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Introduction

PCA is a classic tool in multivariate data analysis

• Input: a covariance matrix A

• Output: a sequence of factors ranked by variance

• Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model.
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Introduction

Numerically: just an eigenvalue decomposition of the covariance matrix:

A =

n
∑

i=1

λixix
T
i

where. . .

• The factors xi are uncorrelated

• The result of the PCA is usually not sparse, i.e. each factor is a linear
combination of all the variables in the model.

Can we get sparse factors instead?
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Applications, previous works

Why sparse factors?

• Financial time series analysis, dimensionality reduction, hedging, etc
(Rebonato (1998),...)

• Multiscale data processing (Chennubhotla & Jepson (2001),...)

• Gene expression data (survey by Wall, Rechtsteiner & Rocha (2002), ...)

• Signal & image processing, vision, OCR, ECG (Johnstone & Lu (2003))

A. d’Aspremont, INFORMS, Denver, October 2004. 4



Sparse PCA: Applications

What does sparsity mean here?

• Financial time series analysis: sparse factors often mean less assets in the
portfolio, hence less fixed transaction costs

• Multiscale data processing: get sparse structure from motion data, ...

• Gene expression data: each variable is a particular gene, sparse factors
highlight the action of a few genes, making interpretation easier

• Image processing: sparse factors involve only specific zones or objects in
the image.
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Related literature

Previous work:

• Cadima & Jolliffe (1995): the loadings with small absolute value are
thresholded to zero.

• A non-convex method called SCoTLASS by Jolliffe & Uddin (2003).
(Same setup here, numerical issues solved by relaxation)

• Zou, Hastie & Tibshirani (2004): a regression based technique called
sparse PCA (S-PCA) (SPCA). Based on the fact that PCA can be written
as a regression-type (non convex) optimization problem, using LASSO
Tibshirani (1996) a l1 norm penalty.

Performance:

• These methods are either very suboptimal or nonconvex

• Regression: works for large scale examples
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A: rank one approximation

Problem definition:

• Here, we focus on the first factor x, computed as the solution of:

min
x∈R

‖A − xxT‖F

where ‖X‖F is the Frobenius norm of X, i.e. ‖X‖F =
√

Tr(X2)

• In this case, we get an exact solution λmax(A)x1x
T
1 where λmax(X) is the

maximum eigenvalue and x1 is the associated eigenvector.
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Variational formulation

We can rewrite the previous problem as:

max xTAx
subject to ‖x‖2 = 1.

(1)

Perron-Frobenius: this problem is easy, its solution is again λmax(A) at x1.

Here however, we want a little bit more. . .
We look for a sparse solution and solve instead:

max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,
(2)

where Card(x) denotes the cardinality (number of non-zero elements) of x.
This is non-convex and numerically hard.
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Outline

• Introduction

• Semidefinite relaxation

• Large-scale problems

• Numerical results
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Semidefinite relaxation

Start from:
max xTAx
subject to ‖x‖2 = 1

Card(x) ≤ k,

let X = xxT , and write everything in terms of the matrix X:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X = xxT .

This is strictly equivalent!
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Semidefinite relaxation

Why? If X = xxT , then:

• in the objective: xTAx = Tr(AX)

• the constraint Card(x) ≤ k becomes Card(X) ≤ k2

• the constraint ‖x‖2 = 1 becomes Tr(X) = 1.

We can go a little further and replace X = xxT by an equivalent
X � 0, Rank(X) = 1, to get:

max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

(3)

Again, this is the same problem!
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Semidefinite relaxation

Numerically, this is still hard:

• The Card(X) ≤ k2 is still non-convex

• So is the constraint Rank(X) = 1

but, we have made some progress:

• The objective Tr(AX) is now linear in X

• The (non-convex) constraint ‖x‖2 = 1 became a linear constraint
Tr(X) = 1.

To solve this problem efficiently, we need to relax the two non-convex
constraints above.
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Semidefinite relaxation

Easy to do here. . .

If u ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2. We transform the

non-convex problem into a convex relaxation:

• Replace Card(X) ≤ k2 by the weaker (but convex) 1
T |X|1 ≤ k

• Simply drop the rank constraint

Our problem becomes now:

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

(4)

This is a convex program and can be solved efficiently.
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Semidefinite programming

In fact, we get a semidefinite program in the variable X ∈ Sn, which can be
solved using SEDUMI by Sturm (1999) or SDPT3 by Toh, Todd & Tutuncu
(1996).

max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0.

Complexity:

• Polynomial. . .

• Problem here: the program has O(n2) dense constraints on the matrix X.

In practice, hard to solve problems with n > 15 without additional work.

A. d’Aspremont, INFORMS, Denver, October 2004. 14



Singular Value Decomposition

Same technique works for Singular Value Decomposition instead of PCA.

• The variational formulation of SVD is here:

min ‖A − uvT‖F

subject to Card(u) ≤ k1

Card(v) ≤ k2,

in the variables (u, v) ∈ Rm × Rn where k1 ≤ m, k2 ≤ n are fixed.

• This can be relaxed as the following semidefinite program:

max Tr(ATX12)
subject to X � 0, Tr(Xii) = 1

1
T |Xii|1 ≤ ki, i = 1, 2

1
T |X12|1 ≤

√
k1k2,

in the variable X ∈ Sm+n with blocks Xij for i, j = 1, 2.
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IP versus first-order methods

Interior Point methods for semidefinite/cone programs

• Produce a solution up to machine precision

• Compute a Newton step at each iteration: costly

In our case:

• We are not really interested in getting a solution up to machine precision

• The problems are too big to compute a Newton step. . .

Solution: use first-order techniques. . .
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First-order methods

Basic model for the problem: black-box oracle producing

• the function value f(x)

• a subgradient g(x) ∈ ∂f(x)

f is here convex, non-smooth. Using only this info, we need O(1/ε2) steps
to find an ε-optimal solution.

However, if the function is convex with a Lipschitz-continuous gradient with
constant L then

• we need only O
(

√

L/ε
)

steps to get an ε-optimal solution.. . .

Smoothness brings a massive improvement in the complexity. . .
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Sparse PCA?

In our case, we look at a penalized version of the relaxed sparse PCA
problem:

max
U

Tr(AU) − 1
T |U |1 : U � 0, TrU = 1. (5)

Difference?

• If we can solve the dual, these two formulations are equivalent.

• Otherwise: scale A. . .

Problem here, the function to minimize is not smooth! Can we hope to do
better than the worst case complexity of O(1/ε2)?

The answer is yes, exploit this particular problem structure. . .
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Sparse PCA?

We can rewrite our problem as a convex-concave game:

max
{U�0, Tr U=1}

Tr(AU) − 1
T |U |1 = min

X∈Q1

max
U∈Q2

〈X, U〉 + Tr(AU)

where

• Q1 = {X ∈ Sn : |Xij| ≤ 1, 1 ≤ i, j ≤ n}

• Q2 = {U ∈ Sn : TrU = 1}
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Sparse PCA: complexity

Why a convex-concave game?

• Recent result by Nesterov (2003) shows that this specific structure can be
exploited to significantly reduce the complexity compared to the black-box
case

• All the algorithm steps can be worked out explicitly in this case

Algorithm in Nesterov (2003):

• reduces the complexity to O (1/ε) instead of O(1/ε2)!
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Sparse PCA: large-scale algo.

We can formulate our problem using the notations in Nesterov (2003)
(except for A becoming L here):

max
{U�0, Tr U=1}

Tr(AU) − 1
T |U |1 = min

X∈Q1

f(X)

where

• Q1 = {X ∈ Sn : |Xij| ≤ 1, 1 ≤ i, j ≤ n}

• f(X) = λmax(A + X) = maxU∈Q2
〈BX, U〉 − φ̂(U)

• Q2 = {U ∈ Sn : TrU = 1} , B = In2, φ̂(U) = −Tr(AU)
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Smooth minimization of non-smooth functions

What makes the algorithm in Nesterov (2003) work:

• First use the convex-concave game structure to regularize the function.
(Inf-convolution with strictly convex function, à la Moreau-Yosida. See for
example Lemaréchal & Sagastizábal (1997))

• Then use the optimal first-order minimization algorithm in Nesterov
(1983) to minimize the smooth approximation.

The method works particularly well if:

• All the steps in the regularization can be performed in closed-form

• All the auxiliary minimization sub-problems can be solved in closed-form

It is the case here. . .
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Regularization: prox functions

Procedure:

• First, we fix a regularization parameter µ

• Then, we define a prox-function for the set Q2:

d2(U) = Tr(U log(U)) + log(n), U ∈ Q2

With this choice of d2:

• the center of the set if then X0 = n−1In with d2(X0) = 0

• the convexity parameter of d2 on Q2 is bounded below by σ2 = 1/2
(non-trivial, cf. Ben-Tal & Nemirovski (2004))
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Regularization: prox functions

The non-smooth objective of the original problem is replaced with

min
X∈Q1

fµ(X),

where fµ is the penalized function involving the prox-function d2:

fµ(X) = max
U∈Q2

〈X, U〉 + Tr(AU) − µd2(U)

Because of our choice of prox-function:

• the function fµ(X) approximates f with a maximum error of ε/2

• fµ is Lipschitz continuous with constant:

L =
1

µσ2
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Algorithm

Set the regularization parameter µ.

For k ≥ 0 do:

• Compute fµ(Xk) and ∇fµ(Xk)

• Find

Yk = TQ1
(Xk) = arg min

Y ∈Q1

〈∇fµ(X), Y − X〉 +
1

2
L‖X − Y ‖2

F

• Find

Zk = arg min
X

{

L

σ1

d1(X) +

k
∑

i=0

i + 1

2
〈∇fµ(Xi), X − Xi〉 : X ∈ Q1

}

• Set Xk = 2

k+3
Zk + k+1

k+3
Yk

A. d’Aspremont, INFORMS, Denver, October 2004. 26



Algorithm

Most expensive step is the first one, computing the value and gradient of fµ:

• Compute fµ(X) as

max
U∈Q2

Tr(ZU) − µd2(U), for Z = A + X

• The gradient is the maximizer itself:

∇fµ(X) = arg max
U∈Q2

Tr(ZU) − µd2(U)

The solution can be computed in closed-form as:

µ log

(

n
∑

i=1

exp(
λi(A + X)

µ
)

)

− µ log n
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Algorithm

The second step can also be computed in closed form.

Yk = TQ1
(Xk) = arg min

Y ∈Q1

〈∇fµ(X), Y − X〉 +
1

2
L‖X − Y ‖2

F

is equivalent to a simple projection problem:

arg min
‖Y ‖∞≤1

‖Y − V ‖F ,

Solution given by:

Yij = sgn(Vij) · min(|Vij|, 1), 1 ≤ i, j ≤ n.

The third step is similar. . .
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Convergence

• We can stop the algorithm when the gap

λmax(A + Xk) − TrAUk + 1
T |Uk|1 ≤ ε,

where Uk = u∗((A + Xk)/µ) is our current estimate of the dual variable

• The above gap is necessarily non-negative, since both Xk and Uk are
feasible for the primal and dual problem, respectively

Only check this criterion only periodically, for example every 100 iterations.
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Complexity

• Max number of iterations is given by

N = 4‖B‖1,2

√

D1D2

σ1σ2

· 1

ε
,

with

D1 = n2/2, σ1 = 1, D2 = log(n), σ2 = 1/2, ‖B‖1,2 = 1.

• Since each iteration costs O(n3) flops, the worst-case flop count to get a
ε-optimal solution is given by

O

(

n4
√

log n

ε

)
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Cardinality versus k: model

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0). We then define the
matrix A as:

A = UTU + 15 vvT

here U ∈ S10 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AX)
subject to Tr(X) = 1

1
T |X|1 ≤ k

X � 0,

• Try k = 1, . . . , 10

• For each k, sample a 100 matrices A

• Plot average solution cardinality (and standard dev. as error bars)
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Figure 1: Cardinality versus k.

(k + 1) is a very good predictor of the cardinality. . .
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Sparsity versus # iterations

Start with a sparse vector v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 0) ∈ R20. We
then define the matrix A as:

A = UTU + 100 vvT

here U ∈ S20 is a random matrix (uniform coefs in [0, 1]).

We solve:
max Tr(AU) − ρ1T |U |1
s.t. TrU = 1

U � 0

for ρ = 5.
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Sparsity versus # iterations
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Number of iterations: 10,000 to 100,000. Computing time: 12’ to 110’.
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