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Introduction

Consider
minimize f(x)
subject to x ∈ Q

where f(x) is a convex function, Q ⊂ Rn.

� Assume ∇f is Hölder continuous,

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖s−1, for every x, y ∈ Rn,

� Assume sharpness, i.e.

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K,

where f∗ is the minimum of f , K ⊂ Rn is a compact set, d(x,X∗) the distance
from x to the set X∗ ⊂ K of minimizers of f , and r ≥ 1, µ > 0 are constants.
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Introduction, Restart

Strong convexity is a particular case of sharpness.

µd(x,X∗)2 ≤ f(x)− f∗

If f is also smooth, an optimal algorithm (ignoring strong convexity), will
produce a point x satisfying

f(x)− f∗ ≤ cL

t2
d(x0, X

∗)2,

after t iterations.

� Restarting the algorithm, we thus get

f(xk+1)− f∗ ≤
cL

µt2k
(f(xk)− f∗), k = 1, . . . , N

at each outer iteration, after tk inner iterations.

� Restart yields linear convergence, without explicitly modifying the algorithm.
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Introduction, Sharpness

Smoothness is classical [Nesterov, 1983, 2005], sharpness less so. . .

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

� Real analytic functions all satisfy this locally, a result known as  Lojasiewicz’s
inequality [Lojasiewicz, 1963].

� Generalizes to a much wider class of non-smooth functions [Lojasiewicz, 1993,
Bolte et al., 2007]

� Conditions of this form are also known as sharp minimum, error bound, etc.
[Polyak, 1979, Burke and Ferris, 1993, Burke and Deng, 2002].
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Introduction, Sharpness & Smoothness

� Gradient ∇f Hölder continuous ensures

f(x)− f∗ ≤ L

s
d(x,X∗)s,

an upper bound on suboptimality.

� If in addition f sharp on a set K with parameters (r, µ), we have

sµ

rL
≤ d(x,X∗)s−r

hence s ≤ r.

In the following, we write

κ , L
2
s/µ

2
r and τ , 1− s

r

If r = s = 2, κ matches the classical condition number of the function.
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Introduction, Sharpness & Complexity

� Restart schemes were studied for strongly or uniformly convex functions
[Nemirovskii and Nesterov, 1985, Nesterov, 2007, Iouditski and Nesterov,
2014, Lin and Xiao, 2014]

� In particular, Nemirovskii and Nesterov [1985] link sharpness with (optimal)
faster convergence rates using restart schemes.

� Weaker versions of this strict minimum condition used more recently in restart
schemes by [Renegar, 2014, Freund and Lu, 2015].

� Sharpness was also used to characterize the convergence of alternating and
splitting methods [Attouch et al., 2010, Frankel et al., 2014]

� Several heuristics [O’Donoghue and Candes, 2015, Su et al., 2014, Giselsson
and Boyd, 2014] studied adaptive restart schemes to speed up convergence.

� The robustness of restart schemes was also studied by Fercoq and Qu [2016] in
the strongly convex case.

� Sharpness used to prove linear converge matrix games by Gilpin et al. [2012].
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Introduction, Adaptation

Today.

� The sharpness constant µ and exponent r in

µd(x,X∗)r ≤ f(x)− f∗, for every x ∈ K.

are of course never observed.

� Can we make restart schemes adaptive? Otherwise, sharpness is useless. . .

� Solve robustness problem for accelerated methods on strongly convex functions.

� What happens when we have an explicit termination criterion?
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Outline

Today.

� Sharpness & optimal restart schemes

� Adaptation

� Restart with termination criterion

� Composite and constrained problems

� Numerical results

Alex d’Aspremont FOCM, Barcelona, July 2017. 8/21



Restart schemes

Algorithm 1 Scheduled restarts for smooth convex minimisation (RESTART)

Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk)

end for
Output : x̂ := xR

Here, the number of inner iterations tk satisfies

tk = Ceαk, k = 1, . . . , R.

for some C > 0 and α ≥ 0 and will ensure

f(xk)− f∗ ≤ νe−γk.
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Restart schemes

Proposition [Roulet and d’Aspremont, 2017]

Restart. Let f be a smooth convex function with parameters (2, L), sharp with
parameters (r, µ) on a set K. Restart with iteration schedule tk = C∗κ,τe

τk, for

k = 1, . . . , R, where C∗κ,τ , e
1−τ(cκ)

1
2(f(x0)− f∗)−

τ
2 , with c = 4e2/e here.

The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ e−2e
−1(cκ)−

1
2N(f(x0)− f∗) = O

(
exp(−κ−1

2N)
)
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2(cκ)−

1
2N + 1

)2
τ

= O
(
N−

2
τ

)
, when τ > 0,

where N =
∑R
k=1 tk is the total number of iterations.
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Adaptation

Adaptation. When s = 2, a log-scale grid search on τ and κ works.

Run several schemes with a fixed number of inner iterations N .{
Si,0 : Restart scheme with tk = Ci,
Si,j : Restart scheme with tk = Cie

τjk,

where Ci = 2i and τj = 2−j.
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Adaptation

Proposition [Roulet and d’Aspremont, 2017]

Adaptation. Assume N ≥ 2C∗κ,τ , and if 1
N > τ > 0, C∗κ,τ > 1.

If τ = 0, there exists i ∈ [1, . . . , blog2Nc] such that scheme Si,0 achieves a
precision given by

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)−1

2N
)
(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , blog2Nc] and j ∈ [1, . . . , dlog2Ne] such that
scheme Si,j achieves a precision given by

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)−

1
2(f(x0)− f∗)

τ
2(N − 1)/4 + 1

)2
τ

.

Overall, running the logarithmic grid search has a complexity (log2N)2 times
higher than running N iterations using the optimal (oracle) scheme.
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Adaptation

Proof sketch. Need to show robustness w.r.t. τ .

Split in two regimes.

� If 1
N ≤ τ , show that we only lose a constant factor with respect to the

polynomial bound.

� If 1
N > τ > 0, show that we are a constant factor away from linear convergence

bound.

Accelerated algorithms are much less robust to strong convexity parameter.
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Hölder smooth case

The generic Hölder smooth case s 6= 2 is harder.

� When f is smooth with parameters (s, L) and s 6= 2, the restart scheme is
more complex.

� The universal fast gradient method in [Nesterov, 2015], outputs after t
iterations a point x , U(x0, ε, t), such that

f(x)− f∗ ≤ ε

2
+

(
cL

2
sd(x0, X

∗)2

ε
2
st

2ρ
s

)
ε

2
,

where c is a constant (c = 8) and ρ , 3s
2 − 1 is the optimal rate of

convergence for s-smooth functions.

� Contrary to the case s = 2 above, we need to schedule both the target
accuracy εk used by the algorithm and the number of iterations tk.

� We lose adaptivity when s 6= 2.
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Restart with criterion

Termination criterion. We stop the algorithm after tε inner iterations, using a
termination criterion to ensure x = U(x0, ε, tε) satisfies f(x)− f∗ ≤ ε, and write

x , C(x0, ε).

Algorithm 2 Restart on criterion (ε-RESTART)

Inputs : x0 ∈ Rn, f∗, γ ≥ 0, ε0 = f(x0)− f∗
for k = 1, . . . , R do

εk := e−γεk−1, xk := C(xk−1, εk)

end for
Output : x̂ := xR

[Roulet and d’Aspremont, 2017]: very robust in γ.

� Given ρ = 3s
2 − 1, the algorithm automatically adapts to the optimal values of

the sharpness parameters (r, µ).

� If ρ is not known, we lose a factor e/2 at worst.
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Composite and constrained problems

Composite and constrained problems. Consider

minimize f(x) , φ(x) + g(x), (Composite)

� Prox function h with dom(f) ⊂ dom(h), strongly convex with respect to
the norm ‖ · ‖ with convexity parameter equal to one. We define the Bregman
divergence associated to h as

Dh(y, x) = h(y)− h(x)−∇h(x)T (y − x), for x, y ∈ dom(h).

so that Dh(y, x) ≥ 1
2‖x− y‖

2.

� Given x, y ∈ dom(f) and λ ≥ 0 we assume that

min
z

{
yTz + g(z) + λDh(z, x)

}
can be solved either in closed form or by some fast computational procedure.
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Composite and constrained problems

Definition [Roulet and d’Aspremont, 2017]

Relative sharpness. A convex function f is called relatively sharp with respect
to a strictly convex function h on a set K ⊂ dom(f) iff there exist r ≥ 1, µ > 0
such that

µ

r
Dh(x,X

∗)
r
2 ≤ f(x)− f∗ for any x ∈ K (Relative Sharpness)

where Dh(x,X
∗) = minx∗∈X∗Dh(x, x

∗) and Dh is the Bregman divergence
associated to h.

� In the spirit of relative-smoothness [Bauschke et al., 2016, Lu et al., 2016].

� As generic as sharpness: Satisfied if f and h are subanalytic [Bierstone and
Milman, 1988, Th. 6.4].

� All previous results transpose directly to this setting, using the complexity
bound

f(x)− f∗ ≤ ε

2
+
cL

2
sDh(x0, X

∗)

ε
2
st

2ρ
s

ε

2
,
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Outline

� Sharpness & optimal restart schemes

� Adaptation

� Restart with termination criterion

� Composite and constrained problems

� Numerical results
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Numerical results
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Comparison of the methods for the LASSO problem on the Sonar dataset where
number of iterations of the Adaptive method is multiplied by the size of the grid.
Large dots represent the restart iterations. Grid search size is set to 4.
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Numerical results

0 200 400 600 800

Iterations

10 -10

10 -5

10 0

f(
x)

-f
*

Grad
Acc
Mono
Adap
Crit

Iterations

0 500 1000

Iterations

10 -2

10 -1

10 0

f(
x)

-f
*

Grad
Acc
Mono
Adap
Crit

Iterations

0 500 1000

Iterations

10 -10

10 -5

10 0

f(
x)

-f
*

Grad
Acc
Mono
Adap
Crit

Iterations

0 500 1000

Iterations

10 -10

10 -5

10 0

f(
x)

-f
*

Grad
Acc
Mono
Adap
Crit

Iterations

Sonar data set. From top to bottom and left to right: least square loss, logistic
loss, dual SVM problem and LASSO. We use adaptive restarts (Adap), gradient
descent (Grad), accelerated gradient (Acc) and restart heuristic enforcing
monotonicity (Mono). Large dots represent the restart iterations.
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Conclusion

� Restart performance directly linked to sharpness.

� Restarting almost always works.

� In practice, testing a few schemes is enough to guarantee optimal complexity.

Open problems.

� Adaptation in generic Hölder gradient case.

� Optimal bounds for sharp problems without restart.

� Equivalently, local adaptation to sharpness.
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