Full Regularization Path

for Sparse Principal Component Analysis

Alexandre d'Aspremont, Francis Bach \& Laurent El Ghaoui,
Princeton University, INRIA/ENS UIm \& U.C. Berkeley

Support from NSF, DHS and Google.

Introduction

Principal Component Analysis

- Classic dimensionality reduction tool.
- Numerically cheap: $O\left(n^{2}\right)$ as it only requires computing a few dominant eigenvectors.

Sparse PCA

- Get sparse factors capturing a maximum of variance.
- Numerically hard: combinatorial problem.
- Controlling the sparsity of the solution is also hard in practice.

Introduction

PCA

Sparse PCA

Clustering of the gene expression data in the PCA versus sparse PCA basis with 500 genes. The factors f on the left are dense and each use all 500 genes while the sparse factors g_{1}, g_{2} and g_{3} on the right involve 6, 4 and 4 genes respectively. (Data: Iconix Pharmaceuticals)

Introduction

Principal Component Analysis. Given a (centered) data set $A \in \mathbf{R}^{n \times m}$ composed of m observations on n variables, we form the covariance matrix $C=A^{T} A /(m-1)$ and solve:

$$
\begin{array}{ll}
\text { maximize } & x^{T} C x \\
\text { subject to } & \|x\|=1,
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, i.e. we maximize the variance explained by the factor x.

Sparse Principal Component Analysis. We constrain the cardinality of the factor x and solve:

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{maximize} & x^{T} C x \\
\text { subject to } & \operatorname{Card}(x)=k \\
& \|x\|=1,
\end{array},=\text {. }
\end{array}
$$

in the variable $x \in \mathbf{R}^{n}$, where $\operatorname{Card}(x)$ is the number of nonzero coefficients in the vector x and $k>0$ is a parameter controlling sparsity.

Outline

- Introduction
- Algorithms
- Optimality
- Numerical Results

Algorithms

Existing methods. . .

- Cadima \& Jolliffe (1995): the loadings with small absolute value are thresholded to zero.
- SPCA Zou, Hastie \& Tibshirani (2004), non-convex algo. based on a l_{1} penalized representation of PCA as a regression problem.
- A convex relaxation in d'Aspremont, El Ghaoui, Jordan \& Lanckriet (2007).
- Non-convex optimization methods: SCoTLASS by Jolliffe, Trendafilov \& Uddin (2003) or Sriperumbudur, Torres \& Lanckriet (2007).
- A greedy algorithm by Moghaddam, Weiss \& Avidan (2006b).

Algorithms

Simplest solution: just sort variables according to variance, keep the k variables with highest variance. Schur-Horn theorem: the diagonal of a matrix majorizes its eigenvalues.

Other simple solution: Thresholding, compute the first factor x from regular PCA and keep the k variables corresponding to the k largest coefficients.

Algorithms

Greedy search (see Moghaddam et al. (2006b)). Written on the square root here.

1. Preprocessing. Permute elements of Σ accordingly so that its diagonal is decreasing. Compute the Cholesky decomposition $\Sigma=A^{T} A$. Initializate $I_{1}=\{1\}$ and $x_{1}=a_{1} /\left\|a_{1}\right\|$.
2. Compute

$$
i_{k}=\underset{i \notin I_{k}}{\operatorname{argmax}} \lambda_{\max }\left(\sum_{j \in I_{k} \cup\{i\}} a_{j} a_{j}^{T}\right)
$$

3. Set $I_{k+1}=I_{k} \cup\left\{i_{k}\right\}$.
4. Compute x_{k+1} as the dominant eigenvector of $\sum_{j \in I_{k+1}} a_{j} a_{j}^{T}$.
5. Set $k=k+1$. If $k<n$ go back to step 2 .

Algorithms: complexity

Greedy Search

- Iteration k of the greedy search requires computing ($n-k$) maximum eigenvalues, hence has complexity $O\left((n-k) k^{2}\right)$ if we exploit the Gram structure.
- This means that computing a full path of solutions has complexity $O\left(n^{4}\right)$.

Approximate Greedy Search

- We can exploit the following first-order inequality:

$$
\lambda_{\max }\left(\sum_{j \in I_{k} \cup\{i\}} a_{j} a_{j}^{T}\right) \geq \lambda_{\max }\left(\sum_{j \in I_{k}} a_{j} a_{j}^{T}\right)+\left(a_{i}^{T} x_{k}\right)^{2}
$$

where x_{k} is the dominant eigenvector of $\sum_{j \in I_{k}} a_{j} a_{j}^{T}$.

- We only need to solve one maximum eigenvalue problem per iteration, with cost $O\left(k^{2}\right)$. The complexity of computing a full path of solution is now $O\left(n^{3}\right)$.

Algorithms

Approximate greedy search.

1. Preprocessing. Permute elements of Σ accordingly so that its diagonal is decreasing. Compute the Cholesky decomposition $\Sigma=A^{T} A$. Initializate $I_{1}=\{1\}$ and $x_{1}=a_{1} /\left\|a_{1}\right\|$.
2. Compute $i_{k}=\operatorname{argmax}_{i \notin I_{k}}\left(x_{k}^{T} a_{i}\right)^{2}$
3. Set $I_{k+1}=I_{k} \cup\left\{i_{k}\right\}$.
4. Compute x_{k+1} as the dominant eigenvector of $\sum_{j \in I_{k+1}} a_{j} a_{j}^{T}$.
5. Set $k=k+1$. If $k<n$ go back to step 2 .

Outline

- Introduction
- Algorithms
- Optimality
- Numerical Results

Algorithms: optimality

- We can write the sparse PCA problem in penalized form:

$$
\max _{\|x\| \leq 1} x^{T} C x-\rho \operatorname{Card}(x)
$$

in the variable $x \in \mathbf{R}^{n}$, where $\rho>0$ is a parameter controlling sparsity.

- This problem is equivalent to solving:

$$
\max _{\|z\|=1} \sum_{i=1}^{n}\left(\left(a_{i}^{T} z\right)^{2}-\rho\right)_{+}
$$

in the variable $x \in \mathbf{R}^{n}$, where the matrix A is the Cholesky decomposition of C, with $C=A^{T} A$. We only keep variables for which $\left(a_{i}^{T} z\right)^{2} \geq \rho$.

Algorithms: optimality

The problem

$$
\max _{\|z\|=1} \sum_{i=1}^{n}\left(\left(a_{i}^{T} z\right)^{2}-\rho\right)_{+}
$$

is a convex maximization problem, hence is still hard. We can formulate a semidefinite relaxation by writing it in the equivalent form:

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{n} \operatorname{Tr}\left(X^{1 / 2} a_{i} a_{i}^{T} X^{1 / 2}-\rho X\right)_{+} \\
\text {subject to } & \operatorname{Tr}(X)=1, X \succeq 0, \quad \operatorname{Rank}(X)=1
\end{array}
$$

in the variable $X \in \mathbf{S}_{n}$ with $X=z z^{T}$. If we drop the rank constraint, this becomes a convex problem and using

$$
\operatorname{Tr}\left(X^{1 / 2} B X^{1 / 2}\right)_{+}=\min _{\{Y \succeq B, Y \succeq 0\}} \operatorname{Tr}(Y X)
$$

we can get its dual as:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} \operatorname{Tr}\left(P_{i} B_{i}\right) \\
\text { s.t. } & \operatorname{Tr}(X)=1, X \succeq 0, X \succeq P_{i} \succeq 0,
\end{array}
$$

which is a semidefinite program in the variables $X \in \mathbf{S}_{n}, P_{i} \in \mathbf{S}_{n}$.

Algorithms: optimality

- When the solution of this last SDP has rank one, it also produces a globally optimal solution for the sparse PCA problem.
- In practice, this semidefinite program but we can use it to test the optimality of the solutions computed by the approximate greedy method.
- When the SDP has a rank one, the KKT optimality conditions for the semidefinite relaxation are given by:

$$
\left\{\begin{array}{l}
\left(\sum_{i=1}^{n} Y_{i}\right) X=\lambda_{\max }\left(\sum_{i=1}^{n} Y_{i}\right) X \\
x^{T} Y_{i} x=\left\{\begin{array}{l}
\left(a_{i}^{T} x\right)^{2}-\rho \text { if } i \in I \\
0 \text { if } i \in I^{c}
\end{array}\right. \\
Y_{i} \succeq B_{i}, Y_{i} \succeq 0 .
\end{array}\right.
$$

- This is a (large) semidefinite feasibility problem, but a good guess for Y_{i} often turns out to be sufficient.

Algorithms: optimality

Optimality: sufficient conditions. Given a sparsity pattern I, setting x to be the largest eigenvector of $\sum_{i \in I} a_{i} a_{i}^{T}$. If there is a parameter ρ_{I} such that:

$$
\max _{i \notin I}\left(a_{i}^{T} x\right)^{2} \leq \rho_{I} \leq \min _{i \in I}\left(a_{i}^{T} x\right)^{2}
$$

and

$$
\left(\begin{array}{cc}
\operatorname{diag}\left(\left(x^{T} a_{i}\right)^{2}\right)-\rho_{I} \mathbf{I} & \left(a_{i} a_{i}^{T} x\right)_{i \in I}^{T}-\rho_{I} \mathbf{1} x^{T} \\
\left(a_{i} a_{i}^{T} x\right)_{i \in I}-\rho_{I} x \mathbf{1}^{T} & \sum_{i}\left(x^{T} a_{i}\right)^{2} \mathbf{I}-\rho_{I} \mathbf{I}
\end{array}\right) \succeq 0
$$

with

$$
\lambda_{\max }\left(\sum_{i \in I} \frac{B_{i} x x^{T} B_{i}}{x^{T} B_{i} x}+\sum_{i \in I^{c}} Y_{i}\right) \leq \sigma
$$

where

$$
Y_{i}=\max \left\{0, \rho \frac{\left(a_{i}^{T} a_{i}-\rho\right)}{\left(\rho-\left(a_{i}^{T} x\right)^{2}\right)}\right\} \frac{\left(\mathbf{I}-x x^{T}\right) a_{i} a_{i}^{T}\left(\mathbf{I}-x x^{T}\right)}{\left\|\left(\mathbf{I}-x x^{T}\right) a_{i}\right\|^{2}}, \quad i \in I^{c}
$$

Then the vector z such that $z=\operatorname{argmax}_{\left\{z_{I^{c}=0},\|z\|=1\right\}} z^{T} \Sigma z$, which is formed by padding zeros to the dominant eigenvector of the submatrix $\Sigma_{I, I}$ is a global solution to the sparse PCA problem for $\rho=\rho_{I}$.

Optimality: why bother?

Compressed sensing. Following Candès \& Tao (2005) (see also Donoho \& Tanner (2005)), recover a signal $f \in \mathbf{R}^{n}$ from corrupted measurements:

$$
y=A f+e,
$$

where $A \in \mathbf{R}^{m \times n}$ is a coding matrix and $e \in \mathbf{R}^{m}$ is an unknown vector of errors with low cardinality.

This is equivalent to solving the following (combinatorial) problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{0} \\
\text { subject to } & F x=F y
\end{array}
$$

where $\|x\|_{0}=\mathbf{C a r d}(x)$ and $F \in \mathbf{R}^{p \times m}$ is a matrix such that $F A=0$.

Compressed sensing: restricted isometry

Candès \& Tao (2005): given a matrix $F \in \mathbf{R}^{p \times m}$ and an integer S such that $0<S \leq m$, we define its restricted isometry constant δ_{S} as the smallest number such that for any subset $I \subset[1, m]$ of cardinality at most S we have:

$$
\left(1-\delta_{S}\right)\|c\|^{2} \leq\left\|F_{I} c\right\|^{2} \leq\left(1+\delta_{S}\right)\|c\|^{2}
$$

for all $c \in \mathbf{R}^{|I|}$, where F_{I} is the submatrix of F formed by keeping only the columns of F in the set I.

Compressed sensing: perfect recovery

The following result then holds.
Proposition 1. Candès \& Tao (2005). Suppose that the restricted isometry constants of a matrix $F \in \mathbf{R}^{p \times m}$ satisfy :

$$
\begin{equation*}
\delta_{S}+\delta_{2 S}+\delta_{3 S}<1 / 4 \tag{1}
\end{equation*}
$$

for some integer S such that $0<S \leq m$, then if x is an optimal solution of the convex program:

$$
\begin{array}{ll}
\text { minimize } & \|x\|_{1} \\
\text { subject to } & F x=F y
\end{array}
$$

such that $\operatorname{Card}(x) \leq S$ then x is also an optimal solution of the combinatorial problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{0} \\
\text { subject to } & F x=F y .
\end{array}
$$

Compressed sensing: restricted isometry

The restricted isometry constant δ_{S} in condition (1) can be computed by solving the following sparse PCA problem:

$$
\begin{array}{rll}
\left(1+\delta_{S}\right)= & \max . & x^{T}\left(F^{T} F\right) x \\
\text { s. t. } & \operatorname{Card}(x) \leq S \\
& \|x\|=1
\end{array}
$$

in the variable $x \in \mathbf{R}^{m}$ and another sparse PCA problem on $\alpha \mathbf{I}-F^{T} F$ to get the other inequality.

- Candès \& Tao (2005) obtain an asymptotic proof that some random matrices satisfy the restricted isometry condition with overwhelming probability (i.e. exponentially small probability of failure)
- When they hold, the optimality conditions and upper bounds for sparse PCA allow us to prove (deterministically and with polynomial complexity) that a finite dimensional matrix satisfies the restricted isometry condition.

Outline

- Introduction
- Algorithms
- Optimality
- Numerical Results

Numerical Results

Artficial data. We generate a matrix U of size 150 with uniformly distributed coefficients in $[0,1]$. We let $v \in \mathbf{R}^{150}$ be a sparse vector with:

$$
v_{i}= \begin{cases}1 & \text { if } i \leq 50 \\ 1 /(i-50) & \text { if } 50<i \leq 100 \\ 0 & \text { otherwise }\end{cases}
$$

We form a test matrix

$$
\Sigma=U^{T} U+\sigma v v^{T},
$$

where σ is the signal-to-noise ratio.

Gene expression data. We run the approximate greedy algorithm on two gene expression data sets, one on colon cancer from Alon, Barkai, Notterman, Gish, Ybarra, Mack \& Levine (1999), the other on lymphoma from Alizadeh, Eisen, Davis, Ma, Lossos \& Rosenwald (2000). We only keep the 500 genes with largest variance.

Numerical Results

ROC curves for sorting, thresholding, fully greedy solutions and approximate greedy solutions for $\sigma=2$.

Numerical Results

Variance versus cardinality tradeoff curves for $\sigma=10$ (bottom), $\sigma=50$ and $\sigma=100$ (top). Optimal points are in bold.

Numerical Results

Variance versus cardinality tradeoff curve for two gene expression data sets, lymphoma (top) and colon cancer (bottom). Optimal points are in bold.

Conclusion \& Extensions

Sparse PCA in practice, if your problem has. . .

- A million variables: can't even form a covariance matrix. Sort variables according to variance and keep a few thousand.
- A few thousand variables (more if Gram format): approximate greedy method described here.
- A few hundred variables: use DSPCA, SPCA, full greedy search, etc.

Of course, these techniques can be combined.

Extensions. . .

- Efficient solvers for the semidefinite relaxation (exploiting low rank, randomization, etc.)
- Subset selection is a simple extension of sparse PCA (see Moghaddam, Weiss \& Avidan (2006a) for example). The methods described here apply there too.
- Find better matrices with RI property.

References

Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I. \& Rosenwald, A. (2000), 'Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling', Nature 403, 503-511.
Alon, A., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. \& Levine, A. J. (1999), 'Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays', Cell Biology 96, 6745-6750.
Cadima, J. \& Jolliffe, I. T. (1995), 'Loadings and correlations in the interpretation of principal components', Journal of Applied Statistics 22, 203-214.
Candès, E. J. \& Tao, T. (2005), 'Decoding by linear programming', Information Theory, IEEE Transactions on 51(12), 4203-4215.
d'Aspremont, A., El Ghaoui, L., Jordan, M. \& Lanckriet, G. R. G. (2007), 'A direct formulation for sparse PCA using semidefinite programming', SIAM Review 49(3), 434-448.
Donoho, D. L. \& Tanner, J. (2005), 'Sparse nonnegative solutions of underdetermined linear equations by linear programming', Proceedings of the National Academy of Sciences 102(27), 9446-9451.
Jolliffe, I. T., Trendafilov, N. \& Uddin, M. (2003), 'A modified principal component technique based on the LASSO', Journal of Computational and Graphical Statistics 12, 531-547.
Moghaddam, B., Weiss, Y. \& Avidan, S. (2006a), Generalized spectral bounds for sparse LDA, in 'International Conference on Machine Learning'.

Moghaddam, B., Weiss, Y. \& Avidan, S. (2006b), 'Spectral bounds for sparse PCA: Exact and greedy algorithms', Advances in Neural Information Processing Systems 18.
Sriperumbudur, B., Torres, D. \& Lanckriet, G. (2007), Sparse eigen methods by d.c. programming, in 'ICML'.
Zou, H., Hastie, T. \& Tibshirani, R. (2004), 'Sparse principal component analysis', Journal of Computational and Graphical Statistics

