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Introduction

Mean reversion:

• Classic case of statistical arbitrage.

• Highlights long-term structural relationships in the data.

• We could replace mean-reversion by momentum throughout the talk.

Sparse portfolios:

• Better interpretability.

• Less transaction costs.
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Mean reversion

• Let Sti be the value at time t of an asset Si for i = 1, . . . , n and t = 1, . . . ,m.

• We form portfolios Pt of these assets with coeffiicients xi, modeled by an
Ornstein-Uhlenbeck process:

dPt = λ(P̄ − Pt)dt + σdZt with Pt =
n
∑

i=1

xiSti

where Zt is a standard Brownian motion.

• Objective: maximize the mean reversion coefficient λ of Pt by adjusting the
coefficients x, while imposing ‖x‖ = 1 and Card(x) ≤ k.
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Outline

• Canonical decomposition

• Sparse generalized eigenvalue problems

• Estimation and trading

• Numerical results
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Canonical decomposition

• In a discrete setting, we assume that the asset prices follow a (stationary)
autoregressive process with:

St = ASt−1 + Zt (1)

where St−1 is the lagged portfolio process, A ∈ Rn×n and Zt is a vector of i.i.d.
Gaussian noise with zero mean and covariance Σ ∈ Sn, independent of St−1.

• Take n = 1 in equation (1):

E[S2
t ] = E[(ASt−1)

2] + E [Z2
t ]

which can be rewritten as σ2
t = σ2

t−1 + Σ.

• Box & Tiao (1977) then measure the predictability of stationary series by:

λ =
σ2

t−1

σ2
t

. (2)
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Canonical decomposition

• Consider a portfolio Pt = xTSt with x ∈ Rn, using (1) we know that

xTSt = xTASt−1 + xTZt,

so its predicability can be measured as:

λx =
xTAΓATx

xTΓx

where Γ = E[SST ].

• The portfolio with maximum (respectively minimum) predictability will be the
eigenvector corresponding to the largest (respectively smallest) eigenvalue of
the matrix:

Γ−1AΓAT . (3)

• We then only need to estimate A. . .
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Canonical decompositions

• The Box-Tiao procedure finds linear combinations of the assets ranked in
order of predictability by computing the eigenvectors of the matrix:

(

STS
)−1

(

ŜT
t Ŝt

)

(4)

where is Ŝt is the least squares estimate computed above.

• The Johansen procedure: following Bewley, Orden, Yang & Fisher (1994), we
rewrite equation (1) as:

∆St = QSt−1 + Zt

where Q = A − I. The basis of cointegrating portfolios is then found by
solving the following generalized eigenvalue problem:

λST
t−1St−1 − ST

t−1∆St(∆ST
t ∆St)

−1∆ST
t St−1 (5)

in the variable λ ∈ R.
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Mean-reversion: canonical decompositions
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Mean-reversion: related works

• Fama & French (1988), Poterba & Summers (1988) model and test for market
predictability in excess returns.

• Cointegration techniques, (see Engle & Granger (1987), and Alexander (1999)
for a survey of applications in finance) are usually used to extract mean
reverting portfolios.

• Several authors focused on the optimal investment problem when expected
returns are mean reverting, with Kim & Omberg (1996) and Campbell &
Viceira (1999) or Wachter (2002) among others, obtaining closed-form
solutions in some particular cases.

• Liu & Longstaff (2004) study the optimal investment problem in the presence
of a “textbook” finite horizon arbitrage opportunity, modeled as a Brownian
bridge. Jurek & Yang (2006) study this same problem when the arbitrage
horizon is indeterminate. Gatev, Goetzmann & Rouwenhorst (2006) also
studied the performance of pairs trading, which are classic examples of
structurally mean-reverting portfolios.

• The LTCM meltdown in 1998 focused a lot of attention on the impact of
leverage limits and liquidity, see Grossman & Vila (1992) or Xiong (2001) for a
discussion.
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Sparse methods

• ℓ1 regularized regression (LASSO): Tibshirani (1996).

• Feature selection: ℓ1 penalized support vector machines.

• Compressed sensing: Candès & Tao (2005), Donoho & Tanner (2005).

• Basis pursuit: Chen, Donoho & Saunders (2001), . . .

• Sparse PCA and covariance selection: d’Aspremont, El Ghaoui, Jordan &
Lanckriet (2007) and d’Aspremont, Banerjee & El Ghaoui (2006).
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Sparse generalized eigenvalue problems

Both canonical decompositions involve solving a generalized eigenvalue

problem of the form:
det(λB − A) = 0 (6)

in the variable λ ∈ R, where A,B ∈ Sn. This is usually solved using a QZ
decomposition. The largest solution of this problem can be written in variational
form as:

λmax = max
x∈Rn

xTAx

xTBx
.

Here however, we seek to maximize (or minimize) that ratio while constraining
the cardinality of the (portfolio) coefficient vector x and solve instead:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,
(7)

where k > 0 is a given constant and Card(x) is the number of nonzero
coefficients in x.
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Sparse generalized eigenvalue problems

• Solving generalized eigenvalue problems is easy: takes O(n3) operations.

• Solving sparse generalized eigenvalue problems is hard: equivalent to subset
selection which is NP-Hard.

Here, we seek good approximate solutions to:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,

using two algorithms:

• Greedy search: Incrementally scan all variables.

• Semidefinite relaxation: form a tractable convex relaxation.
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Greedy Search

• Define:
Ik = {i ∈ [1, n] : xi 6= 0},

• We build approximate solutions recursively in k. When k = 1, we can simply
find I1 as:

I1 = argmax
i∈[1,n]

Aii/Bii.

• Given Ik, we add one variable with index ik+1 to produce the largest increase
in predictability:

max
{x∈Rn

: supp(x)=Ik∪{i}}

xTAx

xTBx
.

• The complexity of computing solutions for all k is in O(n4).
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Semidefinite relaxation

Start from our original problem:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,

with variable x ∈ Rn, and rewrite it in terms of X = xxT ∈ Sn:

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

in the variable X ∈ Sn. This program is equivalent to the first one.
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Semidefinite relaxation

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

• Since Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2, we can replace the nonconvex

constraint Card(X) ≤ k2, by a weaker but convex constraint: 1
T |X |1 ≤ k.

• We drop the rank constraint to get the following quasi-convex program:

maximize Tr(AX)/Tr(BX)
subject to 1

T |X |1 ≤ k
Tr(X) = 1
X � 0,

in the variable X ∈ Sn.
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Semidefinite relaxation

Starting from the quasi-convex program:

maximize Tr(AX)/Tr(BX)
subject to 1

T |X |1 ≤ k
Tr(X) = 1
X � 0,

we change variables:

Y =
X

Tr(BX)
, z =

1

Tr(BX)

and solve:
maximize Tr(AY )
subject to 1

T |Y |1− kz ≤ 0
Tr(Y ) − z = 0
Tr(BY ) = 1
Y � 0,

(8)

which is a semidefinite program in the variables Y ∈ Sn and z ∈ R+ and can be
solved using standard SDP solvers such as SDPT3 by Toh, Todd & Tutuncu
(1999).
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Performance

Greedy algorithm:

• The optimal solutions of problem (7) might not have an increasing support set
sequence Ik ⊂ Ik+1.

• However, the cost of this method is relatively low: with each iteration costing
O(k2(n − k)), the complexity of computing solutions for all k is in O(n4).

• This recursive procedure can also be repeated both forward and backward to
improve the quality of the solution.

• Stability issues.

Semidefinite relaxation:

• Higher complexity.

• ℓ1 penalization makes it potentially more stable.
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Estimation and trading

By integrating Pt over a time increment ∆t we get:

Pt = P̄ + e−λ∆t(Pt−∆t − P̄ ) + σ

∫ t

t−∆t

eλ(s−t)dZs,

so we can estimate λ and σ by simply regressing Pt on Pt−∆t and a constant.
We have the following estimators for the parameters of Pt:

µ̂ =
1

N

N
∑

i=0

Pti

λ̂ = − 1

∆t
log

(

∑N

i=1(Pti
− µ̂)(Pti−1

− µ̂)
∑N

i=1(Pti
− µ̂)(Pti

− µ̂)

)

σ̂2 =
2λ

(1 − e−2λ∆t)(N − 2)

N
∑

i=1

(

(Pti
− µ̂) − e−λ∆t(Pti−1

− µ̂)
)2
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Estimation and trading

Trading O.U. processes: two classic strategies.

• Threshold: Invest when the spread |P̄ − Pt| crosses a certain threshold, cf.
Gatev et al. (2006).

• Linear: Under log-utility, the optimum strategy is linear:

N =
λ(P̄ − Pt) − rPt

σ2
Wt

where N is the number of units of portfolio the agent holds and Wt the
investor’s wealth at time t. See Jurek & Yang (2006).

A few remarks:

• None of these results account for transaction costs.

• Jurek & Yang (2006) also find the optimal strategy for CRRA utility defined
over wealth at a finite horizon and Epstein-Zin utility defined over intermediate
cash flows.

• Similar results hold with proportional fund flows, cf. Jurek & Yang (2006).
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Numerical Results

• U.S. swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and 30Y from
1998 until 2005.

• Use greedy algorithm to compute optimally mean reverting portfolios of
increasing cardinality for time windows of 200 days and repeat the procedure
every 50 days.

• Update portfolios daily using linear rule.
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Numerical Results
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Numerical Results
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Mean reversion coefficient λ versus portfolio cardinality (number of nonzero
coefficients) using the greedy search (solid line) and the semidefinite relaxation
(dashed line) on U.S. swap rate data.
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Numerical Results
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Left: mean reversion coefficient λ versus portfolio cardinality (number of
nonzero coefficients), in sample (blue circles) and out of sample (black squares)
on U.S. swaps.
Right: out of sample portfolio price range (in basis points) versus cardinality
(number of nonzero coefficients) on U.S. swap rate data. Dashed lines at plus
and minus one standard deviation.
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Numerical Results
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Left: average out of sample sharpe ratio versus portfolio cardinality on U.S.
swaps.
Right: idem, with transaction costs modeled as a Bid-Ask spread of 1bp. The
dashed lines are at plus and minus one standard deviation.
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