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Introduction

• classic Black & Scholes (1973) option pricing based on:

◦ a dynamic hedging argument
◦ a model for the asset dynamics (geometric BM)

• sensitive to liquidity, transaction costs, model risk ...

• what can we say about option prices with much weaker assumptions?
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Static Arbitrage

The fundamental theorem of asset pricing states that:

Absence of Arbitrage ⇔ Price = Eπ[Payoff]

Here, we rely on a minimal set of assumptions:

• no assumption on the asset distribution

• one period model

An arbitrage in this simple setting is a buy and hold strategy:

• form a portfolio at no cost today with a strictly positive payoff at maturity

• no trading involved between today and the option’s maturity
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What for?

• arbitrage free data stripping before calibration

• test extrapolation formulas

• in illiquid markets, find optimal static hedge or bound risk at little cost
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Simplest Example: Put Call Parity

payoff

K

KK S

Put Call−

− =

= K − S

We denote by C(K) the price of the call with payoff (S −K)+. If we know
the forward prices, then we can deduce call prices from puts, ...
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Call Spread - Butterfly Spread

p
ay

off

SK K+ε

p
ay

off

K K+εK−ε S

Here, the absence of arbitrage implies that the price of a call spread be
positive, hence call prices must be decreasing with strike

C(K + ε) − C(K) ≤ 0

it also implies that the price of a butterfly spread be positive, and call prices
must then be convex with strike

C(K + ε) − 2C(K) + C(K − ε) ≥ 0
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Price Constraints

The absence of arbitrage implies that if C(K) is a function giving the price
of an option of strike K, then C(K) must satisfy:

• C(K) positive

• C(K) decreasing

• C(K) convex

With C(0) = S, we have a set of necessary conditions for the absence of
arbitrage

A. d’Aspremont, I.M.A., April 12 2004. 7



Sufficient Conditions

In fact, these conditions are also sufficient, see Laurent & Leisen (2000) and
Bertsimas & Popescu (2002) among others. . .

Suppose we have a set of market prices for calls C(Ki) = pi, then there is no
arbitrage iff there is a function C(K):

• C(K) positive

• C(K) decreasing

• C(K) convex

• C(Ki) = pi and C(0) = S

This is very easy to test. . .
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Why?

data quality...

• all the prices are last quotes (not simultaneous)

• low volume

• some transaction costs

Problem: this data is used to calibrate models and price other derivatives...
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Dimension n: Basket Options

• a basket call payoff is
(

k
∑

i=1

wiSi −K

)

+

where w1, . . . , wk are the basket’s weights and K is the option’s strike
price

• examples include: Index options, spread options, swaptions...

• basket option prices are used to gather information on correlation

We denote by C(w,K) the price of such an option, can we get conditions to
test basket price data?

A. d’Aspremont, I.M.A., April 12 2004. 11



Necessary Conditions

Similar to dimension one...

Suppose we have a set of market prices for calls C(wi,Ki) = pi, and there is
no arbitrage, then the function C(w,K) satisfies:

• C(w,K) positive

• C(w,K) decreasing in K, increasing in w

• C(w,K) jointly convex in (w,K)

• C(wi,Ki) = pi and C(0) = S

Is this still tractable (in dimension n)?
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Tractable?

The problem can be formulated as:

find z
subject to Az ≤ b, Cz = d

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , g

T
k

]T

gi subgradient of f at xi i = 1, . . . , k
f monotone, convex

in the variables f ∈ C (Rn), z ∈ R(n+1)k, g1, . . . , gk ∈ Rn

• discretize and sample the convexity constraints to get a polynomial size
LP feasibility problem
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• enforce the convexity and subgradient constraints at the points
(xi)i=1,...,k (monotonicity is a simple inequality on g) to get:

find z
subject to Cz = d, Az ≤ b

z =
[

f(x1), . . . , f(xk), g
T
1 , . . . , g

T
k

]T

〈gi, xj − xi〉 ≤ f(xj) − f(xi) i, j = 1, . . . , k

in the variables f(xi)i=1,...,k and g in Rk × R(n+1)×k

• we note zopt =
[

fopt(x1), . . . , f
opt(xk), (g

opt
1 )T , . . . , (gopt

k )T
]T

a solution
to this problem
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• from zopt, we define:

C(x) = max
i=1,...,k

{

fopt(xi) +
〈

gopt
i , x− xi

〉}

• by construction, C(xi) solves the finite LP with:

C(xi) = fopt(xi), i = 1, . . . , k

• C(x) is convex and monotone as the pointwise maximum of monotone
affine functions

• so C(x) is also a feasible point of the original problem

This means that C(x) is a solution for the original (infinite dimensional)
problem.
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Relaxation

The previous result means that the price conditions remain tractable on
basket options... They are equivalent to the following feasibility problem:

find gi

subject to 〈gi, (wj,Kj) − (wi,Ki)〉 ≤ pj − pi

gi,j ≥ 0, j = 1, . . . , n
−1 ≤ gi,n+1 ≤ 0
〈gi, (wi,Ki)〉 = pi, i = 1, . . . ,m,

where the variables gi ∈ Rn are the subgradients of C(w,K) at the points
(wi,Ki).
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Sufficient?

A key difference with dimension one: Bertsimas & Popescu (2002) show that
the exact problem is NP-Hard.

• the conditions are only necessary...

• however, numerical cost is minimal (small LP)

• we can show sufficiency in some particular cases

• how tight are these conditions in general?
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Numerical Example

• two assets: x1, x2, we look for upper and lower bounds on the price of a
particular basket (x1 + x2 −K)+

• simple discrete model for the assets:

x = {(0, 0), (0, .8), (.8, .3), (.6, .6), (.1, .4), (1, 1)}

with probability
π = (.2, .2, .2, .1, .1, .2)

• the forward prices are given, together with the following call prices:

(.2x1 + x2 − .1)+, (.5x1 + .8x2 − .8)+, (.5x1 + .3x2 − .4)+,
(x1 + .3x2 − .5)+, (x1 + .5x2 − .5)+, (x1 + .4x2 − 1)+, (x1 + .6x2 − 1.2)+

• we compare the (outer) price bounds given by the previous relaxation with
inner bounds computed by discretizing.
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Numerical Example

We compare the outer bounds on the price p0 of the (x1 + x2 −K)+ basket
obtained by solving:

max./min. p0

subject to 〈gi, (wj,Kj) − (wi,Ki)〉 ≤ pj − pi

gi,j ≥ 0, j = 1, . . . , n
−1 ≤ gi,n+1 ≤ 0
〈gi, (wi,Ki)〉 = pi, i = 1, . . . ,m,

with the inner bounds obtained by solving:

max./min. Eπ(|wT
0 x−K0|)

subject to Eπ(|wT
i x−Ki|) = pi, i = 1, . . . ,m,

which becomes a simple (albeit large) linear program after we discretize π.
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Multivariate Black-Scholes Model

Here, we compare the outer bounds on the price p0 of a basket obtained by
solving the relaxation:

max./min. p0

subject to 〈gi, (wj,Kj) − (wi,Ki)〉 ≤ pj − pi

gi,j ≥ 0, j = 1, . . . , n
−1 ≤ gi,n+1 ≤ 0
〈gi, (wi,Ki)〉 = pi, i = 1, . . . ,m,

with the inner bounds computed as:

max./min. BS(T,w0, V )
subject to BS(T,wi, V ) = pi, i = 1, . . . ,m,

in the variable V ∈ Sn, corresponding to extreme prices on a basket option in
a multivariate Black-Scholes model, given prices pi of other basket options
with weights wi.
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Multivariate Black-Scholes Model

0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058
0

0.002

0.004

0.006

0.008

0.01

0.012
relax up
BS up
BS low
relax low

strike

pr
ic

e

A. d’Aspremont, I.M.A., April 12 2004. 24



Close the Gap

The gap is surprisingly large. . .

• ATM prices are not supposed to be very sensitive to the smile

• approx. lognormal model calibrate easily to swaption data in practice

How can we improve the static bounds (so we know when to blame the
model)?
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Integral Transform Solution

• we can write the set off call prices as:

C(w,K) = Eπ(wTx−K)+

=

∫

Rn
+

(wTx−K)+dπ(x),

and think of Cπ(w,K) as a particular integral transform of the measure π

• at least formally, we have:

∂2C(w,K)

∂K2
=

∫

Rn
+

δ(wTx−K)π(x)dx

• this means that ∂2C(w,K)/∂K2 is the Radon transform (see Helgason
(1999) or Ramm & Katsevich (1996)) of the measure π

A. d’Aspremont, I.M.A., April 12 2004. 26



A Range Characterization Problem...

• the general arbitrage problem can written as the following infinite
dimensional problem:

find C(w,K)
subject to C(wi,Ki) = pi, i = 1, . . . ,m

C(w,K) ∈ RC,

• here, RC is the range of the (linear) integral transform

C : K → RC

π → C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)
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Full Conditions

derived by Henkin & Shananin (1990). A function can be written

C(w,K) =

∫

Rn
+

(wTx−K)+dπ(x)

with w ∈ R
n
+ and K > 0, if and only if:

• C(w,K) is convex and homogenous of degree one;

• limK→∞C(w,K) = 0 and limK→0+
∂C(w,K)

∂K
= −1

• F (w) =

∫

∞

0

e−Kd

(

∂C(w,K)

∂K

)

belongs to C∞

0 (Rn
+)

• For some w̃ ∈ R
n
+ the inequalities: (−1)

k+1
Dξ1...Dξk

F (λw̃) ≥ 0, for all
positive integers k and λ ∈ R++ and all ξ1, . . . , ξk in R

n
+.
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Finer Conditions

• the LP relaxations are sufficient in some particular cases

• can we improve their performance in the general case?

• how do we get super/subreplicating portfolio?

• the method in Bertsimas & Popescu (2002) only gives a relaxation for the
case x ∈ Rn

• the last two conditions (smoothness and total positivity) in the Radon
range characterization are hard to implement, yet they suggest a moment

approach. . .
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Harmonic Analysis on Semigroups

some quick definitions...

• a pair (S, ·) is called a semigroup iff:

◦ if s, t ∈ S then s · t is also in S

◦ there is a neutral element e ∈ S such that e · s = s for all s ∈ S

• the dual S
∗ of S is the set of semicharacters, i.e. applications χ : S → R

such that

◦ χ(s)χ(t) = χ(s · t) for all s, t ∈ S

◦ χ(e) = 1, where e is the neutral element in S

• a function α is called an absolute value on S iff

◦ α(e) = 1
◦ α(s · t) ≤ α(s)α(t), for all s, t ∈ S
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Harmonic Analysis on Semigroups

last definitions (honest)...

• a function f : S → R is positive semidefinite iff for every family {si} ⊂ S

the matrix with elements f(si · sj) is positive semidefinite

• a function f is bounded with respect to the absolute value α iff there is a
constant C > 0 such that

|f(s)| ≤ Cα(s), s ∈ S

• f is exponentially bounded iff it is bounded with respect to an absolute
value
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Harmonic Analysis on Semigroups: Central Result

The central result, see Berg, Christensen & Ressel (1984) based on
Choquet’s theorem:

• the set of exponentially bounded positive definite functions is a Bauer

simplex whose extreme points are the bounded semicharacters...

• this means that we have the following representation for positive definite
functions on S:

f(s) =

∫

S∗

χ(s)dµ(χ)

where µ is a Radon measure on S
∗
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Harmonic Analysis on Semigroups: Simple Examples

• Berstein’s theorem for the Laplace transform

S = (R+,+), χx(t) = e−xt and f(t) =

∫

R+

e−xtdµ(x)

• with involution, Bochner’s theorem for the Fourier transform

S = (R,+), χx(t) = e2πixt and f(t) =

∫

R

e2πixtdµ(x)

• Hamburger’s solution to the unidimensional moment problem

S = (N,+), χx(k) = xk and f(k) =

∫

R

xkdµ(x)
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The Option Pricing Problem Revisited

• the basket option payoffs (wTx−K)+ are not ideal in this setting

• solution, use straddles: |wTx−K|

• as straddles are just the sum of a call and a put, their price can be
computed from that of the corresponding call and forward by call-put
parity

• the fact that |wTx−K|2 is a polynomial keeps the complexity low
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Payoff Semigroup

• the fundamental semigroup S is here the multiplicative payoff semigroup

generated by the cash, the forwards and the straddles:

S = {1, x1, . . . , xn, |w
T
1 x−K1|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . .}

• the semicharacters are the functions χx : S → R which evaluate the
payoffs at a certain point x

χx(s) = s(x), for all s ∈ S

A. d’Aspremont, I.M.A., April 12 2004. 35



The Option Pricing Problem Revisited

• the original static arbitrage problem can be reformulated as

find f
subject to f(|wT

i x−Ki|) = pi, i = 1, . . . ,m
f(s) = Eπ[s], s ∈ S (f moment function)

• the variable is now f : S → R, a function that associates to each payoff s
in S, its price f(s)

• the representation result in Berg et al. (1984) shows when a (price)
function f : S → R can be represented as

f(s) = Eπ[s]
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Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in
Rn

+, and note ei for i = 1, . . . , n+m the forward and option payoff functions
we get:

A function f(s) : S → R can be represented as

f(s) = Eν[s(x)], for all s ∈ S,

for some measure ν with compact support, iff for some β > 0:

(i) f(s) is positive semidefinite

(ii) f(eis) is positive semidefinite for i = 1, . . . , n+m

(iii)
(

βf(s) −
∑n+m

i=1 f(eis)
)

is positive semidefinite

this turns the basket arbitrage problem into a semidefinite program
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Semidefinite Programming

A semidefinite program is written:

minimize TrCX
subject to TrAiX = bi, i = 1, . . . ,m

X � 0,

in the variable X ∈ Sn, with parameters C,Ai ∈ Sn and bi ∈ R for
i = 1, . . . ,m. Its dual is given by:

maximize bTλ
subject to C −

∑m

i=1 λiAi � 0,

in the variable λ ∈ Rm.

A recent extension of interior point techniques for linear programming shows
how to solve these convex programs very efficiently (see Nesterov &
Nemirovskii (1994), Sturm (1999) and Boyd & Vandenberghe (2003)).
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Feasibility Problems

Of course, the related feasibility problems:

find X
such that TrAiX = bi, i = 1, . . . ,m

X � 0,

and
find λ
such that C −

∑m

i=1 λiAi � 0,

can be solved as efficiently (setting for example C = I or b = 1 in the
previous programs.

Also, because most solvers produce both primal and dual solution, we also
get a Farkas type certificate of infeasibility or a proof of optimality in the
duality gap.
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Option Pricing: a Semidefinite Program

we get a relaxation by only sampling the elements of S up to a certain
degree, the variable is then the vector f(s) with

e = (1, x1, . . . , xn, |w
T
1 x−K1|, . . . , |w

T
mx−Km|, x2

1, x1x2, . . . , |w
T
mx−Km|N)

testing for the absence of arbitrage is then a semidefinite program:

find f
subject to MN(f(s)) � 0

MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1 ek)s)
)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(eks))ij = f(eksisj)
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Price Bounds

We can also consider the related problem of finding bounds on the price of a
straddle, given prices of other similar options:

max./min. Eπ(|wT
0 x−K0|)

subject to Eπ(|wT
i x−Ki|) = pi, i = 1, . . . ,m,

which, using the previous result becomes the following semidefinite program:

max./min. f(e0)
subject to MN(f(s)) � 0

MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1 ek)s)
)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

where MN(f(s))ij = f(sisj) and MN(f(eks))ij = f(eksisj).
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Duality

• the price maximization program is:

maximize
∫

Rn
+
(wT

0 x−K0)
+π(x)dx

subject to
∫

Rn
+
(wT

i x−Ki)
+π(x)dx = pi, i = 1, . . . ,m

∫

Rn
+
π(x)dx = 1,

in the variable π ∈ K.

• the dual is a portfolio problem:

minimize λTp+ λ0

subject to
∑m

i=1 λi(w
T
i x−Ki)

+ + λ0 ≥ ψ(x) for every x ∈ Rn
+

in the variable λ ∈ Rm+1.

very intuitive, but completely intractable. . .
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Conic Duality

let Σ ⊂ A(S) be the set of polynomials that are sums of squares of
polynomials in A(S), and P the set of positive semidefinite sequences on S

• instead of the conic duality between probability measures and positive
portfolios

p(x) ≥ 0 ⇔

∫

p(x)dν ≥ 0, for all measures ν

• we use the duality between positive semidefinite sequences P and sums of
squares polynomials Σ

p ∈ Σ ⇔ 〈f, p〉 ≥ 0 for all f ∈ P

with p =
∑

i qiχsi
and f : S → R, where 〈f, p〉 =

∑

i qif(si)
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Option Pricing: Dual

• the dual of the price maximization problem

maximize f(e0)
subject to MN(f(s)) � 0

MN(f(ejs)) � 0, for j = 1, . . . , n,

MN

(

f((β −
∑n+m

k=1 ek)s)
)

� 0

f(ej) = pj, for j = 1, . . . , n+m and s ∈ S

• now becomes...

minimize
∑n+m

j=1 pjλj + λn+m+1

subject to
∑n+m

j=1 λjej(x) + λn+m+1 − |wT
0 x−K0|

= q0(x) +
∑n+m

j=1 qj(x)ej(x) + (β −
∑n+m

k=0 ek(x))qn+1(x)

in the variables λ ∈ Rn+m+1 and qj ∈ Σ for j = 0, . . . , (n+ 1)
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Option Pricing: Numerical Example

• two assets: x1, x2, we look for bounds on the price of |x1 + x2 −K|

• simple discrete model for the assets:

x = {(0, 0), (0, 3), (3, 0), (1, 2), (5, 4)}

with probability
p = (.2, .2, .2, .3, .1)

• the forward prices are given, together with the following straddles:

|x1 − .9|, |x1 − 1|, |x2 − 1.9|, |x2 − 2|, |x2 − 2.1|

A. d’Aspremont, I.M.A., April 12 2004. 45



2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
0

0.5

1

1.5

2

2.5

3

3.5

strike

pr
ic

e

Price Bounds on a Straddle

Figure 1: Upper and lower price bounds on a straddle.
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Option Pricing: Caveats

• size: grows exponentially with the number of assets: no free lunch, even
in numerical complexity. . .

• some numerical difficulties
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Conclusion

• testing for static arbitrage in option price data is easy in dimension one

• the extension on basket options (swaptions, etc) is NP-hard but good
relaxations can be found

• we get a computationally friendly set of conditions for the absence of
arbitrage

• small scale problems are tractable in practice as semidefinite programs
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