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One thing missing: the data.
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Introduction

Big gap between worst-case complexity and empirical performance for first-order
optimization algorithms.

� Data-driven complexity bounds?

� In particular, quantify the complexity vs. statistical performance tradeoff?

Alex d’Aspremont Institut des Hautes Études Scientifiques, March. 2016. 5/34



Outline

� Affine invariant bounds.

� Renegar’s condition number and compressed sensing.
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A Basic Convex Problem

Solve
minimize f(x)
subject to x ∈ Q,

in x ∈ Rn.

� Here, f(x) is convex, smooth.

� Assume Q ⊂ Rn is compact, convex and simple.
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Complexity

Newton’s method. At each iteration, take a step in the direction

∆xnt = −∇2f(x)−1∇f(x)

Assume that

� the function f(x) is self-concordant, i.e. |f ′′′(x)| ≤ 2f ′′(x)3/2,

� the set Q has a self concordant barrier g(x).

[Nesterov and Nemirovskii, 1994] Newton’s method produces an ε optimal
solution to the barrier problem

min
x
h(x) , f(x) + t g(x)

for some t > 0, in at most

20− 8α

αβ(1− 2α)2
(h(x0)− h∗) + log2 log2(1/ε) iterations

where 0 < α < 0.5 and 0 < β < 1 are line search parameters.
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Complexity

Newton’s method. Basically

# Newton iterations ≤ 375 (h(x0)− h∗) + 6

� Empirically valid, up to constants.

� Independent from the dimension n.

� Affine invariant.

In practice, implementation mostly requires efficient linear algebra. . .

� Form the Hessian.

� Solve the Newton (or KKT) system ∇2f(x)∆xnt = −∇f(x).
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Affine Invariance

Set x = Ay where A ∈ Rn×n is nonsingular

minimize f(x)
subject to x ∈ Q, becomes

minimize f̂(y)

subject to y ∈ Q̂,

in the variable y ∈ Rn, where f̂(y) , f(Ay) and Q̂ , A−1Q.

� Identical Newton steps, with ∆xnt = A∆ynt

� Identical complexity bounds 375 (h(x0)− h∗) + 6 since h∗ = ĥ∗

Newton’s method is invariant w.r.t. an affine change of coordinates.
The same is true for its complexity analysis.
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Large-Scale Problems

The challenge now is scaling.

� Newton’s method (and derivatives) solve all reasonably large problems.

� Beyond a certain scale, second order information is out of reach.

Question today: clean complexity bounds for first order methods?
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Franke-Wolfe

Conditional gradient. At each iteration, solve

minimize 〈∇f(xk), u〉
subject to u ∈ Q

in u ∈ Rn. Define the curvature

Cf , sup
s,x∈M, α∈[0,1],
y=x+α(s−x)

1

α2
(f(y)− f(x)− 〈y − x,∇f(x)〉).

The Franke-Wolfe algorithm will then produce an ε solution after

Nmax =
4Cf
ε

iterations.

� Cf is affine invariant but the bound is suboptimal in ε in many cases.

� If f(x) has a Lipschitz gradient, the lower bound can be as low as O
(

1√
ε

)
.
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Optimal First-Order Methods

Smooth Minimization algorithm in [Nesterov, 1983] to solve

minimize f(x)
subject to x ∈ Q,

Original paper was in an Euclidean setting. In the general case. . .

� Choose a norm ‖ · ‖. ∇f(x) Lipschitz with constant L w.r.t. ‖ · ‖

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
L‖y − x‖2, x, y ∈ Q

� Choose a prox function d(x) for the set Q, with

σ

2
‖x− x0‖2 ≤ d(x)

for some σ > 0.
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Optimal First-Order Methods

Smooth minimization algorithm [Nesterov, 2005]

Input: x0, the prox center of the set Q.
1: for k = 0, . . . , N do
2: Compute ∇f(xk).
3: Compute yk = argminy∈Q

{
〈∇f(xk), y − xk〉+ 1

2L‖y − xk‖
2
}

.

4: Compute zk = argminx∈Q

{∑k
i=0αi[f(xi) + 〈∇f(xi), x− xi〉] + L

σd(x)
}

.

5: Set xk+1 = τkzk + (1− τk)yk.
6: end for

Output: xN , yN ∈ Q.

Produces an ε-solution in at most

Nmax =

√
8L

ε

d(x?)

σ

iterations. Optimal in ε, but not affine invariant.

Heavily used: TFOCS, NESTA, Structured `1, . . .
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Optimal First-Order Methods

Choosing norm and prox can have a big impact, beyond the immediate
computational cost of computing the prox steps. Consider the following matrix
game problem

min
{1Tx=1,x≥0}

max
{1Tx=1,x≥0}

xTAy

� Euclidean prox. Pick ‖ · ‖2 and d(x) = ‖x‖22/2, after regularization, the
complexity bound is

Nmax =
4‖A‖2
N + 1

� Entropy prox. Pick ‖ · ‖1 and d(x) =
∑
i xi log xi + log n, the bound becomes

Nmax =
4
√

log n logm maxij |Aij|
N + 1

which can be significantly smaller.

Speedup is roughly
√
n when A is Bernoulli. . .
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Choosing the norm

Invariance means ‖ · ‖ and d(x) constructed using only f and the set Q.

Minkovski gauge. Assume Q is centrally symmetric with non-empty interior.

The Minkowski gauge of Q is a norm: ‖x‖Q , inf{λ ≥ 0 : x ∈ λQ}

Lemma

Affine invariance. The function f(x) has Lipschitz continuous gradient with
respect to the norm ‖ · ‖Q with constant LQ > 0, i.e.

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
LQ‖y − x‖2Q, x, y ∈ Q,

if and only if the function f(Aw) has Lipschitz continuous gradient with respect
to the norm ‖ · ‖A−1Q with the same constant LQ.

A similar result holds for strong convexity. Note that ‖x‖∗Q = ‖x‖Q◦.
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Choosing the prox.

How do we choose the prox.? Start with two definitions.

Definition

Banach-Mazur distance. Suppose ‖ ·‖X and ‖ ·‖Y are two norms on a space E,
the distortion d(‖ · ‖X, ‖ · ‖Y ) is the

smallest product ab > 0 such that
1

b
‖x‖Y ≤ ‖x‖X ≤ a‖x‖Y , for all x ∈ E.

log(d(‖ · ‖X, ‖ · ‖Y )) is the Banach-Mazur distance between X and Y .
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Choosing the prox.

Regularity constant. Regularity constant of (E, ‖ · ‖), defined in [Juditsky and
Nemirovski, 2008] to study large deviations of vector valued martingales.

Definition [Juditsky and Nemirovski, 2008]

Regularity constant of a Banach (E, ‖.‖). The smallest constant ∆ > 0 for
which there exists a smooth norm p(x) such that

� The prox p(x)2/2 has a Lipschitz continuous gradient w.r.t. the norm p(x),
with constant µ where 1 ≤ µ ≤ ∆,

� The norm p(x) satisfies

‖x‖ ≤ p(x) ≤ ‖x‖
(

∆

µ

)1/2

, for all x ∈ E

i.e. d(p(x), ‖.‖) ≤
√

∆/µ.
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Complexity

Using the algorithm in [Nesterov, 2005] to solve

minimize f(x)
subject to x ∈ Q.

Proposition [d’Aspremont, Guzman, and Jaggi, 2013]

Affine invariant complexity bounds. Suppose f(x) has a Lipschitz continuous
gradient with constant LQ with respect to the norm ‖·‖Q and the space (Rn, ‖·‖∗Q)
is DQ-regular, then the smooth algorithm in [Nesterov, 2005] will produce an
ε solution in at most

Nmax =

√
4LQDQ

ε
iterations. Furthermore, the constants LQ and DQ are affine invariant.

We can show Cf ≤ LQDQ, but it is not clear if the bound is attained. . .
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Complexity, `1 example

Minimizing a smooth convex function over the unit simplex

minimize f(x)
subject to 1Tx ≤ 1, x ≥ 0

in x ∈ Rn.

� Choosing ‖ · ‖1 as the norm and d(x) = logn+
∑n
i=1 xi log xi as the prox

function, complexity bounded by √
8
L1 log n

ε

(note L1 is lowest Lipschitz constant among all `p norm choices.)

� Symmetrizing the simplex into the `1 ball. The space (Rn, ‖ · ‖∞) is 2 log n
regular [Juditsky and Nemirovski, 2008, Ex. 3.2]. The prox function chosen
here is ‖ · ‖2α/2, with α = 2 log n/(2 log n− 1) and our complexity bound is√

16
L1 log n

ε
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In practice

Easy and hard problems.

� The parameter LQ satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
LQ‖y − x‖2Q, x, y ∈ Q,

On easy problems, ‖ · ‖ is large in directions where ∇f is large, i.e. the
sublevel sets of f(x) and Q are aligned.

� For lp spaces for p ∈ [2,∞], the unit balls Bp have low regularity constants,

DBp ≤ min{p− 1, 2 log n}

while DB1 = n (worst case).

◦ By duality, problems over unit balls Bq for q ∈ [1, 2] are easier.

◦ Optimizing over cubes is harder.
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Optimality

How good are these bounds?

� Affine invariance does not imply that this complexity bound is tight. . .

� In fact, the worst choice of norm and prox. yields a bound in Ld(x?)
σ that is also

affine invariant.

Can we show optimality?
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Optimality: upper bounds

Optimizing over `p balls. Focus now on the problem of solving

minimize f(x)
subject to x ∈ Bp

in the variable x ∈ Rn, where Bp is the `p ball. We show that

Nmax =

√
4LpDp

ε

The constants Dp can be computed explicitly (idem for the corresponding norms).

� When p ∈ [2,∞], we have Dp = n
p−2
p .

� When p ∈ [1, 2], Juditsky et al. [2009, Ex. 3.2] show

Dp = inf
2≤ρ< p

p−1

(ρ− 1)n
2
ρ−

2(p−1)
p ≤ min

{
p

p− 1
, C log n

}
where C > 0 is an absolute constant.
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Optimality: lower bounds

Optimizing over `p balls. In the range p ∈ [1, 2] the lower bound on risk from
Guzmán and Nemirovski [2013] is given by

Ω

(
L

T 2 log[T + 1]

)
which translates into the following lower bound on iteration complexity

Ω

√ L

ε log n


Our bound, given by

Nmax =

√
4CL log n

ε
where C > 0 is an absolute constant, and is thus optimal up to a
poly-logarithmic factor.
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Optimality: lower bounds

Optimizing over `p balls. In the range p ∈ [2,∞] the lower bound on risk from
Guzmán and Nemirovski [2013] can be translated to

Ω

√ Ln1−2/p

min[p, log n]ε

 .

Our bound is then

Nmax =

√
4Ln1−2/p

ε
which is again optimal up to poly-logarithmic factors when k ∼ n.
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Generalization

� The Banach space (E, ‖ · ‖) is (κ, r) smooth. There is W (y) : E∗ → R
such that W (0) = 0,

W (y) ≥ ‖y‖
r
∗

r
and

W (y + z) ≤W (y) + 〈W ′(y), z〉+
κ

r
‖z‖r∗

� The function is Hölder smooth

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖σ−1

The optimal complexity bound, achieved by the algorithm in [Nemirovskii and
Nesterov, 1985, Khachiyan et al., 1993], is in this case

O

((
LRσ

ε

)1
µ

)
, where µ = σ − 1 +

σ(r − 1)

r

Affine invariance: work in progress. . .

Alex d’Aspremont Institut des Hautes Études Scientifiques, March. 2016. 26/34



Outline

� Affine invariant bounds.

� Renegar’s condition number and compressed sensing.
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Conic feasibility problems

Alternative conic linear systems

Ax = 0, x ∈ C (P)

and
−ATy ∈ C∗ (D)

for a given cone C ⊂ Rp.
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Distance to infeasibility & condition number

Let MP
x∗ = {A ∈ Rn×p : P is infeasible}, define the distance to infeasibility

ρPx∗(A) , inf
∆A
{‖∆A‖2 : A+ ∆A /∈MP

x∗}.

Renegar’s condition number for problem P with respect to x∗ is then defined as
the scale-invariant reciprocal of this distance

Cx∗(A) ,
‖A‖2
ρPx∗(A)
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Condition number & complexity

� Renegar’s condition number C(A) and the complexity of solving conic linear
systems discussed in [Renegar, 1995, Freund and Vera, 1999b, Epelman and
Freund, 2000, Renegar, 2001, Vera et al., 2007, Belloni et al., 2009].

� In particular, Vera et al. [Vera et al., 2007] link C(A) show that the number of
outer barrier method iterations grows as

O (
√
νC log (νC C(A))) ,

where νC is the barrier parameter, while the complexity of the linear systems
arising at each interior point iteration is controlled by C(A)2.
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Sparse recovery

Sparse recovery problem.

minimize ‖x‖
subject to ‖Ax− y‖2 ≤ δ‖A‖2,

in the variable x ∈ Rn.

Define the conically restricted minimal singular value of A as follows

µx∗(A) = infz∈T (x∗)
‖Az‖2
‖z‖2

.

where T (x) = cone{z : ‖x+ z‖ ≤ ‖x‖}, is the cone of descent directions, then

‖x∗ − x0‖2 ≤ 2
δ‖A‖2
µx0(A)

.
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Sparse recovery

Theorem [Freund and Vera, 1999a]

Cone eigenvalues and conditioning. Distance to feasibility and cone restricted
eigenvalues match, i.e. ρPx∗(A) = µx∗(A).

Generalizes to a much broader class of recovery problems [Roulet, Boumal, and
d’Aspremont, 2015].
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Sparse recovery

Estimation error, L1-Hom., noisy

#iterations, LARS, noiseless

#iterations, L1-Hom., noiseless

Classical condition number κ(A)

Condition number Cx0
(A) (lower bound) CPU time in lsq solves, L1-Hom., noiseless

Exact recovery probability, noiseless

L1-Hom.

TFOCS-BP

#iterations, TFOCS-BP, noiseless
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Conclusion

� Affine invariant complexity bound for the optimal algorithm [Nesterov, 1983]

Nmax =

√
4LQDQ

ε

Matches (up to polylog terms) best known lower bounds on `p-balls.

� Data-driven complexity measure for sparse recovery problems, matching
statistical performance measures.

Open problems.

� Optimality of product LQDQ in the general case?

� Matches curvature Cf?

� Best norm choice for non-symmetric sets Q?

� Systematic, tractable procedure for smoothing Q?

Alex d’Aspremont Institut des Hautes Études Scientifiques, March. 2016. 34/34



*

References

Alexandre Belloni, Robert M Freund, and Santosh Vempala. An efficient rescaled perceptron algorithm for conic systems. Mathematics of
Operations Research, 34(3):621–641, 2009.

Alexandre d’Aspremont, C. Guzman, and Martin Jaggi. An optimal affine invariant smooth minimization algorithm. arXiv preprint
arXiv:1301.0465, 2013.

Marina Epelman and Robert M Freund. Condition number complexity of an elementary algorithm for computing a reliable solution of a conic
linear system. Mathematical Programming, 88(3):451–485, 2000.

Robert M Freund and Jorge R Vera. Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a
conic linear system. Mathematical Programming, 86(2):225–260, 1999a.

Robert M Freund and Jorge R Vera. Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithm. SIAM
Journal on Optimization, 10(1):155–176, 1999b.

C. Guzmán and A. Nemirovski. On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization. arXiv:1307.5001, 2013.

A. Juditsky and A.S. Nemirovski. Large deviations of vector-valued martingales in 2-smooth normed spaces. arXiv preprint arXiv:0809.0813,
2008.

A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic approximation approach to stochastic programming. SIAM Journal on
Optimization, 19(4):1574–1609, 2009.

L Khachiyan, A Nemirovski, and Y Nesterov. Optimal methods for the solution of large-scale convex programming problems. Modern
Mathematical Methods in Optimization, Academie Verlag, Berlin, 1993.

AS Nemirovskii and Yu E Nesterov. Optimal methods of smooth convex minimization. USSR Computational Mathematics and Mathematical
Physics, 25(2):21–30, 1985.

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):
372–376, 1983.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152, 2005.

Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied
Mathematics, Philadelphia, 1994.

James Renegar. Linear programming, complexity theory and elementary functional analysis. Mathematical Programming, 70(1-3):279–351,
1995.

James Renegar. A mathematical view of interior-point methods in convex optimization, volume 3. Siam, 2001.

Alex d’Aspremont Institut des Hautes Études Scientifiques, March. 2016. 35/34



Vincent Roulet, Nicolas Boumal, and Alexandre d’Aspremont. Renegar’s condition number and compressed sensing performance. arXiv
preprint arXiv:1506.03295, 2015.

Juan Carlos Vera, Juan Carlos Rivera, Javier Pena, and Yao Hui. A primal–dual symmetric relaxation for homogeneous conic systems. Journal
of Complexity, 23(2):245–261, 2007.

Alex d’Aspremont Institut des Hautes Études Scientifiques, March. 2016. 36/34


