Sparse PCA with applications in finance

A. d'Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet

Princeton University, U.C. Berkeley \& U.C. San Diego

Available online at www.princeton.edu/~aspremon

Introduction

Principal Component Analysis (PCA): classic tool in multivariate data analysis

- Input: a covariance matrix A
- Output: a sequence of factors ranked by variance
- Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing the information (variance) contained in the simplified model.

Numerically, just an eigenvalue decomposition of the covariance matrix:

$$
A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}
$$

Portfolio Hedging

Hedging problem:

- Market is composed of N assets with price $S_{i, t}$ at time t
- Let C be the covariance matrix of the assets
- P_{t} is the value of a portfolio of assets with coefficients u_{i} :

$$
P_{t}=\sum_{i=1}^{N} u_{i} S_{i, t}
$$

- The market factors and corresponding variances are given by:

$$
C=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{T}
$$

Portfolio Hedging

- We can hedge some of the risk using the k most important market factors:

$$
P_{t}=\sum_{i=1}^{k}\left(u^{T} x_{i}\right) F_{i, t}+\varepsilon_{t}, \quad \text { with } F_{i, t}=x_{i}^{T} S_{t}
$$

- Usually $k=3$. On interest rate markets the first three factors are level, spread and convexity.
- Problem: the factors x_{i} usually assign a nonzero weight to all assets S_{i}
- This means large fixed transaction costs when hedging. . .

Sparse PCA: Applications

Can we get sparse factors x_{i} instead?

- Portfolio hedging: sparse factors mean less assets in the portfolio, hence less transaction costs.
- Side effects: minimize proportional transaction costs, robustness interpretation.
- Other applications: image processing, gene expression data analysis, multi-scale data processing.

Variational formulation

We can rewrite the previous problem as:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \tag{1}
\end{array}
$$

This problem is easy, its solution is again $\lambda^{\max }(A)$ at x_{1}.
Here however, we want a little bit more. . . We look for a sparse solution and solve instead:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \tag{2}\\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

where $\operatorname{Card}(x)$ denotes the cardinality (number of non-zero elements) of x. This is non-convex and numerically hard.

Related literature

Previous work:

- Cadima \& Jolliffe (1995): the loadings with small absolute value are thresholded to zero.
- A non-convex method called SCoTLASS by Jolliffe, Trendafilov \& Uddin (2003). (Same problem formulation)
- Zou, Hastie \& Tibshirani (2004): a regression based technique called SPCA. Based on a representation of PCA as a regression problem. Sparsity is obtained using the LASSO Tibshirani (1996) a l_{1} norm penalty.

Performance:

- These methods are either very suboptimal (thresholding) or lead to nonconvex optimization problems (SPCA).
- Regression: works for very large scale examples.

Semidefinite relaxation

Semidefinite relaxation

Start from:

$$
\begin{array}{ll}
\max & x^{T} A x \\
\text { subject to } & \|x\|_{2}=1 \\
& \operatorname{Card}(x) \leq k,
\end{array}
$$

let $X=x x^{T}$, and write everything in terms of the matrix X :

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T} .
\end{array}
$$

This is a strictly equivalent problem.

Semidefinite relaxation

From

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X=x x^{T}
\end{array}
$$

We can go a little further and replace $X=x x^{T}$ by an equivalent $X \succeq 0, \quad \operatorname{Rank}(X)=1$, to get:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \operatorname{Card}(X) \leq k^{2} \\
& X \succeq 0, \operatorname{Rank}(X)=1
\end{array}
$$

Again, this is the same problem!

Semidefinite relaxation

Numerically, this is still hard:

- The $\operatorname{Card}(X) \leq k^{2}$ is still non-convex
- So is the constraint $\operatorname{Rank}(X)=1$
but, we have made some progress:
- The objective $\operatorname{Tr}(A X)$ is now linear in X
- The (non-convex) constraint $\|x\|_{2}=1$ became a linear constraint $\operatorname{Tr}(X)=1$.

To solve this problem efficiently, we need to relax the two non-convex constraints above.

Semidefinite relaxation

If $u \in \mathbf{R}^{p}, \mathbf{C a r d}(u)=q$ implies $\|u\|_{1} \leq \sqrt{q}\|u\|_{2}$. Hence, we can find a convex relaxation:

- Replace $\operatorname{Card}(X) \leq k^{2}$ by the weaker (but convex) $\mathbf{1}^{T}|X| \mathbf{1} \leq k$
- Simply drop the rank constraint

Our problem becomes now:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \tag{3}\\
& X \succeq 0,
\end{array}
$$

This is a convex program and can be solved efficiently.

Semidefinite programming

More specifically, we get a semidefinite program in the variable $X \in \mathbf{S}^{n}$, which can be solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd \& Tutuncu (1996).

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0 .
\end{array}
$$

- Polynomial complexity. . .
- Problem here: the program has $O\left(n^{2}\right)$ dense constraints on the matrix X (sampling fails, . .).

Solution here: use first order algorithm developed by Nesterov (2005).

Robustness

Dual

We look at the penalized problem:

$$
\begin{array}{ll}
\max . & \operatorname{Tr}(A U)-\rho \mathbf{1}^{T}|U| \mathbf{1} \\
\text { s.t. } & \operatorname{Tr} U=1 \\
& U \succeq 0
\end{array}
$$

which can be written:

$$
\max _{\{\operatorname{Tr} U=1, U \succeq 0\}} \min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \operatorname{Tr}((A+X) U)
$$

or also:

$$
\min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+X)
$$

This dual has a very natural interpretation. . .

Dual: robust PCA

The dual problem is:

$$
\min _{\left\{\left|X_{i j}\right| \leq \rho\right\}} \quad \lambda^{\max }(A+X)
$$

- Worst-case robust maximum eigenvalue problem
- Componentwise noise with magnitude ρ on the coefficients of the covariance matrix A

Asking for sparsity in the primal means solving a robust maximum eigenvalue problem with uniform noise on the coefficients.

Numerical results

Sparse factors. . .

Example:

- Use a covariance matrix from forward rates with maturity 1 Y to 10 Y
- Compute first factor normally (average of rates)
- Use the relaxation to get a sparse second factor

Second Factor

The second factor is much sparser than in the PCA case (5 nonzero components instead of 10), explained variance goes from 16% to 14%..

Portfolio hedging

- Pick a random portfolio of forward rates in JPY, USD and EUR
- Hedge it and compute the residual variance over a three months horizon
- Hedge only using the first factor
- Record the percentage reduction in variance for various levels of sparsity
(Thanks to Aslheigh Kreider for research assistance)

Portfolio hedging

Cardinality versus k : model

Start with a sparse vector $v=(1,0,1,0,1,0,1,0,1,0)$. We then define the matrix A as:

$$
A=U^{T} U+15 v v^{T}
$$

where $U \in \mathbf{S}^{10}$ is a random matrix (uniform coefs in $[0,1]$). We solve:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A X) \\
\text { subject to } & \operatorname{Tr}(X)=1 \\
& \mathbf{1}^{T}|X| \mathbf{1} \leq k \\
& X \succeq 0,
\end{array}
$$

- Try $k=1, \ldots, 10$
- For each k, sample a 100 matrices A
- Plot average solution cardinality (and standard dev. as error bars)

Cardinality versus k

Figure 1: Cardinality versus k. ROC curves

Sparsity versus \# iterations

Start with a sparse vector $v=(1,0,1,0,1,0,1,0,1,0, \ldots, 0) \in \mathbf{R}^{20}$. We then define the matrix A as:

$$
A=U^{T} U+100 v v^{T}
$$

here $U \in \mathbf{S}^{20}$ is a random matrix (uniform coefs in $[0,1]$).

We solve:

$$
\begin{array}{ll}
\max & \operatorname{Tr}(A U)-\rho \mathbf{1}^{T}|U| \mathbf{1} \\
\text { s.t. } & \operatorname{Tr} U=1 \\
& U \succeq 0
\end{array}
$$

for $\rho=5$.

Sparsity versus \# iterations

Number of iterations: 10,000 to 100,000. Computing time: 12 " to 110 ".

Conclusion

- Semidefinite relaxation for sparse PCA
- Robustness \& sparsity at the same time (cf. dual)
- Can solve large-scale problems with first-order method by Nesterov (2005)
- (Approximately) optimal factors when fixed transaction costs are present

Slides and software available online at WWW.princeton.edu/~aspremon

References

Cadima, J. \& Jolliffe, I. T. (1995), 'Loadings and correlations in the interpretation of principal components', Journal of Applied Statistics 22, 203-214.
Jolliffe, I. T., Trendafilov, N. \& Uddin, M. (2003), 'A modified principal component technique based on the lasso', Journal of Computational and Graphical Statistics 12, 531-547.
Nesterov, Y. (2005), 'Smooth minimization of nonsmooth functions', Mathematical Programming, Series A 103, 127-152.
Sturm, J. F. (1999), 'Using sedumi 1.0x, a matlab toolbox for optimization over symmetric cones', Optimization Methods and Software 11, 625-653.
Tibshirani, R. (1996), 'Regression shrinkage and selection via the lasso', Journal of the Royal statistical society, series B 58(267-288).
Toh, K. C., Todd, M. J. \& Tutuncu, R. H. (1996), Sdpt3 - a matlab software package for semidefinite programming, Technical report, School of Operations Research and Industrial Engineering, Cornell University.
Zou, H., Hastie, T. \& Tibshirani, R. (2004), 'Sparse principal component analysis', To appear in JCGS .

