
HW1 solutions

Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable
with Prob(x = ai) = pi, i = 1, . . . , n, where a1 < a2 < · · · < an. Of course p ∈ Rn lies in the
standard probability simplex P = {p | 1Tp = 1, p � 0}. Which of the following conditions
are convex in p? (That is, for which of the following conditions is the set of p ∈ P that
satisfy the condition convex?)

1. α ≤ Ef(x) ≤ β, where Ef(x) is the expected value of f(x), i.e., Ef(x) =
∑n

i=1 pif(ai).
(The function f : R→ R is given.)

2. Prob(x > α) ≤ β.

3. E|x3| ≤ αE|x|.

4. Ex2 ≤ α.

5. Ex2 ≥ α.

6. var(x) ≤ α, where var(x) = E(x− Ex)2 is the variance of x.

7. var(x) ≥ α.

8. quartile(x) ≥ α, where quartile(x) = inf{β | Prob(x ≤ β) ≥ 0.25}.

9. quartile(x) ≤ α.

Solution 1 We first note that the constraints pi ≥ 0, i = 1, . . . , n, define halfspaces, and∑n
i=1 pi = 1 defines a hyperplane, so P is a polyhedron.
The first five constraints are, in fact, linear inequalities in the probabilities pi.

1. Ef(x) =
∑n

i=1 pif(ai), so the constraint is equivalent to two linear inequalities

α ≤
n∑
i=1

pif(ai) ≤ β.

2. Prob(x ≥ α) =
∑

i: ai≥α pi, so the constraint is equivalent to a linear inequality∑
i: ai≥α

pi ≤ β.

3. The constraint is equivalent to a linear inequality

n∑
i=1

pi(|a3i | − α|ai|) ≤ 0.
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4. The constraint is equivalent to a linear inequality
n∑
i=1

pia
2
i ≤ α.

5. The constraint is equivalent to a linear inequality
n∑
i=1

pia
2
i ≥ α.

The first five constraints therefore define convex sets.

6. The constraint

var(x) = Ex2 − (Ex)2 =
n∑
i=1

pia
2
i − (

n∑
i=1

piai)
2 ≤ α

is not convex in general. As a counterexample, we can take n = 2, a1 = 0, a2 = 1,
and α = 1/5. p = (1, 0) and p = (0, 1) are two points that satisfy var(x) ≤ α, but the
convex combination p = (1/2, 1/2) does not.

7. This constraint is equivalent to
n∑
i=1

a2i pi + (
n∑
i=1

aipi)
2 = bTp+ pTAp ≤ α

where bi = a2i and A = aaT . This defines a convex set, since the matrix aaT is positive
semidefinite.

Let us denote quartile(x) = f(p) to emphasize it is a function of p.

8. The constraint f(p) ≥ α is equivalent to

Prob(x ≤ β) < 0.25 for all β < α.

If α ≤ a1, this is always true. Otherwise, define k = max{i | ai < α}. This is a fixed
integer, independent of p. The constraint f(p) ≥ α holds if and only if

Prob(x ≤ ak) =
k∑
i=1

pi < 0.25.

This is a strict linear inequality in p, which defines an open halfspace.

9. The constraint f(p) ≤ α is equivalent to

Prob(x ≤ β) ≥ 0.25 for all β ≥ α.

This can be expressed as a linear inequality
n∑

i=k+1

pi ≥ 0.25.

(If α ≤ a1, we define k = 0.)
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Exercise 2 (Euclidean distance matrices.) Let x1, . . . , xn ∈ Rk. The matrix D ∈ Sn

defined by Dij = ‖xi − xj‖22 is called a Euclidean distance matrix. It satisfies some obvious

properties such as Dij = Dji, Dii = 0, Dij ≥ 0, and (from the triangle inequality) D
1/2
ik ≤

D
1/2
ij + D

1/2
jk . We now pose the question: When is a matrix D ∈ Sn a Euclidean distance

matrix (for some points in Rk, for some k)? A famous result answers this question: D ∈ Sn

is a Euclidean distance matrix if and only if Dii = 0 and xTDx ≤ 0 for all x with 1Tx = 0.
Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.

Solution 2 The set of Euclidean distance matrices in Sn is a closed convex cone because
it is the intersection of (infinitely many) halfspaces defined by the following homogeneous
inequalities:

eTi Dei ≤ 0, eTi Dei ≥ 0, xTDx =
∑
j,k

xjxkDjk ≤ 0,

for all i = 1, . . . , n, and all x with 1Tx = 1.
It follows that dual cone is given by

K∗ = Co({−xxT | 1Tx = 1}
⋃
{e1eT1 ,−e1eT1 , . . . , eneTn ,−eneTn}).

This can be made more explicit as follows. Define V ∈ Rn×(n−1) as

Vij =

{
1− 1/n i = j
−1/n i 6= j.

The columns of V form a basis for the set of vectors orthogonal to 1, i.e., a vector x satisfies
1Tx = 0 if and only if x = V y for some y. The dual cone is

K∗ = {VWV T + diag(u) | W � 0, u ∈ Rn}.

Exercise 3 (Composition rules.) Show that the following functions are convex.

1. f(x) = − log(− log(
∑m

i=1 e
aTi x+bi)) on dom f = {x |

∑m
i=1 e

aTi x+bi < 1}. You can use
the fact that log(

∑n
i=1 e

yi) is convex.

2. f(x, u, v) = −
√
uv − xTx on dom f = {(x, u, v) | uv > xTx, u, v > 0}. Use the fact

that xTx/u is convex in (x, u) for u > 0, and that −√x1x2 is convex on R2
++.

Solution 3

1. g(x) = log(
∑m

i=1 e
aTi x+bi) is convex (composition of the log-sum-exp function and an

affine mapping), so −g is concave. The function h(y) = − log y is convex and decreas-
ing. Therefore f(x) = h(−g(x)) is convex.

2. We can express f as f(x, u, v) = −
√
u(v − xTx/u). The function h(x1, x2) = −√x1x2

is convex on R2
++, and decreasing in each argument. The functions g1(u, v, x) = u and

g2(u, v, x) = v − xTx/u are concave. Therefore f(u, v, x) = h(g(u, v, x)) is convex.
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Exercise 4 (Problems involving `1- and `∞-norms.) Formulate the following problems as
LPs. Explain in detail the relation between the optimal solution of each problem and the
solution of its equivalent LP.

1. Minimize ‖Ax− b‖∞ (`∞-norm approximation).

2. Minimize ‖Ax− b‖1 (`1-norm approximation).

3. Minimize ‖Ax− b‖1 subject to ‖x‖∞ ≤ 1.

4. Minimize ‖x‖1 subject to ‖Ax− b‖∞ ≤ 1.

5. Minimize ‖Ax− b‖1 + ‖x‖∞.

In each problem, A ∈ Rm×n and b ∈ Rm are given. (See §?? for more problems involving
approximation and constrained approximation.)

Solution 4 Solution.

1. Equivalent to the LP
minimize t
subject to Ax− b � t1

Ax− b ≥ −t1.
in the variables x, t. To see the equivalence, assume x is fixed in this problem, and we
optimize only over t. The constraints say that

−t ≤ aTk x− bk ≤ t

for each k, i.e., t ≥ |aTk x− bk|, i.e.,

t ≥ max
k
|aTk x− bk| = ‖Ax− b‖∞.

Clearly, if x is fixed, the optimal value of the LP is p?(x) = ‖Ax − b‖∞. Therefore
optimizing over t and x simultaneously is equivalent to the original problem.

2. Equivalent to the LP
minimize 1T s
subject to Ax− b � s

Ax− b ≥ −s.
Assume x is fixed in this problem, and we optimize only over s. The constraints say
that

−sk ≤ aTk x− bk ≤ sk

for each k, i.e., sk ≥ |aTk x − bk|. The objective function of the LP is separable, so we
achieve the optimum over s by choosing

sk = |aTk x− bk|,

and obtain the optimal value p?(x) = ‖Ax − b‖1. Therefore optimizing over t and s
simultaneously is equivalent to the original problem.
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3. Equivalent to the LP
minimize 1Ty
subject to −y � Ax− b � y

−1 ≤ x ≤ 1,

with variables x ∈ Rn and y ∈ Rm.

4. Equivalent to the LP
minimize 1Ty
subject to −y ≤ x ≤ y

−1 ≤ Ax− b ≤ 1

with variables x and y.

Another good solution is to write x as the difference of two nonnegative vectors x =
x+ − x−, and to express the problem as

minimize 1Tx+ + 1Tx−

subject to −1 � Ax+ − Ax− − b � 1
x+ � 0, x− � 0,

with variables x+ ∈ Rn and x− ∈ Rn.

5. Equivalent to
minimize 1Ty + t
subject to −y � Ax− b � y

−t1 � x � t1,

with variables x, y, and t.

Exercise 5 (Linear separation of two sets of ellipsoids.) Suppose we are given K + L
ellipsoids

Ei = {Piu+ qi | ‖u‖2 ≤ 1}, i = 1, . . . , K + L,

where Pi ∈ Sn. We are interested in finding a hyperplane that strictly separates E1, . . . , EK
from EK+1, . . . , EK+L, i.e., we want to compute a ∈ Rn, b ∈ R such that

aTx+ b > 0 for x ∈ E1 ∪ · · · ∪ EK , aTx+ b < 0 for x ∈ EK+1 ∪ · · · ∪ EK+L,

or prove that no such hyperplane exists. Express this problem as an SOCP feasibility prob-
lem.

Solution 5 Solution. We first note that the problem is homogeneous in a and b, so we can
replace the strict inequalities aTx+b > 0 and aTx+b < 0 with aTx+b ≥ 1 and aTx+b ≤ −1,
respectively.

The variables a and b must satisfy

inf
‖u‖2≤1

(aTPiu+ aT qi) ≥ 1, 1, . . . , L
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and
sup
‖u‖2≤1

(aTPiu+ aT qi) ≤ −1, i = K + 1, . . . , K + L.

The lefthand sides can be expressed as

inf
‖u‖2≤1

(aTPiu+ aT qi) = −‖P T
i a‖2 + aT qi + b, sup

‖u‖2≤1
(aTPiu+ aT qi) = ‖P T

i a‖2 + aT qi + b.

We therefore obtain a set of second-order cone constraints in a, b:

−‖P T
i a‖2 + aT qi + b ≥ 1, i = 1, . . . , L

‖P T
i a‖2 + aT qi + b ≤ −1, i = K + 1, . . . , K + L.

Exercise 6 (Dual of general LP.) Find the dual function of the LP

minimize cTx
subject to Gx � h

Ax = b.

Give the dual problem, and make the implicit equality constraints explicit.

Solution 6 Solution.

1. The Lagrangian is

L(x, λ, ν) = cTx+ λT (Gx− h) + νT (Ax− b)
= (cT + λTG+ νTA)x− hλT − νT b,

which is an affine function of x. It follows that the dual function is given by

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−λTh− νT b c+GTλ+ ATν = 0
−∞ otherwise.

2. The dual problem is
maximize g(λ, ν)
subject to λ � 0.

After making the implicit constraints explicit, we obtain

maximize −λTh− νT b
subject to c+GTλ+ ATν = 0

λ � 0.
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