Tutorial: Algorithms for Large-Scale Semidefinite Programming

Alexandre d'Aspremont, CNRS \& Ecole Polytechnique.

Support from NSF, ERC (project SIPA) and Google.

Introduction

A semidefinite program (SDP) is written

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(C X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0,
\end{array}
$$

where $X \succeq 0$ means that the matrix variable $X \in \mathbf{S}_{n}$ is positive semidefinite.

Its dual can be written

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & C-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0
\end{array}
$$

which is another semidefinite program in the variables y.

Introduction

Classical algorithms for semidefinite programming

- Following [Nesterov and Nemirovskii, 1994], most of the attention was focused on interior point methods.
- Basic idea: Newton's method, with efficient linear algebra to compute the Newton step (or solve the KKT system).
- Fast, and robust on small problems ($n \sim 500$).
- Computing the Hessian is too hard on larger problems. Exploiting structure (sparsity, etc.) is hard too.

Solvers

■ Open source solvers: SDPT3, SEDUMI, SDPA, CSDP, . . .

- Very powerful modeling systems: CVX

Introduction

Solving a MaxCut relaxation using CVX

$$
\begin{array}{ll}
\max . & \operatorname{Tr}(X C) \\
\text { s.t. } & \operatorname{diag}(X)=\mathbf{1} \\
& X \succeq 0,
\end{array}
$$

is written as follows in CVX/MATLAB

```
cvx_begin
. variable X(n,n) symmetric
. maximize trace(C*X)
. subject to
. diag(X)==1
. X==semidefinite(n)
cvx_end
```


Introduction

Algorithms for large-scale semidefinite programming.

Structure \Rightarrow algorithmic choices

Examples:

- SDPs with constant trace cast as max. eigenvalue minimization problems.
- Fast projection steps.
- Fast prox or affine minimization subproblems.
- Closed-form or efficiently solvable block minimization subproblems.
- Etc. . .

Introduction

Example. In many semidefinite relaxations of combinatorial problems, we can impose $\operatorname{Tr}(X)=1$ and solve

$$
\begin{array}{ll}
\text { maximize } & \operatorname{Tr}(C X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& \operatorname{Tr}(X)=1, X \succeq 0,
\end{array}
$$

The dual can be written as a maximum eigenvalue minimization problem

$$
\min _{x} \lambda_{\max }\left(C+\sum_{i=1}^{m} x_{i} A_{i}\right)-b^{T} x
$$

in the variable $x \in \mathbb{R}^{m}$.

Outline

- Introduction
- First-order methods
- Subgradient methods
- Smoothing \& accelerated algorithms
- Improving iteration complexity
- Exploiting structure
- Frank-Wolfe
- Block coordinate descent
- Dykstra, alternating projection
- Localization, cutting-plane methods

Subgradient methods

Solve

$$
\min _{x \in Q} \lambda_{\max }(A(x))+c^{T} x
$$

where $A(x)=C+\sum_{i=1}^{m} x_{i} A_{i}$, using the projected subgradient method.

Input: A starting point $x_{0} \in \mathbb{R}^{m}$.
1: for $t=0$ to $N-1$ do
2: Set

$$
x_{t+1}=P_{Q}\left(x_{t}-\gamma \partial \lambda_{\max }(A(x))\right)
$$

3: end for
Output: A point $x=(1 / N) \sum_{t=1}^{N} x_{t}$.

Here, $\gamma>0$ and $P_{Q}(\cdot)$ is the Euclidean projection on Q.

Subgradient methods

- The number of iterations required to reach a target precision ϵ is

$$
N=\frac{D_{Q}^{2} M^{2}}{\epsilon^{2}}
$$

where D_{Q} is the diameter of Q and $\left\|\partial \lambda_{\max }(A(x))\right\| \leq M$ on Q.

- The cost per iteration is the sum of
- The cost p_{Q} of computing the Euclidean projection on Q.
- The cost of computing $\partial \lambda_{\max }(A(x))$ which is e.g. $v_{1} v_{1}^{T}$ where v_{1} is a leading eigenvector of $A(x)$.

Computing one leading eigenvector of a dense matrix X with relative precision ϵ, using a randomly started Lanczos method, with probability of failure $1-\delta$, costs

$$
O\left(\frac{n^{2} \log \left(n / \delta^{2}\right)}{\sqrt{\epsilon}}\right)
$$

flops [Kuczynski and Wozniakowski, 1992, Th.4.2].

Subgradient methods

Solving $\min _{X \in Q} \lambda_{\max }(A(x))$ using projected subgradient.

- Easy to implement.
- Very poor performance in practice. The $1 / \epsilon^{2}$ dependence is somewhat punishing. . .

Example below on MAXCUT.

Smoothing \& accelerated algorithms

Smoothing \& accelerated algorithms

[Nesterov, 2007] We can regularize the objective and solve

$$
\min _{x \in Q} f_{\mu}(x) \triangleq \mu \log \operatorname{Tr}\left(\exp \left(\frac{A(x)}{\mu}\right)\right)
$$

for some regularization parameter $\mu>0(\exp (\cdot)$ is the matrix exponential here).

- If we set $\mu=\epsilon / \log n$ we get

$$
\lambda_{\max }(A(x)) \leq f_{\mu}(x) \leq \lambda_{\max }(A(x))+\epsilon
$$

- The gradient $\nabla f_{\mu}(x)$ is Lipschitz continuous with constant

$$
\frac{\|A\|^{2} \log n}{\epsilon}
$$

where $\|A\|=\sup _{\|h\| \leq 1}\|A(h)\|_{2}$.

Smoothing \& accelerated algorithms

- The number of iterations required to get an ϵ solution using the smooth minimization algorithm in Nesterov [1983] grows as

$$
\frac{\|A\| \sqrt{\log n}}{\epsilon} \sqrt{\frac{d\left(x^{*}\right)}{\sigma}}
$$

where $d(\cdot)$ is strongly convex with parameter $\sigma>0$.

- The cost per iteration is (usually) dominated by the cost of forming the matrix exponential

$$
\exp \left(\frac{A(x)}{\mu}\right)
$$

which is $O\left(n^{3}\right)$ flops [Moler and Van Loan, 2003].

- Much better empirical performance.

Smoothing \& accelerated algorithms

This means that the two classical complexity options for solving

$$
\min _{X \in Q} \lambda_{\max }(A(x))
$$

(assuming $A(x)$ cheap)

- Subgradient methods

$$
O\left(\frac{D_{Q}^{2}\left(n^{2} \log n+p_{Q}\right)}{\epsilon^{2}}\right)
$$

- Smooth optimization

$$
O\left(\frac{D_{Q} \sqrt{\log n}\left(n^{3}+p_{Q}\right)}{\epsilon}\right)
$$

if we pick $\|\cdot\|_{2}^{2}$ in the prox term.

Improving iteration complexity

Approximate gradients

Approximate gradient is often enough. This means computing only a few leading eigenvectors.

Spectrum of $\exp \left(\left(X-\lambda_{\max }(X) \mathbf{I}\right) / 0.1\right)$ at the MAXCUT solution.

Approximate gradients

Convergence guarantees using approximate gradients: if $\tilde{\nabla} f(x)$ is the approximate gradient oracle, we require

$$
|\langle\tilde{\nabla} f(x)-\nabla f(x), y-z\rangle| \leq \delta \quad x, y, z \in Q
$$

(the condition depends on the diameter of Q). For example, to solve

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda_{\max }(A+X) \\
\text { subject to } & \left|X_{i j}\right| \leq \rho
\end{array}
$$

we only need to compute the j largest eigenvalues of $A+X$, with j such that

$$
\frac{(n-j) e^{\lambda_{j}} \sqrt{\sum_{i=1}^{j} e^{2 \lambda_{i}}}}{\left(\sum_{i=1}^{j} e^{\lambda_{i}}\right)^{2}}+\frac{\sqrt{n-j} e^{\lambda_{j}}}{\sum_{i=1}^{j} e^{\lambda_{i}}} \leq \frac{\delta}{\rho n}
$$

The impact of the diameter makes these conditions quite conservative.

Approximate gradients

Other possible conditions (often less stringent), when solving

$$
\min _{x \in Q} \max _{u \in U} \Psi(x, u)
$$

If u_{x} is an approximate solution to $\max _{u \in U} \Psi(x, u)$, we can check $V_{i}\left(u_{x}\right) \leq \delta$

$$
\begin{aligned}
& V_{1}\left(u_{x}\right)=\max _{u \in U} \nabla_{2} \Psi\left(x, u_{x}\right)^{T}\left(u-u_{x}\right) \\
& V_{2}\left(u_{x}\right)=\max _{u \in U}\left\{\Psi(x, u)-\Psi\left(x, u_{x}\right)+\kappa\left\|u-u_{x}\right\|^{2} / 2\right\} \\
& V_{3}\left(u_{x}\right)=\max _{u \in U} \Psi(x, u)-\Psi\left(x, u_{x}\right)
\end{aligned}
$$

where

$$
V_{1}\left(u_{x}\right) \leq V_{2}\left(u_{x}\right) \leq V_{3}\left(u_{x}\right) \leq \delta
$$

The target accuracy δ on the oracle is a function of the target accuracy ϵ.
See [d'Aspremont, 2008a], [Devolder, Glineur, and Nesterov, 2011] for further details.

Stochastic Smoothing

Max-rank one Gaussian smoothing. Suppose we pick $u_{i} \in \mathbb{R}^{n}$ with i.i.d. $u_{i j} \sim \mathcal{N}(0,1)$ and define

$$
f(X)=\mathbf{E}\left[\max _{i=1, \ldots, k} \lambda_{\max }\left(X+(\epsilon / n) u_{i} u_{i}^{T}\right)\right]
$$

- Approximation results are preserved up to a constant $c_{k}>0$

$$
\lambda_{\max }(X) \leq \mathbf{E}\left[\lambda_{\max }\left(X+(\epsilon / n) u u^{T}\right)\right] \leq \lambda_{\max }(X)+c_{k} \epsilon
$$

- The function $f(X)$ is smooth and the Lipschitz constant of its gradient is bounded by

$$
L_{f} \leq \mathbf{E}\left[\frac{n}{2 \epsilon}\left(\min _{i=1, \ldots, k} \frac{1}{u_{i, 1}^{2}}\right)\right] \leq C_{k} \frac{n}{\epsilon}
$$

where $C_{k}=\frac{1}{\sqrt{2}} \frac{k}{k-2}$, is finite when $k \geq 3$.

- Computing $\max _{i=1, \ldots, k} \lambda_{\max }\left(X+(\epsilon / n) u_{i} u_{i}^{T}\right)$ costs $O\left(k n^{2} \log n\right)$.

Stochastic Smoothing

Optimal Stochastic Composite Optimization. The algorithm in Lan [2009] solves

$$
\min _{x \in Q} \Psi(x) \triangleq f(x)+h(x)
$$

with the following assumptions

- $f(x)$ has Lipschitz gradient with constant L and $h(x)$ is Lipschitz with constant M,
■ we have a stochastic oracle $G\left(x, \xi_{t}\right)$ for the gradient, which satisfies

$$
\mathbf{E}\left[G\left(x, \xi_{t}\right)\right]=g(x) \in \partial \Psi(x) \quad \text { and } \quad \mathbf{E}\left[\left\|G\left(x, \xi_{t}\right)-g(x)\right\|_{*}^{2}\right] \leq \sigma^{2}
$$

After N iterations, the iterate x_{N+1} satisfies

$$
\mathbf{E}\left[\Psi\left(x_{N+1}^{a g}\right)-\Psi^{*}\right] \leq \frac{8 L D_{\omega, Q}^{2}}{N^{2}}+\frac{4 D_{\omega, Q} \sqrt{4 \mathcal{M}^{2}+\sigma^{2}}}{\sqrt{N}}
$$

which is optimal. Additional assumptions guarantee convergence w.h.p.

Maximum Eigenvalue Minimization

For maximum eigenvalue minimization

- We have $\sigma \leq 1$, but we can reduce this by averaging q gradients, to control the tradeoff between smooth and non-smooth terms.
- If we set $q=\max \left\{1, D_{Q} /(\epsilon \sqrt{n})\right\}$ and $N=2 D_{Q} \sqrt{n} / \epsilon$ we get the following complexity picture

Complexity	Num. of Iterations	Cost per Iteration
Nonsmooth alg.	$O\left(\frac{D_{Q}^{2}}{\epsilon^{2}}\right)$	$O\left(p_{Q}+n^{2} \log n\right)$
Smooth stochastic alg.	$O\left(\frac{D_{Q} \sqrt{n}}{\epsilon}\right)$	$O\left(p_{Q}+\max \left\{1, \frac{D_{Q}}{\epsilon \sqrt{n}}\right\} n^{2} \log n\right)$
Smoothing alg.	$O\left(\frac{D_{Q} \sqrt{\log n}}{\epsilon}\right)$	$O\left(p_{Q}+n^{3}\right)$

Stochastic Smoothing

- Approximate gradients reduce empirical complexity. No a priori bounds on iteration cost.

■ More efficient to run a lot of cheaper iterations, everything else being equal.

Many open questions. . .

- Not clear if rank one perturbations achieve the optimal complexity/smoothness tradeoff. Can we replicate the exponential smoothing stochastically?
- Non monotonic line search for stochastic optimization?
- Bundle methods also improve the performance of subgradient techniques [Lemaréchal et al., 1995, Kiwiel, 1995, Helmberg and Rendl, 2000, Oustry, 2000, Ben-Tal and Nemirovski, 2005, Lan, 2010]...

Outline

- Introduction
- First-order methods
- Subgradient methods
- Smoothing \& accelerated algorithms
- Improving iteration complexity
- Exploiting structure
- Frank-Wolfe
- Block coordinate descent
- Dykstra, alternating projection
- Localization, cutting-plane methods

Frank-Wolfe

Frank-Wolfe

- Classical first order methods for solving

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C,
\end{array}
$$

in $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex, relied on the assumption that the following prox subproblem could be solved efficiently

$$
\begin{array}{ll}
\operatorname{minimize} & y^{T} x+d(x) \\
\text { subject to } & x \in C
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, where $d(x)$ is a strongly convex function.

- The Franke-Wolfe alg. assumes that the affine minimization subproblem

$$
\begin{array}{ll}
\operatorname{minimize} & d^{T} x \\
\text { subject to } & x \in C
\end{array}
$$

can be solved efficiently for any $y \in \mathbb{R}^{n}$.

Frank-Wolfe

Frank and Wolfe [1956] algorithm. See also [Jaggi, 2011].

Input: A starting point $x_{0} \in C$.
1: for $t=0$ to $N-1$ do
2: \quad Compute $\nabla f\left(y_{k}\right)$
3: Solve the affine minimization subproblem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} \nabla f\left(x_{k}\right) \\
\text { subject to } & x \in C
\end{array}
$$

in $x \in \mathbb{R}^{n}$, call the solution x_{d}.
4: Update the current point

$$
x_{k+1}=x_{k}+\frac{2}{k+2}\left(x_{d}-x_{k}\right)
$$

5: end for
Output: A point x_{N}.
Note that all iterates are feasible.

Frank-Wolfe

- Complexity. Assume that f is differentiable. Define the curvature C_{f} of the function $f(x)$ as

$$
C_{f} \triangleq \sup _{\substack{s, x \in \mathcal{M}, \alpha \in[0,1], y=x+\alpha(s-x)}} \frac{1}{\alpha^{2}}(f(y)-f(x)-\langle y-x, \nabla f(x)\rangle) .
$$

The Franke-Wolfe algorithm will then produce an ϵ solution after

$$
N_{\max }=\frac{4 C_{f}}{\epsilon}
$$

iterations.

- Can use line search at each iteration to improve convergence.

Frank-Wolfe

- Stopping criterion. At each iteration, we get a lower bound on the optimum as a byproduct of the affine minimization step. By convexity,

$$
f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{d}-x_{k}\right) \leq f(x), \quad \text { for all } x \in C
$$

and finally, calling f^{*} the optimal value of problem, we obtain

$$
f\left(x_{k}\right)-f^{*} \leq \nabla f\left(x_{k}\right)^{T}\left(x_{k}-x_{d}\right) .
$$

This allows us to bound the suboptimality of iterate at no additional cost.

Frank-Wolfe

Example. Semidefinite optimization with bounded trace.

$$
\begin{array}{ll}
\text { minimize } & f(X) \\
\text { subject to } & \operatorname{Tr}(X)=1, X \succeq 0,
\end{array}
$$

in the variable $X \in \mathbf{S}_{n}$.

The affine minimization subproblem is written

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(\nabla f(X) Y) \\
\text { subject to } & \operatorname{Tr}(Y)=1, Y \succeq 0,
\end{array}
$$

in the variable $Y \in \mathbf{S}_{n}$, and can be solved by a partial eigenvalue decomposition, with the optimum value equal to $\lambda_{\min }(\nabla f(X))$ [cf. Jaggi, 2011]. Each iteration is a rank one update.

Block coordinate descent methods

Coordinate Descent

We seek to solve

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

in the variable $x \in \mathbb{R}^{n}$, with $C \subset \mathbb{R}^{n}$ convex.

- Our main assumption here is that C is a product of simpler sets. We rewrite the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f\left(x_{1}, \ldots, x_{p}\right) \\
\text { subject to } & x_{i} \in C_{i}, \quad i=1, \ldots, p
\end{array}
$$

where $C=C_{1} \times \ldots \times C_{p}$.

- This helps if the minimization subproblems

$$
\min _{x_{i} \in C_{i}} f\left(x_{1}, \ldots, x_{i}, \ldots, x_{p}\right)
$$

can be solved very efficiently (or in closed-form).

Coordinate Descent

Algorithm. The algorithm simply computes the iterates $x^{(k+1)}$ as

$$
\begin{aligned}
x_{i}^{(k+1)} & =\underset{x_{i} \in C_{i}}{\operatorname{argmin}} f\left(x_{1}^{(k)}, \ldots, x_{i}^{(k)}, \ldots, x_{p}^{(k)}\right) \\
x_{j}^{(k+1)} & =x_{j}^{(k)}, \quad j \neq i
\end{aligned}
$$

for a certain $i \in[1, p]$, cycling over all indices in $[1, p]$.

Convergence.

- Complexity analysis similar to coordinate-wise gradient descent (or steepest descent in ℓ_{1} norm).
- Need $f(x)$ strongly convex to get explicit complexity bound [Nesterov, 2010].
- Generalization of block methods for SDP in "row-by-row" method of [Wen, Goldfarb, Ma, and Scheinberg, 2009].

Coordinate Descent

Example. Covariance selection [d'Aspremont et al., 2006]. The dual of the covariance selection problem is written

$$
\begin{array}{ll}
\text { maximize } & \log \operatorname{det}(S+U) \\
\text { subject to } & \|U\|_{\infty} \leq \rho \\
& S+U \succ 0
\end{array}
$$

Let $C=S+U$ be the current iterate, after permutation we can always assume that we optimize over the last column

$$
\begin{array}{ll}
\text { maximize } & \log \operatorname{det}\left(\begin{array}{cc}
C^{11} & C^{12}+u \\
C^{21}+u^{T} & C^{22}
\end{array}\right) \\
\text { subject to } & \|u\|_{\infty} \leq \rho
\end{array}
$$

where C^{12} is the last column of C (off-diag.).

Coordinate Descent

We can use the block determinant formula

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

to show that each row/column iteration reduces to a simple box-constrained QP

$$
\begin{array}{ll}
\operatorname{minimize} & u^{T}\left(C^{11}\right)^{-1} u \\
\text { subject to } & \|u\|_{\infty} \leq \rho
\end{array}
$$

the dual of this last problem is a LASSO optimization problem.

Dykstra, alternating projection

Dykstra, alternating projection

We focus on a simple feasibility problem

$$
\text { find } x \in C_{1} \cap C_{2}
$$

in the variable $x \in \mathbb{R}^{n}$ with $C_{1}, C_{2} \subset \mathbb{R}^{n}$ two convex sets.

We assume now that the projection problems on C_{i} are easier to solve

$$
\begin{array}{ll}
\operatorname{minimize} & \|x-y\|_{2} \\
\text { subject to } & x \in C_{i}
\end{array}
$$

in $x \in \mathbb{R}^{n}$.

Dykstra, alternating projection

Algorithm (alternating projection)

- Choose $x_{0} \in \mathbb{R}^{n}$.
- For $k=1, \ldots, k^{\max }$ iterate

1. Project on C_{1}

$$
x_{k+1 / 2}=\underset{x \in C_{1}}{\operatorname{argmin}}\left\|x-x_{k}\right\|_{2}
$$

2. Project on C_{2}

$$
x_{k+1}=\underset{x \in C_{2}}{\operatorname{argmin}}\left\|x-x_{k+1 / 2}\right\|_{2}
$$

Convergence. We can show $\operatorname{dist}\left(x_{k}, C_{1} \cap C_{2}\right) \rightarrow 0$. Linear convergence provided some additional regularity assumptions. See e.g. [Lewis, Malick, et al., 2008]

Dykstra, alternating projection

Algorithm (Dykstra)

■ Choose $x_{0}, z_{0} \in \mathbb{R}^{n}$.

- For $k=1, \ldots, k^{\max }$ iterate

1. Project on C_{1}

$$
x_{k+1 / 2}=\underset{x \in C_{1}}{\operatorname{argmin}}\left\|x-z_{k}\right\|_{2}
$$

2. Update

$$
z_{k+1 / 2}=2 x_{k+1 / 2}-z_{k}
$$

3. Project on C_{2}

$$
x_{k+1}=\underset{x \in C_{2}}{\operatorname{argmin}}\left\|x-z_{k+1 / 2}\right\|_{2}
$$

4. Update

$$
z_{k+1}=z_{k}+x_{k+1}-x_{k+1 / 2}
$$

Convergence. Usually faster than simple alternating projection.

Dykstra, alternating projection

Example. Matrix completion problem, given coefficients $b_{i j}$ for $(i, j) \in S$

Find	X
such that	
	$X \backslash b_{i j}, \quad(i, j) \in S$
	$X \succeq 0$,

in the variable $X \in \mathbf{S}_{n}$.

Blue: alternating projection. Red: Dykstra. (from EE364B)

Dykstra, alternating projection

Countless variations. . .

- Proximal point algorithm
- Douglas-Rachford splitting
- Operator splitting methods
- Bregman iterative methods

Localization methods

Localization methods

From EE364B course at Stanford. . .

■ Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex (and for now, differentiable)

- problem: minimize f
- oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)

Main assumption: evaluating the gradient is very expensive.

Convexity means $f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)$, so

$$
\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0 \quad \Longrightarrow \quad f(x) \geq f\left(x_{0}\right)
$$

i.e., all points in halfspace $\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0$ are worse than x_{0}

Localization methods

- \mathcal{P}_{k} gives our uncertainty of x^{\star} at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $C^{(k)}$

Localization methods

analytic center of polyhedron $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$ is

$$
\mathrm{AC}(\mathcal{P})=\underset{z}{\operatorname{argmin}}-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)
$$

ACCPM is localization method with next query point $x^{(k+1)}=\mathrm{AC}\left(\mathcal{P}_{k}\right)$ (found by Newton's method)

Localization methods

- let x^{*} be analytic center of $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$
- let H^{*} be Hessian of barrier at x^{*},

$$
H^{*}=-\left.\nabla^{2} \sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)\right|_{z=x^{*}}=\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(b_{i}-a_{i}^{T} x^{*}\right)^{2}}
$$

- then, $\mathcal{P} \subseteq \mathcal{E}=\left\{z \mid\left(z-x^{*}\right)^{T} H^{*}\left(z-x^{*}\right) \leq m^{2}\right\}$ (not hard to show)
- let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$
- a lower bound on optimal value p^{\star} is

$$
\begin{aligned}
p^{\star} & \geq \inf _{z \in \mathcal{E}^{(k)}}\left(f\left(x^{(k)}\right)+g^{(k) T}\left(z-x^{(k)}\right)\right) \\
& =f\left(x^{(k)}\right)-m_{k} \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}
\end{aligned}
$$

(m_{k} is number of inequalities in \mathcal{P}_{k})

- gives simple stopping criterion $\sqrt{g^{(k) T} H^{(k)-1} g^{(k)}} \leq \epsilon / m_{k}$

Localization methods

ACCPM algorithm.

Input: Polyhedron \mathcal{P} containing x^{\star}.
1: for $t=0$ to $N-1$ do
2: \quad Compute x^{*}, the analytic center of \mathcal{P}, and the Hessian H^{*}.
3: Compute $f\left(x^{*}\right)$ and $g \in \partial f\left(x^{*}\right)$.
4: Set $u:=\min \left\{u, f\left(x^{*}\right)\right\}$ and $l:=\max \left\{l, f\left(x^{*}\right)-m \sqrt{g^{T} H^{*-1} g}\right\}$.
5: \quad Add inequality $g^{T}\left(z-x^{*}\right) \leq 0$ to \mathcal{P}.
6: end for
Output: A localization set \mathcal{P}.

Localization methods

ACCPM adds an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses

Schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking

Localization methods

Example. Classification with indefinite kernels. [Luss and d'Aspremont, 2008] Solve

$$
\min _{\left\{K \succeq 0,\left\|K-K_{0}\right\|_{F}^{2} \leq \beta\right\}} \max _{\left\{\alpha^{T} y=0,0 \leq \alpha \leq C\right\}} \alpha^{T} e-\frac{1}{2} \operatorname{Tr}\left(K(Y \alpha)(Y \alpha)^{T}\right)
$$

in the variables $K \in \mathbf{S}^{n}$ and $\alpha \in \mathbb{R}^{n}$. This can be written

$$
\begin{aligned}
\text { maximize } & \alpha^{T} e-\frac{1}{2} \sum_{i} \max \left(0, \lambda_{i}\left(K_{0}+(Y \alpha)(Y \alpha)^{T} / 4 \rho\right)\right)\left(\alpha^{T} Y v_{i}\right)^{2} \\
& +\rho \sum_{i}\left(\max \left(0, \lambda_{i}\left(K_{0}+(Y \alpha)(Y \alpha)^{T} / 4 \rho\right)\right)\right)^{2}+\rho \operatorname{Tr}\left(K_{0} K_{0}\right) \\
& -2 \rho \sum_{i} \operatorname{Tr}\left(\left(v_{i} v_{i}^{T}\right) K_{0}\right) \max \left(0, \lambda_{i}\left(K_{0}+(Y \alpha)(Y \alpha)^{T} / 4 \rho\right)\right) \\
\text { subject to } & \alpha^{T} y=0,0 \leq \alpha \leq C
\end{aligned}
$$

in the variable $\alpha \in \mathbb{R}^{n}$.

Computing the gradient at each iteration is expensive, but the feasible set is a Polyhedron.

Localization methods

Convergence plots for ACCPM (left) and projected gradient method (right) on random subsets of the USPS-SS-3-5 data set (average gap versus iteration number, dashed lines at plus and minus one standard deviation).

Conclusion

Countless other methods not discussed here. Some with no convergence guarantees.

- Low Rank semidefinite programming. (Choose a factorization $X=V V^{T}$ and solve in V). [Burer and Monteiro, 2003, Journée et al., 2008]

■ Row by row methods. Some solver variants for MAXCUT require only matrix vector products. [Wen et al., 2009]

■ Multiplicative update methods [Arora and Kale, 2007]. No implementation or performance details.

Some recent activity on subsampling.

■ Variational inequality formulation [Juditsky et al., 2008, Baes et al., 2011].
■ Columnwise or elementwise matrix subsampling [d'Aspremont, 2008b].

Conclusion

Large-scale semidefinite programs.

- First-order algorithms for solving (mostly) generic problems.
- For more specialized problems

Structure \Rightarrow algorithmic choices

What subproblem can you solve easily? Which algorithm exploits it best?

References

S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 227-236, 2007.
M. Baes, M. Bürgisser, and A. Nemirovski. A randomized mirror-prox method for solving structured large-scale matrix saddle-point problems. Arxiv preprint arXiv:1112.1274, 2011.
A. Ben-Tal and A. Nemirovski. Non-Euclidean restricted memory level method for large-scale convex optimization. Mathematical Programming, 102(3):407-456, 2005.
S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329-357, 2003.
A. d'Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3):1171-1183, 2008a.
A. d'Aspremont. Subsampling algorithms for semidefinite programming. arXiv:0803.1990, 2008b.
A. d'Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56-66, 2006.
O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. CORE Discussion Papers,(2011/02), 2011.
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):95-110, 1956.
C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10(3):673-696, 2000.
M. Jaggi. Convex optimization without projection steps. Arxiv preprint arXiv:1108.1170, 2011.
M. Journée, F. Bach, P.A. Absil, and R. Sepulchre. Low-rank optimization for semidefinite convex problems. Arxiv preprint arXiv:0807.4423, 2008.
A. Juditsky, A.S. Nemirovskii, and C. Tauvel. Solving variational inequalities with Stochastic Mirror-Prox algorithm. Arxiv preprint arXiv:0809.0815, 2008.
K.C. Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Mathematical Programming, 69(1):89-109, 1995.
J. Kuczynski and H . Wozniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl, 13(4):1094-1122, 1992.
G. Lan. An optimal method for stochastic composite optimization. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2009, 2009.
G. Lan. Bundle-type methods uniformly optimal for smooth and non-smooth convex optimization. Manuscript, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, 32611, 2010.
C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods. Mathematical programming, 69(1):111-147, 1995.
A. Lewis, J. Malick, et al. Alternating projections on manifolds. Mathematics of Operations Research, 33(1):216-234, 2008.
R. Luss and A. d'Aspremont. Support vector machine classification with indefinite kernels. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 953-960. MIT Press, Cambridge, MA, 2008.
C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3-49, 2003.
Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2): 372-376, 1983.
Y. Nesterov. Smoothing technique and its applications in semidefinite optimization. Mathematical Programming, 110(2):245-259, 2007.
Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discussion Papers, 2010.
Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994.
F. Oustry. A second-order bundle method to minimize the maximum eigenvalue function. Mathematical Programming, 89(1):1-33, 2000.
Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg. Row by row methods for semidefinite programming. Technical report, Technical report, Department of IEOR, Columbia University, 2009.

