A direct formulation for sparse PCA
using semidefinite programming

A. d’Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet

ORFE, Princeton University & EECS, U.C. Berkeley

A. d'Aspremont, INFORMS, Denver, October 2004.



Introduction

PCA is a classic tool in multivariate data analysis

e Input: a covariance matrix A
e Output: a sequence of factors ranked by variance

e Each factor is a /inear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model.
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Introduction

Numerically: just an eigenvalue decomposition of the covariance matrix:

n
E : T
1=1

where. . .

e T[he factors x; are uncorrelated

e The result of the PCA is usually not sparse, i.e. each factor is a linear
combination of all the variables in the model.

Can we get sparse factors instead?
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Applications, previous works

Why sparse factors?

e Financial time series analysis, dimensionality reduction, hedging, etc
(Rebonato (1998),...)

e Multiscale data processing (Chennubhotla & Jepson (2001),...)
e Gene expression data (survey by Wall, Rechtsteiner & Rocha (2002), ...)

e Signal & image processing, vision, OCR, ECG (Johnstone & Lu (2003))
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Sparse PCA: Applications

What does sparsity mean here?

e Financial time series analysis: sparse factors often mean less assets in the
portfolio, hence less fixed transaction costs

e Multiscale data processing: get sparse structure from motion data, ...

e Gene expression data: each variable is a particular gene, sparse factors
highlight the action of a few genes, making interpretation easier

e |/mage processing: sparse factors involve only specific zones or objects in
the image.
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Related literature

Previous work:

e Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

e A non-convex method called SCoTLASS by Jolliffe & Uddin (2003).
(Same setup here, numerical issues solved by relaxation)

e Zou, Hastie & Tibshirani (2004): a regression based technique called
sparse PCA (S-PCA) (SPCA). Based on the fact that PCA can be written
as a regression-type (non convex) optimization problem, using LASSO

Tibshirani (1996) a [; norm penalty.
Performance:

e These methods are either very suboptimal or nonconvex

e Regression: works for /arge scale examples
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A: rank one approximation

Problem definition:

e Here, we focus on the first factor x, computed as the solution of:

min [|A — z2!|| ¢
a:ER

where || X || is the Frobenius norm of X, i.e. || X||p = /Tr(X?)

e In this case, we get an exact solution A3 (A)x xi where A™3*(X) is the
maximum eigenvalue and z1 is the associated eigenvector.
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Variational formulation

We can rewrite the previous problem as:

max !l Ax (1)
subject to ||z||2 = 1.

Perron-Frobenius: this problem is easy, its solution is again A™#*(A) at x;.

Here however, we want a little bit more. . .
We look for a sparse solution and solve instead:

max ol Ax
subject to ||z|2 =1 (2)
Card(z) < k,

where Card(x) denotes the cardinality (number of non-zero elements) of x.
This is non-convex and numerically hard.
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Outline
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e Semidefinite relaxation
e Large-scale problems

e Numerical results

A. d'Aspremont, INFORMS, Denver, October 2004.



Semidefinite relaxation

Start from:
max ol Ax
subject to  ||z|l2 =1
Card(z) < k,

let X = za®, and write everything in terms of the matrix X:

max Tr(AX)

subject to Tr(X) =1
Card(X) < k?
X = z2t.

This is strictly equivalent!
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Semidefinite relaxation

Why? If X = xxL then:
e in the objective: 1 Ax = Tr(AX)
e the constraint Card(z) < k becomes Card(X) < k?

e the constraint ||x|2 = 1 becomes Tr(X) = 1.

We can go a little further and replace X = xzx! by an equivalent
X >0, Rank(X) =1, to get:

max Tr(AX)
subject to Tr(X) =1 (3)
Card(X) < k?

X >0, Rank(X) =1,

Again, this is the same problem!
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Semidefinite relaxation

Numerically, this is still hard:

e The Card(X) < k? is still non-convex
e So is the constraint Rank(X) =1
but, we have made some progress:

e The objective Tr(AX) is now linear in X

e The (non-convex) constraint ||z||o = 1 became a linear constraint
Tr(X) = 1.

To solve this problem efficiently, we need to relax the two non-convex
constraints above.
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Semidefinite relaxation

Easy to do here. . .

If u € R”, Card(u) = ¢ implies ||ul|; < ,/q||ul|2. We transform the
non-convex problem into a convex relaxation:

e Replace Card(X) < k? by the weaker (but convex) 11| X|1 < k

e Simply drop the rank constraint

Our problem becomes now:

max Tr(AX)

subject to Tr(X) =1
111 X11 <k
X >0,

This is a convex program and can be solved efficiently.
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Semidefinite programming

In fact, we get a semidefinite program in the variable X € S™, which can be
solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd & Tutuncu
(1996).

max Tr(AX)

subject to Tr(X) =1
111 X1]1 <k
X = 0.

Complexity:
e Polynomial. . .

e Problem here: the program has O(n?) dense constraints on the matrix X.

In practice, hard to solve problems with n > 15 without additional work.
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Singular Value Decomposition

Same technique works for Singular Value Decomposition instead of PCA.

e The variational formulation of SVD is here:

min A — uvt||p
subject to Card(u) < k;
Card(v) < ko,

in the variables (u,v) € R™ x R" where k1 < m, ko < n are fixed.

e This can be relaxed as the following semidefinite program:

MaxXx TI'(ATXlg)

subject to X =0, Tr(X;;) =1
11 X1 <k;, 1=1,2
171 X12|1 < VE1ks,

in the variable X € S™" with blocks X;; for i,j = 1,2.
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IP versus first-order methods

Interior Point methods for semidefinite/cone programs

e Produce a solution up to machine precision

e Compute a Newton step at each iteration: costly

In our case:

e \We are not really interested in getting a solution up to machine precision

e The problems are too big to compute a Newton step. . .

Solution: use first-order techniques. . .
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First-order methods

Basic model for the problem: black-box oracle producing
e the function value f(x)
e a subgradient g(x) € 0f(x)

f is here convex, non-smooth. Using only this info, we need O(1/2?) steps
to find an e-optimal solution.

However, if the function is convex with a Lipschitz-continuous gradient with
constant L then

e we need only O (\/L/a‘) steps to get an e-optimal solution.. . .

Smoothness brings a massive improvement in the complexity. . .
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Sparse PCA?

In our case, we look at a penalized version of the relaxed sparse PCA

problem:
max Tr(AU) — 1'\UL - U=0, TrU = 1. (5)

Difference?

e |f we can solve the dual, these two formulations are equivalent.

e Otherwise: scale A. ..

Problem here, the function to minimize is not smooth! Can we hope to do
better than the worst case complexity of O(1/&%)?

The answer is yes, exploit this particular problem structure. . .
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Sparse PCA?

We can rewrite our problem as a convex-concave game:

max Tr(AU) — 17|U|1 = min max (X,U) + Tr(AU)
{U>0, TrU=1} XeQ) UeQs

where

¢« O,={Uecs8" : TrU =1}

A. d'Aspremont, INFORMS, Denver, October 2004. 20



Sparse PCA: complexity

Why a convex-concave game?

e Recent result by Nesterov (2003) shows that this specific structure can be
exploited to significantly reduce the complexity compared to the black-box

case

e All the algorithm steps can be worked out explicitly in this case

Algorithm in Nesterov (2003):

e reduces the complexity to O (1/¢) instead of O(1/&?)!
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Sparse PCA: large-scale algo.

We can formulate our problem using the notations in Nesterov (2003)
(except for A becoming L here):

max Tr(AU) — 17 |U]1 = min f(X)
(U0, TrU=1} XeQ;

where
e 01 ={XeS§" : |Xi| <1, 1<4,5<n}
o f(X) = Amax(A+ X) = maxyeo,(BX,U) — ¢(U)

e O, ={Ue8" : TvU=1}, B=1,, ¢(U)=—Tr(AU)

A. d'Aspremont, INFORMS, Denver, October 2004. 22



Smooth minimization of non-smooth functions
What makes the algorithm in Nesterov (2003) work:

e First use the convex-concave game structure to regularize the function.
(Inf-convolution with strictly convex function, a la Moreau-Yosida. See for
example Lemaréchal & Sagastizdbal (1997))

e Then use the optimal first-order minimization algorithm in Nesterov
(1983) to minimize the smooth approximation.

The method works particularly well if:

e All the steps in the regularization can be performed in closed-form

e All the auxiliary minimization sub-problems can be solved in closed-form

It i1s the case here. . .
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Regularization: prox functions

Procedure:

e First, we fix a regularization parameter p

e Then, we define a prox-function for the set Qs:

do(U) = Tr(Ulog(U)) + log(n), U € Qs

With this choice of d»:

e the center of the set if then Xy = n~11, with d3(Xy) =0

e the convexity parameter of dy on Qs is bounded below by g5 = 1/2
(non-trivial, cf. Ben-Tal & Nemirovski (2004))
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Regularization: prox functions

The non-smooth objective of the original problem is replaced with

min f,(X),

Xe,

where f, is the penalized function involving the prox-function ds:

FulX) = max (X,U) + Tr(AU) — uda(U)

Because of our choice of prox-function:

e the function f,,(X) approximates f with a maximum error of £/2

o f, is Lipschitz continuous with constant:
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Algorithm

Set the regularization parameter L.

For k > 0 do:

e Compute f,,(Xx) and Vf,(Xk)

e Find

, 1

Yy = To,(Xy) = arg min (Vf,(X),Y - X) + SL||X - Y%

YeO, 2

e Find
L “it1
T = ind —dq{(X Xi), X —X;) + X
k argm)%n{gl 1 ( )+; 5 (Vfu(X3) ) €Q1}

e Set X\ = kL—I—SZk -+ Z—iéYk
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Algorithm
Most expensive step is the first one, computing the value and gradient of f,:
e Compute f,(X) as

max Tr(ZU) — pudo(U), for Z=A+ X
UeQoy

e The gradient is the maximizer itself:

Vfu(X) = arg max Tr(ZU) — nd2(U)

The solution can be computed in closed-form as:

(A+ X
ulog(ZeXp * ))>ulogn
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Algorithm

The second step can also be computed in closed form.

| 1
Vi = T, (Xy) = arg min (Vf,(X),Y = X) + SL||IX — Y%
1

Is equivalent to a simple projection problem:

m Y —V
arg min_ | I

Solution given by:

Yij = Sgn(vij) -min(\V};j|, 1), 1<4,j<n.

The third step is similar. . .
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Convergence

e We can stop the algorithm when the gap
Amax(A + Xi) — Tr AU, + 17 |Ui|1 < e,
where Uy = u*((A + Xi)/p) is our current estimate of the dual variable

e The above gap is necessarily non-negative, since both X and Uy are
feasible for the primal and dual problem, respectively

Only check this criterion only periodically, for example every 100 iterations.
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Complexity

e Max number of iterations is given by

DDs 1
N =4||B|ly2y/ = =,
0109 €

D1:n2/2, 0'1:1, Dgzlog(n), 0'2:1/2, HBHLQ:l

with

e Since each iteration costs O(n?) flops, the worst-case flop count to get a
e-optimal solution is given by

o(e)

€
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Cardinality versus k: model

Start with a sparse vector v = (1,0,1,0,1,0,1,0,1,0). We then define the
matrix A as:

A=UTU+ 15 vo?’

here U € S'° is a random matrix (uniform coefs in [0,1]).

We solve:
max Tr(AX)
subject to Tr(X) =1
11 X)1 <k
X >0,

e Tryk=1,...,10
e For each k, sample a 100 matrices A

e Plot average solution cardinality (and standard dev. as error bars)
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cardinality

Figure 1: Cardinality versus k.
(k+ 1) is a very good predictor of the cardinality. . .
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Sparsity versus # iterations

Start with a sparse vector v = (1,0,1,0,1,0,1,0,1,0,...,0) € R%Y. We
then define the matrix A as:

A=UTU +100 vo!

here U € S*° is a random matrix (uniform coefs in [0,1]).

We solve:
max Tr(AU) — p1t|U|1
st. TrU=1
U>0
for p = 5.
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Sparsity versus # iterations

10_ T T T T T T

|
— PCA ]
o DSPCA |]

|
=
T

loadings

0 2 4 6 8 10 12 14 16 18 20

(

10

Number of iterations: 10,000 to 100,000. Computing time: 12" to 110"
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