A Moment Approach to the Static Arbitrage Problem on Baskets

Alexandre d'Aspremont

EECS Dept., U.C. Berkeley

Introduction

- classic Black \& Scholes (1973) option pricing based on:
- a dynamic hedging argument
- a model for the asset dynamics (geometric BM)
- sensitive to liquidity, transaction costs, model risk ...
- what can we say about option prices with much weaker assumptions?

Static Arbitrage

The fundamental theorem of asset pricing states that:

$$
\text { Absence of Arbitrage } \Leftrightarrow \text { Price }=\mathbf{E}_{\pi}[\text { Payoff }]
$$

Here, we rely on a minimal set of assumptions:

- no assumption on the asset distribution
- one period model

An arbitrage in this simple setting is a buy and hold strategy:

- form a portfolio at no cost today with a strictly positive payoff at maturity
- no trading involved between today and the option's maturity

What for?

- arbitrage free data stripping before calibration
- test extrapolation formulas
- in illiquid markets, find optimal static hedge or bound risk at little cost

Simplest Example: Put Call Parity

We denote by $C(K)$ the price of the call with payoff $(S-K)^{+}$. If we know the forward prices, then we can deduce call prices from puts, ...

Call Spread - Butterfly Spread

Here, the absence of arbitrage implies that the price of a call spread be positive, hence call prices must be decreasing with strike

$$
C(K+\epsilon)-C(K) \leq 0
$$

it also implies that the price of a butterfly spread be positive, and call prices must then be convex with strike

$$
C(K+\epsilon)-2 C(K)+C(K-\epsilon) \geq 0
$$

Price Constraints

The absence of arbitrage implies that if $C(K)$ is a function giving the price of an option of strike K, then $C(K)$ must satisfy:

- $C(K)$ positive
- $C(K)$ decreasing
- $C(K)$ convex

With $C(0)=S$, we have a set of necessary conditions for the absence of arbitrage

Sufficient Conditions

In fact, these conditions are also sufficient, see Laurent \& Leisen (2000) and Bertsimas \& Popescu (2002) among others. . .

Suppose we have a set of market prices for calls $C\left(K_{i}\right)=p_{i}$, then there is no arbitrage iff there is a function $C(K)$:

- $C(K)$ positive
- $C(K)$ decreasing
- $C(K)$ convex
- $C\left(K_{i}\right)=p_{i}$ and $C(0)=S$

This is very easy to test. . .

Dow Jones index call option prices on Mar. 17 2004, maturity Apr. 162004

Source: Reuters.

Why?

data quality...

- all the prices are last quotes (not simultaneous)
- low volume
- some transaction costs

Problem: this data is used to calibrate models and price other derivatives...

Dimension n: Basket Options

- a basket call payoff is

$$
\left(\sum_{i=1}^{k} w_{i} S_{i}-K\right)
$$

where w_{1}, \ldots, w_{k} are the basket's weights and K is the option's strike price

- examples include: Index options, spread options, swaptions...
- basket option prices are used to gather information on correlation

We denote by $C(w, K)$ the price of such an option, can we get conditions to test basket price data?

Necessary Conditions

Similar to dimension one...

Suppose we have a set of market prices for calls $C\left(w_{i}, K_{i}\right)=p_{i}$, and there is no arbitrage, then the function $C(w, K)$ satisfies:

- $C(w, K)$ positive
- $C(w, K)$ decreasing in K, increasing in w
- $C(w, K)$ jointly convex in (w, K)
- $C\left(w_{i}, K_{i}\right)=p_{i}$ and $C(0)=S$

Is this still tractable (in dimension n)?

Tractable?

The problem can be formulated as:

$$
\begin{array}{ll}
\text { find } & z \\
\text { subject to } & A z \leq b, C z=d \\
& z=\left[f\left(x_{1}\right), \ldots, f\left(x_{k}\right), g_{1}^{T}, \ldots, g_{k}^{T}\right]^{T} \\
& g_{i} \text { subgradient of } f \text { at } x_{i} \quad i=1, \ldots, k \\
& f \text { monotone, convex }
\end{array}
$$

in the variables $f \in C\left(\mathbf{R}^{n}\right), z \in \mathbf{R}^{(n+1) k}, g_{1}, \ldots, g_{k} \in \mathbf{R}^{n}$

- discretize and sample the convexity constraints to get a polynomial size LP feasibility problem
- enforce the convexity and subgradient constraints at the points $\left(x_{i}\right)_{i=1, \ldots, k}$ (monotonicity is a simple inequality on g) to get:

$$
\begin{array}{ll}
\text { find } & z \\
\text { subject to } & C z=d, A z \leq b \\
& z=\left[f\left(x_{1}\right), \ldots, f\left(x_{k}\right), g_{1}^{T}, \ldots, g_{k}^{T}\right]^{T} \\
& \left\langle g_{i}, x_{j}-x_{i}\right\rangle \leq f\left(x_{j}\right)-f\left(x_{i}\right) \quad i, j=1, \ldots, k
\end{array}
$$

in the variables $f\left(x_{i}\right)_{i=1, \ldots, k}$ and g in $\mathbf{R}^{k} \times \mathbf{R}^{(n+1) \times k}$

- we note $z^{\mathrm{opt}}=\left[f^{\mathrm{opt}}\left(x_{1}\right), \ldots, f^{\mathrm{opt}}\left(x_{k}\right),\left(g_{1}^{\mathrm{opt}}\right)^{T}, \ldots,\left(g_{k}^{\mathrm{opt}}\right)^{T}\right]^{T}$ a solution to this problem
- from $z^{\text {opt }}$, we define:

$$
C(x)=\max _{i=1, \ldots, k}\left\{f^{\mathrm{opt}}\left(x_{i}\right)+\left\langle g_{i}^{\mathrm{opt}}, x-x_{i}\right\rangle\right\}
$$

- by construction, $C\left(x_{i}\right)$ solves the finite LP with:

$$
C\left(x_{i}\right)=f^{\mathrm{opt}}\left(x_{i}\right), \quad i=1, \ldots, k
$$

- $C(x)$ is convex and monotone as the pointwise maximum of monotone affine functions
- so $C(x)$ is also a feasible point of the original problem

This means that $C(x)$ is a solution for the original (infinite dimensional) problem.

Relaxation

The previous result means that the price conditions remain tractable on basket options... They are equivalent to the following feasibility problem:

$$
\begin{array}{ll}
\text { find } & g_{i} \\
\text { subject to } & \left\langle g_{i},\left(w_{j}, K_{j}\right)-\left(w_{i}, K_{i}\right)\right\rangle \leq p_{j}-p_{i} \\
& g_{i, j} \geq 0, \quad j=1, \ldots, n \\
& -1 \leq g_{i, n+1} \leq 0 \\
& \left\langle g_{i},\left(w_{i}, K_{i}\right)\right\rangle=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

where the variables $g_{i} \in \mathbf{R}^{n}$ are the subgradients of $C(w, K)$ at the points $\left(w_{i}, K_{i}\right)$.

Sufficient?

A key difference with dimension one: Bertsimas \& Popescu (2002) show that the exact problem is NP-Hard.

- the conditions are only necessary...
- however, numerical cost is minimal (small LP)
- we can show sufficiency in some particular cases
- how tight are these conditions in general?

Numerical Example

- two assets: x_{1}, x_{2}, we look for upper and lower bounds on the price of a particular basket $\left(x_{1}+x_{2}-K\right)^{+}$
- simple discrete model for the assets:

$$
x=\{(0,0),(0, .8),(.8, .3),(.6, .6),(.1, .4),(1,1)\}
$$

with probability

$$
\pi=(.2, .2, .2, .1, .1, .2)
$$

- the forward prices are given, together with the following call prices:

$$
\begin{aligned}
& \left(.2 x_{1}+x_{2}-.1\right)^{+},\left(.5 x_{1}+.8 x_{2}-.8\right)^{+},\left(.5 x_{1}+.3 x_{2}-.4\right)^{+} \\
& \left(x_{1}+.3 x_{2}-.5\right)^{+},\left(x_{1}+.5 x_{2}-.5\right)^{+},\left(x_{1}+.4 x_{2}-1\right)^{+},\left(x_{1}+.6 x_{2}-1.2\right)^{+}
\end{aligned}
$$

- we compare the (outer) price bounds given by the previous relaxation with inner bounds computed by discretizing.

Numerical Example

We compare the outer bounds on the price p_{0} of the $\left(x_{1}+x_{2}-K\right)^{+}$basket obtained by solving:

$$
\begin{array}{ll}
\operatorname{max.} / \min . & p_{0} \\
\operatorname{subject~to~} & \left\langle g_{i},\left(w_{j}, K_{j}\right)-\left(w_{i}, K_{i}\right)\right\rangle \leq p_{j}-p_{i} \\
& g_{i, j} \geq 0, \quad j=1, \ldots, n \\
& -1 \leq g_{i, n+1} \leq 0 \\
& \left\langle g_{i},\left(w_{i}, K_{i}\right)\right\rangle=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

with the inner bounds obtained by solving:

$$
\begin{array}{ll}
\operatorname{max.} / \min . & \mathbf{E}_{\pi}\left(\left|w_{0}^{T} x-K_{0}\right|\right) \\
\text { subject to } & \mathbf{E}_{\pi}\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

which becomes a simple (albeit large) linear program after we discretize π.

Price Bounds

Multivariate Black-Scholes Model

Here, we compare the outer bounds on the price p_{0} of a basket obtained by solving the relaxation:

$$
\begin{array}{ll}
\operatorname{max.} / \min . & p_{0} \\
\text { subject to } & \left\langle g_{i},\left(w_{j}, K_{j}\right)-\left(w_{i}, K_{i}\right)\right\rangle \leq p_{j}-p_{i} \\
& g_{i, j} \geq 0, \quad j=1, \ldots, n \\
& -1 \leq g_{i, n+1} \leq 0 \\
& \left\langle g_{i},\left(w_{i}, K_{i}\right)\right\rangle=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

with the inner bounds computed as:

$$
\begin{array}{ll}
\max . / \min . & B S\left(T, w_{0}, V\right) \\
\text { subject to } & B S\left(T, w_{i}, V\right)=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

in the variable $V \in \mathbf{S}^{n}$, corresponding to extreme prices on a basket option in a multivariate Black-Scholes model, given prices p_{i} of other basket options with weights w_{i}.

Multivariate Black-Scholes Model

Close the Gap

The gap is surprisingly large. . .

- ATM prices are not supposed to be very sensitive to the smile
- approx. lognormal model calibrate easily to swaption data in practice

How can we improve the static bounds (so we know when to blame the model)?

Integral Transform Solution

- we can write the set off call prices as:

$$
\begin{aligned}
C(w, K) & =\mathbf{E}_{\pi}\left(w^{T} x-K\right)_{+} \\
& =\int_{\mathbf{R}_{+}^{n}}\left(w^{T} x-K\right)_{+} d \pi(x)
\end{aligned}
$$

and think of $C_{\pi}(w, K)$ as a particular integral transform of the measure π

- at least formally, we have:

$$
\frac{\partial^{2} C(w, K)}{\partial K^{2}}=\int_{\mathbf{R}_{+}^{n}} \delta\left(w^{T} x-K\right) \pi(x) d x
$$

- this means that $\partial^{2} C(w, K) / \partial K^{2}$ is the Radon transform (see Helgason (1999) or Ramm \& Katsevich (1996)) of the measure π

A Range Characterization Problem...

- the general arbitrage problem can written as the following infinite dimensional problem:

$$
\begin{array}{ll}
\text { find } & C(w, K) \\
\text { subject to } & C\left(w_{i}, K_{i}\right)=p_{i}, \quad i=1, \ldots, m \\
& C(w, K) \in \mathcal{R}_{C},
\end{array}
$$

- here, \mathcal{R}_{C} is the range of the (linear) integral transform

$$
\begin{aligned}
C: & \mathcal{K} \rightarrow \mathcal{R}_{C} \\
& \pi \rightarrow C(w, K)=\int_{\mathbf{R}_{+}^{n}}\left(w^{T} x-K\right)_{+} d \pi(x)
\end{aligned}
$$

Full Conditions

derived by Henkin \& Shananin (1990). A function can be written

$$
C(w, K)=\int_{\mathbf{R}_{+}^{n}}\left(w^{T} x-K\right)^{+} d \pi(x)
$$

with $w \in \mathbf{R}_{+}^{n}$ and $K>0$, if and only if:

- $C(w, K)$ is convex and homogenous of degree one;
- $\lim _{K \rightarrow \infty} C(w, K)=0$ and $\lim _{K \rightarrow 0^{+}} \frac{\partial C(w, K)}{\partial K}=-1$
- $F(w)=\int_{0}^{\infty} e^{-K} d\left(\frac{\partial C(w, K)}{\partial K}\right)$ belongs to $C_{0}^{\infty}\left(\mathbf{R}_{+}^{n}\right)$
- For some $\tilde{w} \in \mathbf{R}_{+}^{n}$ the inequalities: $(-1)^{k+1} D_{\xi_{1} \ldots D_{\xi_{k}}} F(\lambda \tilde{w}) \geq 0$, for all positive integers k and $\lambda \in \mathbf{R}_{++}$and all ξ_{1}, \ldots, ξ_{k} in \mathbf{R}_{+}^{n}.

Finer Conditions

- the LP relaxations are sufficient in some particular cases
- can we improve their performance in the general case?
- how do we get super/subreplicating portfolio?
- the method in Bertsimas \& Popescu (2002) only gives a relaxation for the case $x \in \mathbf{R}^{n}$
- the last two conditions (smoothness and total positivity) in the Radon range characterization are hard to implement, yet they suggest a moment approach. . .

Harmonic Analysis on Semigroups

some quick definitions...

- a pair (\mathbb{S}, \cdot) is called a semigroup iff:
- if $s, t \in \mathbb{S}$ then $s \cdot t$ is also in \mathbb{S}
- there is a neutral element $e \in \mathbb{S}$ such that $e \cdot s=s$ for all $s \in \mathbb{S}$
- the dual \mathbb{S}^{*} of \mathbb{S} is the set of semicharacters, i.e. applications $\chi: \mathbb{S} \rightarrow \mathbf{R}$ such that
- $\chi(s) \chi(t)=\chi(s \cdot t)$ for all $s, t \in \mathbb{S}$
- $\chi(e)=1$, where e is the neutral element in \mathbb{S}
- a function α is called an absolute value on \mathbb{S} iff
- $\alpha(e)=1$
- $\alpha(s \cdot t) \leq \alpha(s) \alpha(t)$, for all $s, t \in \mathbb{S}$

Harmonic Analysis on Semigroups

last definitions (honest)...

- a function $f: \mathbb{S} \rightarrow \mathbf{R}$ is positive semidefinite iff for every family $\left\{s_{i}\right\} \subset \mathbb{S}$ the matrix with elements $f\left(s_{i} \cdot s_{j}\right)$ is positive semidefinite
- a function f is bounded with respect to the absolute value α iff there is a constant $C>0$ such that

$$
|f(s)| \leq C \alpha(s), \quad s \in \mathbb{S}
$$

- f is exponentially bounded iff it is bounded with respect to an absolute value

Harmonic Analysis on Semigroups: Central Result

The central result, see Berg, Christensen \& Ressel (1984) based on Choquet's theorem:

- the set of exponentially bounded positive definite functions is a Bauer simplex whose extreme points are the bounded semicharacters...
- this means that we have the following representation for positive definite functions on \mathbb{S} :

$$
f(s)=\int_{\mathbb{S}^{*}} \chi(s) d \mu(\chi)
$$

where μ is a Radon measure on \mathbb{S}^{*}

Harmonic Analysis on Semigroups: Simple Examples

- Berstein's theorem for the Laplace transform

$$
\mathbb{S}=\left(\mathbf{R}_{+},+\right), \chi_{x}(t)=e^{-x t} \text { and } f(t)=\int_{\mathbf{R}_{+}} e^{-x t} d \mu(x)
$$

- with involution, Bochner's theorem for the Fourier transform

$$
\mathbb{S}=(\mathbf{R},+), \chi_{x}(t)=e^{2 \pi i x t} \text { and } f(t)=\int_{\mathbf{R}} e^{2 \pi i x t} d \mu(x)
$$

- Hamburger's solution to the unidimensional moment problem

$$
\mathbb{S}=(\mathbf{N},+), \chi_{x}(k)=x^{k} \quad \text { and } \quad f(k)=\int_{\mathbf{R}} x^{k} d \mu(x)
$$

The Option Pricing Problem Revisited

- the basket option payoffs $\left(w^{T} x-K\right)_{+}$are not ideal in this setting
- solution, use straddles: $\left|w^{T} x-K\right|$
- as straddles are just the sum of a call and a put, their price can be computed from that of the corresponding call and forward by call-put parity
- the fact that $\left|w^{T} x-K\right|^{2}$ is a polynomial keeps the complexity low

Payoff Semigroup

- the fundamental semigroup \mathbb{S} is here the multiplicative payoff semigroup generated by the cash, the forwards and the straddles:

$$
\mathbb{S}=\left\{1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots\right\}
$$

- the semicharacters are the functions $\chi_{x}: \mathbb{S} \rightarrow \mathbf{R}$ which evaluate the payoffs at a certain point x

$$
\chi_{x}(s)=s(x), \quad \text { for all } s \in \mathbb{S}
$$

The Option Pricing Problem Revisited

- the original static arbitrage problem can be reformulated as

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & f\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m \\
& f(s)=\mathbf{E}_{\pi}[s], \quad s \in \mathbb{S} \quad \text { (f moment function) }
\end{array}
$$

- the variable is now $f: \mathbb{S} \rightarrow \mathbf{R}$, a function that associates to each payoff s in \mathbb{S}, its price $f(s)$
- the representation result in Berg et al. (1984) shows when a (price) function $f: \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\pi}[s]
$$

Option Pricing: Main Theorem

If we assume that the asset distribution has a compact support included in \mathbf{R}_{+}^{n}, and note e_{i} for $i=1, \ldots, n+m$ the forward and option payoff functions we get:

A function $f(s): \mathbb{S} \rightarrow \mathbf{R}$ can be represented as

$$
f(s)=\mathbf{E}_{\nu}[s(x)], \quad \text { for all } s \in \mathbb{S}
$$

for some measure ν with compact support, iff for some $\beta>0$:
(i) $f(s)$ is positive semidefinite
(ii) $f\left(e_{i} s\right)$ is positive semidefinite for $i=1, \ldots, n+m$
(iii) $\left(\beta f(s)-\sum_{i=1}^{n+m} f\left(e_{i} s\right)\right)$ is positive semidefinite
this turns the basket arbitrage problem into a semidefinite program

Semidefinite Programming

A semidefinite program is written:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr} C X \\
\text { subject to } & \operatorname{Tr} A_{i} X=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

in the variable $X \in \mathbf{S}^{n}$, with parameters $C, A_{i} \in \mathbf{S}^{n}$ and $b_{i} \in \mathbf{R}$ for $i=1, \ldots, m$. Its dual is given by:

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \lambda \\
\text { subject to } & C-\sum_{i=1}^{m} \lambda_{i} A_{i} \succeq 0
\end{array}
$$

in the variable $\lambda \in \mathbf{R}^{m}$.
A recent extension of interior point techniques for linear programming shows how to solve these convex programs very efficiently (see Nesterov \& Nemirovskii (1994), Sturm (1999) and Boyd \& Vandenberghe (2003)).

Feasibility Problems

Of course, the related feasibility problems:

$$
\begin{array}{ll}
\text { find } & X \\
\text { such that } & \operatorname{Tr} A_{i} X=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

and

can be solved as efficiently (setting for example $C=I$ or $b=\mathbf{1}$ in the previous programs.

Also, because most solvers produce both primal and dual solution, we also get a Farkas type certificate of infeasibility or a proof of optimality in the duality gap.

Option Pricing: a Semidefinite Program

we get a relaxation by only sampling the elements of \mathbb{S} up to a certain degree, the variable is then the vector $f(s)$ with
$e=\left(1, x_{1}, \ldots, x_{n},\left|w_{1}^{T} x-K_{1}\right|, \ldots,\left|w_{m}^{T} x-K_{m}\right|, x_{1}^{2}, x_{1} x_{2}, \ldots,\left|w_{m}^{T} x-K_{m}\right|^{N}\right)$
testing for the absence of arbitrage is then a semidefinite program:

$$
\begin{array}{ll}
\text { find } & f \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(e_{k} s\right)\right)_{i j}=f\left(e_{k} s_{i} s_{j}\right)$

Price Bounds

We can also consider the related problem of finding bounds on the price of a straddle, given prices of other similar options:

$$
\begin{array}{ll}
\max . / \min . & \mathbf{E}_{\pi}\left(\left|w_{0}^{T} x-K_{0}\right|\right) \\
\text { subject to } & \mathbf{E}_{\pi}\left(\left|w_{i}^{T} x-K_{i}\right|\right)=p_{i}, \quad i=1, \ldots, m
\end{array}
$$

which, using the previous result becomes the following semidefinite program:

$$
\begin{array}{ll}
\operatorname{max.} / \min . & f\left(e_{0}\right) \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

where $M_{N}(f(s))_{i j}=f\left(s_{i} s_{j}\right)$ and $M_{N}\left(f\left(e_{k} s\right)\right)_{i j}=f\left(e_{k} s_{i} s_{j}\right)$.

Duality

- the price maximization program is:

$$
\begin{array}{ll}
\operatorname{maximize} & \int_{\mathbf{R}_{+}^{n}}\left(w_{0}^{T} x-K_{0}\right)^{+} \pi(x) d x \\
\text { subject to } & \int_{\mathbf{R}_{+}^{n}}\left(w_{i}^{T} x-K_{i}\right)^{+} \pi(x) d x=p_{i}, \quad i=1, \ldots, m \\
& \int_{\mathbf{R}_{+}^{n}} \pi(x) d x=1,
\end{array}
$$

in the variable $\pi \in \mathcal{K}$.

- the dual is a portfolio problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} p+\lambda_{0} \\
\text { subject to } & \sum_{i=1}^{m} \lambda_{i}\left(w_{i}^{T} x-K_{i}\right)^{+}+\lambda_{0} \geq \psi(x) \text { for every } x \in \mathbf{R}_{+}^{n}
\end{array}
$$

in the variable $\lambda \in \mathbf{R}^{m+1}$.
very intuitive, but completely intractable. . .

Conic Duality

let $\Sigma \subset \mathcal{A}(\mathbb{S})$ be the set of polynomials that are sums of squares of polynomials in $\mathcal{A}(\mathbb{S})$, and \mathcal{P} the set of positive semidefinite sequences on \mathbb{S}

- instead of the conic duality between probability measures and positive portfolios

$$
p(x) \geq 0 \Leftrightarrow \int p(x) d \nu \geq 0, \quad \text { for all measures } \nu
$$

- we use the duality between positive semidefinite sequences \mathcal{P} and sums of squares polynomials Σ

$$
p \in \Sigma \Leftrightarrow\langle f, p\rangle \geq 0 \text { for all } f \in \mathcal{P}
$$

with $p=\sum_{i} q_{i} \chi_{s_{i}}$ and $f: \mathbb{S} \rightarrow \mathbf{R}$, where $\langle f, p\rangle=\sum_{i} q_{i} f\left(s_{i}\right)$

Option Pricing: Dual

- the dual of the price maximization problem

$$
\begin{array}{cl}
\operatorname{maximize} & f\left(e_{0}\right) \\
\text { subject to } & M_{N}(f(s)) \succeq 0 \\
& M_{N}\left(f\left(e_{j} s\right)\right) \succeq 0, \quad \text { for } j=1, \ldots, n, \\
& M_{N}\left(f\left(\left(\beta-\sum_{k=1}^{n+m} e_{k}\right) s\right)\right) \succeq 0 \\
& f\left(e_{j}\right)=p_{j}, \quad \text { for } j=1, \ldots, n+m \text { and } s \in \mathbb{S}
\end{array}
$$

- now becomes...

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n+m} p_{j} \lambda_{j}+\lambda_{n+m+1} \\
\text { subject to } & \sum_{j=1}^{n+m} \lambda_{j} e_{j}(x)+\lambda_{n+m+1}-\left|w_{0}^{T} x-K_{0}\right| \\
& =q_{0}(x)+\sum_{j=1}^{n+m} q_{j}(x) e_{j}(x)+\left(\beta-\sum_{k=0}^{n+m} e_{k}(x)\right) q_{n+1}(x)
\end{array}
$$

in the variables $\lambda \in \mathbf{R}^{n+m+1}$ and $q_{j} \in \Sigma$ for $j=0, \ldots,(n+1)$

Option Pricing: Numerical Example

- two assets: x_{1}, x_{2}, we look for bounds on the price of $\left|x_{1}+x_{2}-K\right|$
- simple discrete model for the assets:

$$
x=\{(0,0),(0,3),(3,0),(1,2),(5,4)\}
$$

with probability

$$
p=(.2, .2, .2, .3, .1)
$$

- the forward prices are given, together with the following straddles:

$$
\left|x_{1}-.9\right|,\left|x_{1}-1\right|,\left|x_{2}-1.9\right|,\left|x_{2}-2\right|,\left|x_{2}-2.1\right|
$$

Figure 1: Upper and lower price bounds on a straddle.

Option Pricing: Caveats

- size: grows exponentially with the number of assets: no free lunch, even in numerical complexity. . .
- some numerical difficulties

Conclusion

- testing for static arbitrage in option price data is easy in dimension one
- the extension on basket options (swaptions, etc) is NP-hard but good relaxations can be found
- we get a computationally friendly set of conditions for the absence of arbitrage
- small scale problems are tractable in practice as semidefinite programs

References

Berg, C., Christensen, J. P. R. \& Ressel, P. (1984), Harmonic analysis on semigroups : theory of positive definite and related functions, Vol. 100 of Graduate texts in mathematics, Springer-Verlag, New York.

Bertsimas, D. \& Popescu, I. (2002), 'On the relation between option and stock prices: a convex optimization approach', Operations Research 50(2), 358-374.

Black, F. \& Scholes, M. (1973), 'The pricing of options and corporate liabilities', Journal of Political Economy 81, 637-659.

Boyd, S. \& Vandenberghe, L. (2003), Convex Optimization, Cambridge University Press.

Helgason, S. (1999), The Radon transform, 2nd edn, Birkhauser, Boston. Progress in mathematics (Boston, Mass.) ; vol. 5.

Henkin, G. \& Shananin, A. (1990), 'Bernstein theorems and Radon transform, application to the theory of production functions', American Mathematical Society: Translation of mathematical monographs 81, 189-223.

Laurent, J. \& Leisen, D. (2000), Building a consistent pricing model from observed option prices, in M. Avellaneda, ed., 'Quantitative Analysis in Financial Markets', World Scientific Publishing.

Nesterov, I. \& Nemirovskii, A. (1994), Interior-point polynomial algorithms in convex programming, Society for Industrial and Applied Mathematics, Philadelphia.

Ramm, A. G. \& Katsevich, A. I. (1996), The radon transform and local tomography, CRC Press, Boca Raton.

Sturm, J. F. (1999), 'Using sedumi 1.0x, a matlab toolbox for optimization over symmetric cones.', Working paper, Department of Quantitative Economics, Maastricht University, The Netherlands. .

