﬁﬁ-

a; >

3. The constraint is equivalent to a linear inequality

> pilla}] = alail) < 0.
i=1



4. The constraint is equivalent to a linear inequality
Z pia? <.
i=1

5. The constraint is equivalent to a linear inequality

n
Z pia; > o
i—1

The first five constraints therefore define convex sets.

6. The constraint
var(z) = Ez® — (Ez)? = Zpia? — (ZPMi)Q <«
i=1 i=1

is not convex in general. As a counterexample, we can take n = 2, a1 = 0, as = 1,
and o« = 1/5. p=(1,0) and p = (0,1) are two points that satisfy var(z) < «, but the
convezr combination p = (1/2,1/2) does not.

7. This constraint is equivalent to
n n
doaipi+ () ap) =b"p+p"Ap<a
i=1 i=1

where b; = a? and A = aa”. This defines a conver set, since the matriz aa® is positive
semidefinite.

Let us denote quartile(z) = f(p) to emphasize it is a function of p.
8. The constraint f(p) > a is equivalent to
Prob(z < 8) < 0.25 for all f < a.

If a < ay, this is always true. Otherwise, define k = max{i | a; < a}. This is a fized
integer, independent of p. The constraint f(p) > « holds if and only if

k
Prob(z < a;) = Zpi < 0.25.
i=1

This is a strict linear inequality in p, which defines an open halfspace.
9. The constraint f(p) < « is equivalent to
Prob(xz < ) > 0.25 for all 5 > «.
This can be expressed as a linear inequality

Zn: p; > 0.25.

i=k+1
(If o < ay, we define k =0.)



Exercise 2 (Euclidean distance matrices.) Let xy,...,z, € R*. The matrix D € S"
defined by D;; = ||a; — ;|3 is called a Euclidean distance matriz. It satisfies some obvious

properties such as D;; = Dj;, D;; = 0, D;; > 0, and (from the triangle inequality) Dl/ 2

Dl/ >4 Dl/ . We now pose the question: When is a matrix D € S" a Euclidean distance

matrlx (for some points in R¥, for some k)? A famous result answers this question: D € S"

is a Buclidean distance matrix if and only if D;; = 0 and 27 Dz < 0 for all  with 172 = 0.
Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.

Solution 2 The set of Fuclidean distance matrices in S" is a closed convex cone because
it is the intersection of (infinitely many) halfspaces defined by the following homogeneous
mequalities:

eiTDei <0, eiTDeZ- >0, I Dz = ijkajk <0,

j.k
foralli=1,...,n, and all x with 1Tz = 1.
It follows that dual cone is given by
= CO({—.%’:L‘T ‘ 1Tx = 1} U{ele{> _616{7 R €n€£a _enez})‘

This can be made more explicit as follows. Define V &€ R™ ™= g4
f1-1/n i=j
Vig = { —1/n  i#j

The columns of V' form a basis for the set of vectors orthogonal to 1, i.e., a vector x satisfies
172 = 0 if and only if x = Vy for some y. The dual cone is

K*={VWV" 4 diag(u) | W < 0,u € R"}.

Exercise 3 (Composition rules.) Show that the following functions are convex.

1. f(z) = —log(—log(>2, e% **b)) on dom f = {x | 37", e **h < 1}. You can use
the fact that log(> | e¥) is convex.

2. f(x,u,v) = —vVuv — 27z on dom f = {(z,u,v) | v > 2Tz, u, v > 0}. Use the fact
that 27z /u is convex in (z,u) for u > 0, and that —,/Z1z5 is convex on R .

Solution 3

1. g(z) = log(32, e =) is convex (composition of the log-sum-exp function and an
affine mapping), so —g is concave. The function h(y) = —logy is conver and decreas-
ing. Therefore f(x) = h(—g(z)) is conver.

2. We can express fas f(x,u,v) = —y/u(v —xTz/u). The function h(z1,xs) = —\/T1T2

1S CONVET On R++, and decreasmg in each argument. The functions g1(u,v,z) = u and
go(u,v,x) = v —xTx/u are concave. Therefore f(u,v,z) = h(g(u,v,x)) is conver.



Exercise 4 (Problems involving {1- and {+-norms.) Formulate the following problems as

LPs.

Explain in detail the relation between the optimal solution of each problem and the

solution of its equivalent LP.

1.
2.
3.
4.
d.

Minimize ||Az — b||x (fso-norm approximation).
Minimize ||Az — b||; (¢1-norm approximation).
Minimize || Az — b||; subject to ||z||s < 1.
Minimize ||z||; subject to ||Azx — be < 1.

Minimize ||Az — b||; + ||#]| -

In each problem, A € R™" and b € R™ are given. (See §?7 for more problems involving
approximation and constrained approximation.)

Solution 4 Solution.

1.

FEquivalent to the LP
minimize t
subject to Ax —b < tl
Az — b > —t1.

in the variables x, t. To see the equivalence, assume x is fixed in this problem, and we
optimize only over t. The constraints say that

—t<alz—b, <t
for each k, i.e., t > |afx — by, i.e.,
t> max lalz — b = || Az — b||cc-

Clearly, if x is fizved, the optimal value of the LP is p*(x) = ||Az — b||. Therefore
optimizing over t and x simultaneously is equivalent to the original problem.

FEquivalent to the LP
minimize 17s
subject to Arx —b=<'s
Ax — b > —s.

Assume x is fized in this problem, and we optimize only over s. The constraints say
that
—s;, < af:c — b < g,

for each k, i.e., s, > |alx — by|. The objective function of the LP is separable, so we
achieve the optimum over s by choosing

Sp = |a;‘§x — by,

and obtain the optimal value p*(x) = ||Ax — b||1. Therefore optimizing over t and s
simultaneously 1s equivalent to the original problem.

4



3. Equivalent to the LP
minimize 1Ty
subject to —y R Ar—b =y
—-1<z <1,

with variables x € R"™ and y € R™.

4. Fquivalent to the LP
minimize 1Ty
subject to —y <x <y
-1<Az-b<1

with variables x and y.

Another good solution is to write x as the difference of two nonnegative vectors r =
T — 27, and to express the problem as

minimize 1Tzt + 172~
subject to —1 <X Aaxt — Az~ —b =<1
xt =0, 27 =0,

with variables x € R™ and x— € R".

5. Equivalent to
minimize 1Ty 4t
subject to —y R Ar—b =y
1 <2 <11,

with variables x, y, and t.

Exercise 5 (Linear separation of two sets of ellipsoids.) Suppose we are given K + L
ellipsoids
E={Pu+gq|||ulls <1}, i=1,..., K+ L,

where P; € S". We are interested in finding a hyperplane that strictly separates &, ...,
from ki1, ..., Exir, i-e., we want to compute a € R", b € R such that

alz+b>0forz e & U---UEk, a’x+b<0foreeExiU---UEkyr,

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility prob-
lem.

Solution 5 Solution. We first note that the problem is homogeneous in a and b, so we can
replace the strict inequalities a’x+b > 0 and a’z+b < 0 witha’z+b > 1 and a’xz+b < —1,
respectively.

The variables a and b must satisfy

inf (a"Pu+a’q)>1, 1,...,L

f[ull2<1



and
sup (a’Pu+a'q)<—1, i=K+1,...,K+L.

[[ull2<1

The lefthand sides can be expressed as

inf (aTR-u + aTqi) = —||PiTa||2 +alq +0, sup (aTPZ-u + aTqi) = HPiTaHQ +alq +0.

lull2<1 lul2<1
We therefore obtain a set of second-order cone constraints in a, b:

—||PTalls+aTq+b>1, i=1,...,L
|PTally+a%qi+b< —1, i=K+1,....,K+L.

Exercise 6 (Dual of general LP.) Find the dual function of the LP
minimize ¢’z
subject to Gz < h
Ax = 0.

Give the dual problem, and make the implicit equality constraints explicit.

Solution 6 Solution.
1. The Lagrangian is

L(z,\,v) = o+ (Gx —h)+ v (Ax — D)
= (' + NG+ v Az — b2\ —vTh,

which is an affine function of x. It follows that the dual function is given by

_ “ATh —vTh e+ GTAN+ ATy =0
g\ v) = 11;1f L(z, A v) = { —00 otherwise.

2. The dual problem is
mazimize g(\,v)
subject to X = 0.

After making the implicit constraints explicit, we obtain
mazimize —N'h —vTh

subject to ¢+ GTA+ ATy =0
A= 0.



