An Optimal Affine Invariant Smooth Minimization Algorithm.

Alexandre d'Aspremont, CNRS \& D.I. ENS.

with Cristóbal Guzmán, Vincent Roulet, Nicolas Boumal \& Martin Jaggi. Support from ERC SIPA.

Introduction

A complexity bound.

$$
O\left(\frac{n \log n}{\epsilon}\right)
$$

Introduction

A complexity bound, if we're lucky. . .

$$
O\left(\frac{L n \log n}{\epsilon}\right)
$$

Introduction

A complexity bound, if we're lucky. . .

$$
O\left(\frac{L n \log n}{\epsilon}\right)
$$

One thing missing: the data.

Introduction

Big gap between worst-case complexity and empirical performance for first-order optimization algorithms.

- Data-driven complexity bounds?
- In particular, quantify the complexity vs. statistical performance tradeoff?

Outline

- Affine invariant bounds.
- Renegar's condition number and compressed sensing.

A Basic Convex Problem

Solve

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in Q,
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

- Here, $f(x)$ is convex, smooth.
- Assume $Q \subset \mathbb{R}^{n}$ is compact, convex and simple.

Complexity

Newton's method. At each iteration, take a step in the direction

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

Assume that

- the function $f(x)$ is self-concordant, i.e. $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$,
- the set Q has a self concordant barrier $g(x)$.
[Nesterov and Nemirovskii, 1994] Newton's method produces an ϵ optimal solution to the barrier problem

$$
\min _{x} h(x) \triangleq f(x)+t g(x)
$$

for some $t>0$, in at most

$$
\frac{20-8 \alpha}{\alpha \beta(1-2 \alpha)^{2}}\left(h\left(x_{0}\right)-h^{*}\right)+\log _{2} \log _{2}(1 / \epsilon) \text { iterations }
$$

where $0<\alpha<0.5$ and $0<\beta<1$ are line search parameters.

Complexity

Newton's method. Basically

$$
\text { \# Newton iterations } \leq 375\left(h\left(x_{0}\right)-h^{*}\right)+6
$$

- Empirically valid, up to constants.
- Independent from the dimension n .
- Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

- Form the Hessian.
- Solve the Newton (or KKT) system $\nabla^{2} f(x) \Delta x_{\mathrm{nt}}=-\nabla f(x)$.

Affine Invariance

Set $x=A y$ where $A \in \mathbb{R}^{n \times n}$ is nonsingular

minimize	$f(x)$			
subject to	$x \in Q$,	\quad becomes \quad	minimize	$\hat{f}(y)$
:---	:---			
subject to	$y \in \hat{Q}$,			

in the variable $y \in \mathbb{R}^{n}$, where $\hat{f}(y) \triangleq f(A y)$ and $\hat{Q} \triangleq A^{-1} Q$.

- Identical Newton steps, with $\Delta x_{\mathrm{nt}}=A \Delta y_{\mathrm{nt}}$
- Identical complexity bounds $375\left(h\left(x_{0}\right)-h^{*}\right)+6$ since $h^{*}=\hat{h}^{*}$

Newton's method is invariant w.r.t. an affine change of coordinates. The same is true for its complexity analysis.

Large-Scale Problems

The challenge now is scaling.

- Newton's method (and derivatives) solve all reasonably large problems.
- Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?

Franke-Wolfe

Conditional gradient. At each iteration, solve

$$
\begin{array}{ll}
\text { minimize } & \left\langle\nabla f\left(x_{k}\right), u\right\rangle \\
\text { subject to } & u \in Q
\end{array}
$$

in $u \in \mathbb{R}^{n}$. Define the curvature

$$
C_{f} \triangleq \sup _{\substack{s, x \in \mathcal{M}, \alpha \in[0,1], y=x+\alpha(s-x)}} \frac{1}{\alpha^{2}}(f(y)-f(x)-\langle y-x, \nabla f(x)\rangle) .
$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$
N_{\max }=\frac{4 C_{f}}{\epsilon}
$$

iterations.

■ C_{f} is affine invariant but the bound is suboptimal in ϵ in many cases.

- If $f(x)$ has a Lipschitz gradient, the lower bound can be as low as $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Optimal First-Order Methods

Smooth Minimization algorithm in [Nesterov, 1983] to solve

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in Q
\end{array}
$$

Original paper was in an Euclidean setting. In the general case. . .

- Choose a norm $\|\cdot\| \cdot \nabla f(x)$ Lipschitz with constant L w.r.t. $\|\cdot\|$

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L\|y-x\|^{2}, \quad x, y \in Q
$$

- Choose a prox function $d(x)$ for the set Q, with

$$
\frac{\sigma}{2}\left\|x-x_{0}\right\|^{2} \leq d(x)
$$

for some $\sigma>0$.

Optimal First-Order Methods

Smooth minimization algorithm [Nesterov, 2005]

Input: x_{0}, the prox center of the set Q.
1: for $k=0, \ldots, N$ do
2: \quad Compute $\nabla f\left(x_{k}\right)$.
3: \quad Compute $y_{k}=\operatorname{argmin}_{y \in Q}\left\{\left\langle\nabla f\left(x_{k}\right), y-x_{k}\right\rangle+\frac{1}{2} L\left\|y-x_{k}\right\|^{2}\right\}$.
4: Compute $z_{k}=\operatorname{argmin}_{x \in Q}\left\{\sum_{i=0}^{k} \alpha_{i}\left[f\left(x_{i}\right)+\left\langle\nabla f\left(x_{i}\right), x-x_{i}\right\rangle\right]+\frac{L}{\sigma} d(x)\right\}$.
5: \quad Set $x_{k+1}=\tau_{k} z_{k}+\left(1-\tau_{k}\right) y_{k}$.
6: end for
Output: $x_{N}, y_{N} \in Q$.
Produces an ϵ-solution in at most

$$
N_{\max }=\sqrt{\frac{8 L}{\epsilon} \frac{d\left(x^{\star}\right)}{\sigma}}
$$

iterations. Optimal in ϵ, but not affine invariant.
Heavily used: TFOCS, NESTA, Structured ℓ_{1}, \ldots

Optimal First-Order Methods

Choosing norm and prox can have a big impact, beyond the immediate computational cost of computing the prox steps. Consider the following matrix game problem

$$
\min _{\left\{\mathbf{1}^{T} x=1, x \geq 0\right\}} \max _{\left\{\mathbf{1}^{T} x=1, x \geq 0\right\}} x^{T} A y
$$

- Euclidean prox. Pick $\|\cdot\|_{2}$ and $d(x)=\|x\|_{2}^{2} / 2$, after regularization, the complexity bound is

$$
N_{\max }=\frac{4\|A\|_{2}}{N+1}
$$

- Entropy prox. Pick $\|\cdot\|_{1}$ and $d(x)=\sum_{i} x_{i} \log x_{i}+\log n$, the bound becomes

$$
N_{\max }=\frac{4 \sqrt{\log n \log m} \max _{i j}\left|A_{i j}\right|}{N+1}
$$

which can be significantly smaller.

Speedup is roughly \sqrt{n} when A is Bernoulli. . .

Choosing the norm

Invariance means $\|\cdot\|$ and $d(x)$ constructed using only f and the set Q.

Minkovski gauge. Assume Q is centrally symmetric with non-empty interior.
The Minkowski gauge of Q is a norm: $\|x\|_{Q} \triangleq \inf \{\lambda \geq 0: x \in \lambda Q\}$

Lemma

Affine invariance. The function $f(x)$ has Lipschitz continuous gradient with respect to the norm $\|\cdot\|_{Q}$ with constant $L_{Q}>0$, i.e.

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L_{Q}\|y-x\|_{Q}^{2}, \quad x, y \in Q,
$$

if and only if the function $f(A w)$ has Lipschitz continuous gradient with respect to the norm $\|\cdot\|_{A^{-1} Q}$ with the same constant L_{Q}.

A similar result holds for strong convexity. Note that $\|x\|_{Q}^{*}=\|x\|_{Q^{\circ}}$.

Choosing the prox.

How do we choose the prox.? Start with two definitions.

Definition

Banach-Mazur distance. Suppose $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$ are two norms on a space E, the distortion $d\left(\|\cdot\|_{X},\|\cdot\|_{Y}\right)$ is the

$$
\text { smallest product } a b>0 \text { such that } \frac{1}{b}\|x\|_{Y} \leq\|x\|_{X} \leq a\|x\|_{Y}, \text { for all } x \in E .
$$

$\log \left(d\left(\|\cdot\|_{X},\|\cdot\|_{Y}\right)\right)$ is the Banach-Mazur distance between X and Y.

Choosing the prox.

Regularity constant. Regularity constant of $(E,\|\cdot\|)$, defined in [Juditsky and Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach $(E,\|\|$.$) . The smallest constant \Delta>0$ for which there exists a smooth norm $p(x)$ such that

- The prox $p(x)^{2} / 2$ has a Lipschitz continuous gradient w.r.t. the norm $p(x)$, with constant μ where $1 \leq \mu \leq \Delta$,
- The norm $p(x)$ satisfies

$$
\|x\| \leq p(x) \leq\|x\|\left(\frac{\Delta}{\mu}\right)^{1 / 2}, \quad \text { for all } x \in E
$$

i.e. $d(p(x),\|\cdot\|) \leq \sqrt{\Delta / \mu}$.

Complexity

Using the algorithm in [Nesterov, 2005] to solve

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in Q
\end{array}
$$

Proposition [d'Aspremont, Guzman, and Jaggi, 2013]

Affine invariant complexity bounds. Suppose $f(x)$ has a Lipschitz continuous gradient with constant L_{Q} with respect to the norm $\|\cdot\|_{Q}$ and the space $\left(\mathbb{R}^{n},\|\cdot\|_{Q}^{*}\right)$ is D_{Q}-regular, then the smooth algorithm in [Nesterov, 2005] will produce an ϵ solution in at most

$$
N_{\max }=\sqrt{\frac{4 L_{Q} D_{Q}}{\epsilon}}
$$

iterations. Furthermore, the constants L_{Q} and D_{Q} are affine invariant.

We can show $C_{f} \leq L_{Q} D_{Q}$, but it is not clear if the bound is attained. . .

Complexity, ℓ_{1} example

Minimizing a smooth convex function over the unit simplex

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & \mathbf{1}^{T} x \leq 1, x \geq 0
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

- Choosing $\|\cdot\|_{1}$ as the norm and $d(x)=\log n+\sum_{i=1}^{n} x_{i} \log x_{i}$ as the prox function, complexity bounded by

$$
\sqrt{8 \frac{L_{1} \log n}{\epsilon}}
$$

(note L_{1} is lowest Lipschitz constant among all ℓ_{p} norm choices.)

- Symmetrizing the simplex into the ℓ_{1} ball. The space $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ is $2 \log n$ regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen here is $\|\cdot\|_{\alpha}^{2} / 2$, with $\alpha=2 \log n /(2 \log n-1)$ and our complexity bound is

$$
\sqrt{16 \frac{L_{1} \log n}{\epsilon}}
$$

In practice

Easy and hard problems.

- The parameter L_{Q} satisfies

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L_{Q}\|y-x\|_{Q}^{2}, \quad x, y \in Q,
$$

On easy problems, $\|\cdot\|$ is large in directions where ∇f is large, i.e. the sublevel sets of $f(x)$ and Q are aligned.

- For l_{p} spaces for $p \in[2, \infty]$, the unit balls B_{p} have low regularity constants,

$$
D_{B_{p}} \leq \min \{p-1,2 \log n\}
$$

while $D_{B_{1}}=n$ (worst case).

- By duality, problems over unit balls B_{q} for $q \in[1,2]$ are easier.
- Optimizing over cubes is harder.

Optimality

How good are these bounds?

- Affine invariance does not imply that this complexity bound is tight. . .
- In fact, the worst choice of norm and prox. yields a bound in $\frac{L d\left(x^{\star}\right)}{\sigma}$ that is also affine invariant.

Can we show optimality?

Optimality: upper bounds

Optimizing over ℓ_{p} balls. Focus now on the problem of solving

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{B}_{p}
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, where \mathcal{B}_{p} is the ℓ_{p} ball. We show that

$$
N_{\max }=\sqrt{\frac{4 L_{p} D_{p}}{\epsilon}}
$$

The constants D_{p} can be computed explicitly (idem for the corresponding norms).

- When $p \in[2, \infty]$, we have $D_{p}=n^{\frac{p-2}{p}}$.
- When $p \in[1,2]$, Juditsky et al. [2009, Ex. 3.2] show

$$
D_{p}=\inf _{2 \leq \rho<\frac{p}{p-1}}(\rho-1) n^{\frac{2}{\rho}-\frac{2(p-1)}{p}} \leq \min \left\{\frac{p}{p-1}, C \log n\right\}
$$

where $C>0$ is an absolute constant.

Optimality: lower bounds

Optimizing over ℓ_{p} balls. In the range $p \in[1,2]$ the lower bound on risk from Guzmán and Nemirovski [2013] is given by

$$
\Omega\left(\frac{L}{T^{2} \log [T+1]}\right)
$$

which translates into the following lower bound on iteration complexity

$$
\Omega\left(\sqrt{\frac{L}{\epsilon \log n}}\right)
$$

Our bound, given by

$$
N_{\max }=\sqrt{\frac{4 C L \log n}{\epsilon}}
$$

where $C>0$ is an absolute constant, and is thus optimal up to a poly-logarithmic factor.

Optimality: lower bounds

Optimizing over ℓ_{p} balls. In the range $p \in[2, \infty]$ the lower bound on risk from Guzmán and Nemirovski [2013] can be translated to

$$
\Omega\left(\sqrt{\frac{L n^{1-2 / p}}{\min [p, \log n] \epsilon}}\right)
$$

Our bound is then

$$
N_{\max }=\sqrt{\frac{4 L n^{1-2 / p}}{\epsilon}}
$$

which is again optimal up to poly-logarithmic factors when $k \sim n$.

Generalization

- The Banach space $(E,\|\cdot\|)$ is (κ, r) smooth. There is $W(y): E^{*} \rightarrow \mathbb{R}$ such that $W(0)=0$,

$$
W(y) \geq \frac{\|y\|_{*}^{r}}{r}
$$

and

$$
W(y+z) \leq W(y)+\left\langle W^{\prime}(y), z\right\rangle+\frac{\kappa}{r}\|z\|_{*}^{r}
$$

- The function is Hölder smooth

$$
\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\|^{\sigma-1}
$$

The optimal complexity bound, achieved by the algorithm in [Nemirovskii and Nesterov, 1985, Khachiyan et al., 1993], is in this case

$$
O\left(\left(\frac{L R^{\sigma}}{\epsilon}\right)^{\frac{1}{\mu}}\right), \quad \text { where } \mu=\sigma-1+\frac{\sigma(r-1)}{r}
$$

Affine invariance: work in progress. . .

Outline

- Affine invariant bounds.

■ Renegar's condition number and compressed sensing.

Conic feasibility problems

Alternative conic linear systems

$$
\begin{equation*}
A x=0, x \in C \tag{P}
\end{equation*}
$$

and

$$
\begin{equation*}
-A^{T} y \in C^{*} \tag{D}
\end{equation*}
$$

for a given cone $C \subset \mathbb{R}^{p}$.

Distance to infeasibility \& condition number

Let $\mathcal{M}_{x^{*}}^{P}=\left\{A \in \mathbb{R}^{n \times p}: P\right.$ is infeasible $\}$, define the distance to infeasibility

$$
\rho_{x^{*}}^{P}(A) \triangleq \inf _{\Delta A}\left\{\|\Delta A\|_{2}: A+\Delta A \notin \mathcal{M}_{x^{*}}^{P}\right\} .
$$

Renegar's condition number for problem P with respect to x^{*} is then defined as the scale-invariant reciprocal of this distance

$$
\mathcal{C}_{x^{*}}(A) \triangleq \frac{\|A\|_{2}}{\rho_{x^{*}}^{P}(A)}
$$

Condition number \& complexity

- Renegar's condition number $\mathcal{C}(A)$ and the complexity of solving conic linear systems discussed in [Renegar, 1995, Freund and Vera, 1999b, Epelman and Freund, 2000, Renegar, 2001, Vera et al., 2007, Belloni et al., 2009].
- In particular, Vera et al. [Vera et al., 2007] link $\mathcal{C}(A)$ show that the number of outer barrier method iterations grows as

$$
O\left(\sqrt{\nu_{C}} \log \left(\nu_{C} \mathcal{C}(A)\right)\right),
$$

where ν_{C} is the barrier parameter, while the complexity of the linear systems arising at each interior point iteration is controlled by $\mathcal{C}(A)^{2}$.

Sparse recovery

Sparse recovery problem.

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & \|A x-y\|_{2} \leq \delta\|A\|_{2},
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$.

Define the conically restricted minimal singular value of A as follows

$$
\mu_{x^{*}}(A)=\inf _{z \in \mathcal{T}\left(x^{*}\right)} \frac{\|A z\|_{2}}{\|z\|_{2}} .
$$

where $\mathcal{T}(x)=\operatorname{cone}\{z:\|x+z\| \leq\|x\|\}$, is the cone of descent directions, then

$$
\left\|x^{*}-x_{0}\right\|_{2} \leq 2 \frac{\delta\|A\|_{2}}{\mu_{x_{0}}(A)} .
$$

Theorem [Freund and Vera, 1999a]

Cone eigenvalues and conditioning. Distance to feasibility and cone restricted eigenvalues match, i.e. $\rho_{x^{*}}^{P}(A)=\mu_{x^{*}}(A)$.

Generalizes to a much broader class of recovery problems [Roulet, Boumal, and d'Aspremont, 2015].

Sparse recovery

Condition number $\mathcal{C}_{x_{0}}(A)$ (lower bound)

Estimation error, L1-Hom., noisy

Exact recovery probability, noiseless

Classical condition number $\kappa(A)$

CPU time in lsq solves, L1-Hom., noiseless

\#iterations, L1-Hom., noiseless

\#iterations, LARS, noiseless

\#iterations, TFOCS-BP, noiseless

Conclusion

- Affine invariant complexity bound for the optimal algorithm [Nesterov, 1983]

$$
N_{\max }=\sqrt{\frac{4 L_{Q} D_{Q}}{\epsilon}}
$$

Matches (up to polylog terms) best known lower bounds on ℓ_{p}-balls.

- Data-driven complexity measure for sparse recovery problems, matching statistical performance measures.

Open problems.

- Optimality of product $L_{Q} D_{Q}$ in the general case?
- Matches curvature C_{f} ?
- Best norm choice for non-symmetric sets Q ?
- Systematic, tractable procedure for smoothing Q ?

References

Alexandre Belloni, Robert M Freund, and Santosh Vempala. An efficient rescaled perceptron algorithm for conic systems. Mathematics of Operations Research, 34(3):621-641, 2009.
Alexandre d'Aspremont, C. Guzman, and Martin Jaggi. An optimal affine invariant smooth minimization algorithm. arXiv preprint arXiv:1301.0465, 2013.
Marina Epelman and Robert M Freund. Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system. Mathematical Programming, 88(3):451-485, 2000.
Robert M Freund and Jorge R Vera. Some characterizations and properties of the "distance to ill-posedness" and the condition measure of a conic linear system. Mathematical Programming, 86(2):225-260, 1999a.
Robert M Freund and Jorge R Vera. Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM Journal on Optimization, 10(1):155-176, 1999b.
C. Guzmán and A. Nemirovski. On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization. arXiv:1307.5001, 2013.
A. Juditsky and A.S. Nemirovski. Large deviations of vector-valued martingales in 2-smooth normed spaces. arXiv preprint arXiv:0809.0813, 2008.
A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
L Khachiyan, A Nemirovski, and Y Nesterov. Optimal methods for the solution of large-scale convex programming problems. Modern Mathematical Methods in Optimization, Academie Verlag, Berlin, 1993.
AS Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR Computational Mathematics and Mathematical Physics, 25(2):21-30, 1985.
Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2): 372-376, 1983.
Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005.
Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.
James Renegar. Linear programming, complexity theory and elementary functional analysis. Mathematical Programming, 70(1-3):279-351, 1995.

James Renegar. A mathematical view of interior-point methods in convex optimization, volume 3. Siam, 2001.

Vincent Roulet, Nicolas Boumal, and Alexandre d'Aspremont. Renegar's condition number and compressed sensing performance. arXiv preprint arXiv:1506.03295, 2015.
Juan Carlos Vera, Juan Carlos Rivera, Javier Pena, and Yao Hui. A primal-dual symmetric relaxation for homogeneous conic systems. Journal of Complexity, 23(2):245-261, 2007.

