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ABSTRACT. We use rank one Gaussian perturbations to derive a smooth stochastic approximation of the max-
imum eigenvalue function. We then combine this smoothing result with an optimal smooth stochastic opti-
mization algorithm to produce an efficient method for solving maximum eigenvalue minimization problems,
and detail a variant of this stochastic algorithm with monotonic line search. Overall, compared to classical
smooth algorithms, this method runs a larger number of significantly cheaper iterations and, in certain preci-
sion/dimension regimes, its total complexity is lower than that of deterministic smoothing algorithms.

1. INTRODUCTION

We discuss applications of stochastic smoothing results to the design of efficient first-order methods for
solving semidefinite programs. We focus here on the problem of minimizing the maximum eigenvalue of a
matrix over a simple convex set Q (the meaning of simple will be made precise later), i.e. we solve

min
X∈Q

λmax(X), (1)

in the variableX ∈ Sn. Note that all primal semidefinite programs with fixed trace have a dual which can be
written in this form [Helmberg and Rendl, 2000]. While moderately sized problem instances are solved very
efficiently by interior point methods [Ben-Tal and Nemirovski, 2001] with very high precision guarantees,
these methods fail on most large-scale problems because the cost of running even one iteration becomes
too high. When coarser precision targets are sufficient (e.g. spectral methods in statistical or geometric
applications), much larger problems can be solved using first-order algorithms, which tradeoff a lower cost
per iteration in exchange for a degraded dependence on the target precision.

So far, roughly two classes of first-order algorithms have been used to solve large-scale instances of the
semidefinite program in (1). The first uses subgradient descent or a variant of the mirror-prox algorithm of
[Nemirovskii and Yudin, 1979] that takes advantage of the geometry of Q to minimize directly λmax(X).
These methods do not exploit the particular structure of problem (1) and need O(D2

Q/ε
2) iterations to reach

a target precision ε, where DQ is the diameter of the set Q. Each iteration requires computing a lead-
ing eigenvector of the matrix X at a cost of roughly O(n2 log n) (see the Appendix for more details) and
projecting X on Q at a cost written pQ. Spectral bundle methods [Helmberg and Rendl, 2000] use more in-
formation on the spectrum of X to speed up convergence, but their complexity is not well understood. More
recently, [Nesterov, 2007a] showed that one could exploit the particular min-max structure of problem (1)
by first regularizing the objective using a “soft-max” exponential smoothing, then using optimal first-order
methods for smooth convex minimization. These algorithms only require O(DQ

√
log n/ε) iterations, but

each iteration forms a matrix exponential at a cost of O(n3). In other words, depending on problem size and
precision targets, existing first-order algorithms offer a choice between two complexity bounds

O

(
D2
Q(n2 log n+ pQ)

ε2

)
and O

(
DQ
√

log n(n3 + pQ)

ε

)
. (2)
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Note that the constants in front of all these estimates can be quite large and actual numerical complexity
depends heavily on the particular path taken by the algorithm, especially for adaptive variants of the methods
detailed here (see [Nesterov, 2007b, §6] for an illustration on a simpler problem). In practice of course, these
asymptotic worst case bounds are useful for providing general guidance in algorithmic choices, but remain
relatively coarse predictors of performance for reasonable values of n and ε.

Many recent works have sought to move beyond these two basic complexity options. Overton and Wom-
ersley [1995] directly applied Newton’s method to the maximum eigenvalue function, given a priori infor-
mation on the multiplicity of this eigenvalue. Burer and Monteiro [2003] and Journée et al. [2008] focus on
instances where the solution is known to have low rank (e.g. matrix completion, combinatorial relaxations)
and solve the problem directly over the set of low rank matrices. These formulations are nonconvex and their
complexity cannot be explicitly bounded, but empirical performance is often very good. Lu et al. [2007]
focus on the case where the matrix has a natural structure (close to block diagonal). Juditsky et al. [2008]
use a variational inequality formulation and randomized linear algebra to reduce the cost per iteration of
first-order algorithms. Subsampling techniques were also used in [d’Aspremont, 2011] to reduce the cost
per iteration of stochastic averaging algorithms. Finally, in recent independent results similar in spirit to
those presented here, Baes et al. [2011] use stochastic approximations of the matrix exponential to reduce
the cost per iteration of smooth first-order methods. The complexity tradeoff and algorithms in [Baes et al.,
2011] are different from ours (roughly speaking, a 1/ε term is substituted to the

√
n term in our bound),

but both methods seek to reduce the cost of smooth first-order algorithms for semidefinite programming
using stochastic gradient oracles instead of deterministic ones. However, Baes et al. [2011] use stochastic
techniques to reduce the cost of computing classical smoothing steps (matrix exponential, etc.) and Juditsky
et al. [2008] use them to reduce the cost of linear algebra operations. In this work, we directly use stochastic
methods for smoothing.

In this paper, we use stochastic smoothing results, combined with an optimal accelerated algorithm for
stochastic optimization recently developed by Lan [2012], to derive a stochastic algorithm for solving (1).
The algorithm detailed below requires onlyO(

√
n/ε) iterations, with each iteration computing a few sample

leading eigenvectors of (X + ε zzT /n) where z ∼ N (0, In). While in most applications of stochastic
optimization the noise level is seen as exogenous, we use it here to control the tradeoff between number of
iterations and cost per iteration. The algorithm requires fewer iterations than nonsmooth methods and has
lower cost per iteration than smoothing techniques. In some configurations of the parameters (n, ε, pQ, DQ),
its total worst-case floating-point complexity is lower than that of both smooth and nonsmooth methods.
Overall, the method has a cost per iteration comparable to that of nonsmooth methods while retaining some
of the benefits of accelerated methods for smooth optimization.

The paper is organized as follows. In the next section, we briefly outline the stochastic smoothing al-
gorithm for maximum eigenvalue minimization and compare its complexity with existing first-order algo-
rithms. Section 3 details smoothing results on random rank one perturbations of the maximum eigenvalue
function, highlighting in particular a phase transition in the spectral gap depending on the spectrum of the
original matrix. Section 4 uses these smoothing results to produce a stochastic algorithm for maximum
eigenvalue minimization, and describes an extension of the optimal stochastic optimization algorithm in
[Lan, 2012] where the scale of the step size is allowed to vary adaptively (but monotonically). Section 6.4
informally discusses extensions of our results to other smoothing techniques, together with their impact on
complexity. Section 5 presents some preliminary numerical experiments. An Appendix contains auxiliary
material, including a detailed discussion of the cost of computing leading eigenpairs of a symmetric matrix,
technical details about various functions that play a central role in our analysis, and a proof of the phase
transition result for random rank-one perturbations.

Notation. Throughout the paper, we denote by λi(X) the eigenvalues of the matrix X ∈ Sn, in decreasing
order. For clarity, we will also use λmax(X) for the leading eigenvalue of X . When z denotes a vector in

Rn, its i-th coordinate is denoted by zi. We denote equality in law (for random variables) by L= and =⇒
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stands for convergence in law. We use the notationOP with the standard probabilistic meaning (see [van der
Vaart, 1998], p.12). When we compute local Lipschitz constants, they are always computed with respect to
Euclidian or Frobenius norms, unless otherwise noted. We call L [Γ(X)] the local Lipschitz constant of the
function Γ at X .

2. STOCHASTIC SMOOTHING ALGORITHM

We will solve a smooth approximation of problem (1), written

minimize Fk(X) , E
[
maxi=1,...,k λmax

(
X + ε

nziz
T
i

)]
subject to X ∈ Q, (3)

in the variable X ∈ Sn, where Q ⊂ Sn is a compact convex set, zi
i.i.d∼ N (0, In), ε ≥ 0 is in R and k > 0

is a small constant (typically 3). We call F∗k the optimal value of this problem. We also define Fk(X) as the
random valued function inside the expectation, with

Fk(X) , max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)
(4)

so that Fk(X) = E [Fk(X)]. We have the following approximation result.

Lemma 2.1. Fk(X) is a ckε-uniform approximation of λmax(X), where

ck = E

[
max
i=1,...,k

‖zi‖22/n
]
≤ E

[∑k
i=1 ‖zi‖22/n

]
= k .

In other words, for all X ∈ Sn

λmax(X) +
ε

n
≤ Fk(X) ≤ λmax(X) + ckε . (5)

Proof. We first establish the upper bound. The fact that λmax(·) is subadditive on Sn gives

λmax

(
X +

ε

n
ziz

T
i

)
≤ λmax(X) + λmax

( ε
n
ziz

T
i

)
= λmax(X) + ε

‖zi‖2

n
,

since λmax(ziz
T
i ) = ‖zi‖2. It follows that

max
1≤i≤k

λmax

(
X +

ε

n
ziz

T
i

)
≤ max

1≤i≤k
λmax(X) + ε max

1≤i≤k

‖zi‖2

n
,

and

Fk(X) = E

[
max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)]
≤ λmax(X) + ckε .

Let us now prove the lower bound. The mapping M 7→ λmax(X + M) is convex from Sn to R when
X ∈ Sn. Therefore, Jensen’s inequality applied to this mapping with the random varible zizTi gives

λmax(X +
ε

n
E
[
ziz

T
i

]
) ≤ E

[
λmax

(
X +

ε

n
ziz

T
i

)]
.

Using E[ziz
T
i ] = In, we conclude that

∀1 ≤ i ≤ k, λmax(X +
ε

n
In) ≤ E

[
λmax

(
X +

ε

n
ziz

T
i

)]
, hence

λmax(X) +
ε

n
≤ E

[
max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)]
,

which is the lower bound above.

We begin by briefly introducing the smoothing results on (3) detailed in Section 3, then describe our main
algorithm.
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Algorithmic complexity Num. of Iterations Cost per Iteration

Nonsmooth O

(
D2
Q

ε2

)
O(pQ + n2 log n)

Stochastic Smoothing O
(
DQ
√
n

ε

)
O
(
pQ + max

{
1,

DQ
ε
√
n

}
n2 log n

)
Deterministic Smoothing O

(
DQ
√

logn
ε

)
O(pQ + n3)

TABLE 1. Worst-case computational cost of the smooth stochastic algorithm detailed here,
the smoothing technique in [Nesterov, 2007a] and the nonsmooth subgradient descent
method.

2.1. Smoothness of Fk(X). In Section 3, we will show that the function Fk has a Lipschitz continuous
gradient w.r.t. the Frobenius norm, i.e.

‖∇Fk(X)−∇Fk(Y )‖F ≤ L‖X − Y ‖F ,
with (uniform) constant L satisfying

L ≤ Ck
n

ε
, (6)

where Ck > 0 depends only on k and is bounded whenever k ≥ 3. We will see in Section 3 that this bound
is quite conservative and that much better regularity is achieved when the spectrum of X is well-behaved
(see Theorem 3.9).

2.2. Gradient variance. Section 3 also produces an explicit expression for the gradient of Fk. Let φi0 be a
leading eigenvector of the matrix X + ε

nzi0z
T
i0

where

i0 = argmax
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)
.

We will see that i0 is unique with probability one and that we have

∇Fk(X) = E
[
φi0φ

T
i0

]
and E

[∥∥φi0φTi0 −∇Fk(X)
∥∥2

F

]
≤ 1 . (7)

Therefore the variance of the stochastic gradient oracle φi0φ
T
i0

is bounded by one. Once again, we will see
in Section 3 that this bound too is often quite conservative.

2.3. Stochastic algorithm. Given an unbiased estimator for∇Fk with unit variance, the optimal algorithm
for stochastic optimization derived in [Lan, 2012] will produce a (random) matrix XN such that

E[Fk(XN )− F∗k] ≤
4LD2

Q

αN2
+

4DQ√
Nq

(8)

after N iterations [Lan, 2012, Corollary 1], where L ≤ Ckn/ε is the Lipschitz constant of ∇Fk discussed
in the previous section, α is the strong convexity constant of the prox function, and q is the number of
independent sample matrices φφT averaged in approximating the gradient. Once again, we write DQ the
diameter of the set Q (see below for a precise definition) and pQ, which appears in Table 1, the cost of
projecting a matrix X ∈ Sn on the set Q.

Setting N = 2DQ
√
n/ε and q = dmax{1, DQ/(ε

√
n)}e, the approximation bounds in Proposition 3.7

will then ensure E[Fk(XN ) − F∗k] ≤ 5ε. We compare in Table 1 the computational cost of the smooth
stochastic algorithm in [Lan, 2012, Corollary 1] in this setting with that of the smoothing technique in
[Nesterov, 2007a] and the nonsmooth stochastic averaging method. Recall that the cost of computing one
leading eigenvector of X + vvT is of order O(n2 log n) (cf. Appendix) while that of forming the matrix
exponential exp(X) is O(n3) [Moler and Van Loan, 2003].
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Table 1 shows a clear tradeoff in this group of algorithms between the number of iterations and the cost
of each iteration. In certain regimes for (n, ε), the total worst-case complexity of algorithm 1 detailed on
page 17 is lower than that of both smooth and nonsmooth methods. This is the case for instance when
DQ ≥

√
nε and

c1 max

{
1,
DQ

ε
√
n

}
n2 log n ≤ pQ ≤ c2n

5/2
√

log n ,

for some absolute constants c1, c2 > 0. In practice of course, the constants in front of all these estimates
can be quite large and the key contribution of the algorithm detailed here is to preserve some of the benefits
of smooth accelerated methods (e.g. fewer iterations), while requiring a much lower computational (and
memory) cost per iteration by exploiting the very specific structure of the λmax(X) function.

3. EFFICIENT STOCHASTIC SMOOTHING

In this section, we show how to regularize the function λmax(X) using stochastic smoothing arguments.
We start by recalling a classical argument about Gaussian regularization and then improve smoothing per-
formance by using explicit structural results on the spectrum of rank one updates of symmetric matrices.

3.1. Gaussian smoothing. The following is a standard result on Gaussian smoothing which does not ex-
ploit any structural information on the function λmax(X) except its Lipschitz continuity.

Lemma 3.1. Suppose f : Rm → R is Lipschitz continuous with constant µ with respect to the Euclidean
norm. The function sf such that

sf(x) = E[f(x+ εz)] ,

where z ∼ N (0, Im) and ε > 0, has a Lipschitz continuous gradient with

‖∇sf(x)−∇sf(y)‖2 ≤
2
√
mµ

ε
‖x− y‖2.

Proof. See Nesterov [2011] for a short proof and applications in gradient-free optimization.

Let us consider the function FGUE(X) taking values

FGUE(X) = E[λmax(X + (ε/
√
n)U)] ,

where U ∈ Sn is a symmetric matrix with standard normal upper triangle coefficients. Using convexity and
positive homogeneity of the λmax(X) function, together with the fact that it is 1-Lipschitz with respect to
the spectral norm and bounds on the largest eigenvalue of U (which follow easily from either Trotter [1984]
or Davidson and Szarek [2001]), we see that this function is an ε-approximation of λmax(X).

Lemma 3.1 above shows that FGUE(X) has a Lipschitz continuous gradient with constant bounded by
O
(
n3/2/ε

)
, since, with the notation of Lemma 3.1, m = n2. This approach was used e.g. in [d’Aspremont,

2008] to reduce the cost per iteration of a smooth optimization algorithm with approximate gradient, and by
[Nesterov, 2011] to derive explicit complexity bounds on gradient free optimization methods. We present a
short discussion on a finer bound on the Lipschitz-constant of this function in Section 6.4.

3.2. Gradient smoothness. We recall the following classical result (which can be derived from results in
[Kato, 1995] and [Lewis and Sendov, 2001] and is proved in the Appendix for the sake of completeness)
showing that the gradient of λmax(X) is smooth when the largest eigenvalue ofX has multiplicity one, with
(local) Lipschitz constant controlled by the spectral gap.

Theorem 3.2. Suppose X ∈ Sn and call {λi(X)}ni=1 the decreasingly ordered eigenvalues of X . Suppose
also that λmax(X), the largest eigenvalue of X , has multiplicity one. Let Y be a symmetric matrix with
‖Y ‖F = 1 and call

γ(X,Y ) = lim
t→0

∂2λmax(X + tY )

∂t2
.
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Call λmax the mapping X 7→ λmax(X). Then the local Lipschitz constant - with respect to the Frobenius
norm - of the gradient of the mapping λmax is given by

L [∇λmax(X)] = sup
Y ∈Sn,‖Y ‖F=1

γ(X,Y ) =
1

λmax(X)− λ2(X)
. (9)

This result shows that to produce smooth approximations of the function λmax(X) using random pertur-
bations, we need these perturbations to increase the spectral gap by a sufficient margin. We will see below
that, up to a small trick, random rank one Gaussian perturbations of the matrix X will suffice to achieve this
goal.

3.3. Rank one updates. The following proposition summarizes the information we will need about the
impact of rank-one updates on the largest eigenvalue of a symmetric matrix. Equation (10) below will prove
useful later to control the smoothness of∇Fk(X).

Proposition 3.3. Suppose X ∈ Sn and has spectral decomposition X = OTXDXOX . Let v 6= 0 be a vector
in Rn which is not an eigenvector of X . Let ε > 0 be in R. Then, λmax(X + (ε/n)vvT ) has multiplicity 1
and λmax(X + (ε/n)vvT ) − λmax(X) > 0. Let us call λ2 the second largest eigenvalue of a symmetric
matrix. Then, if (OXv)1 is the first coordinate of the vector OXv, we have

ε(OXv)2
1

n
≤ λmax

(
X +

ε

n
vvT

)
− λmax(X) ≤ λmax

(
X +

ε

n
vvT

)
− λ2

(
X +

ε

n
vvT

)
. (10)

Proof. For X ∈ Sn, we call λ(X) ∈ Rn the spectrum of the matrix X , in decreasing algebraic order.
Whenever v 6= 0 is not an eigenvector ofX and ε > 0, the leading eigenvalue l1 of the matrixX+(ε/n)vvT ,
is always strictly larger than λ1(X) [see Golub and Van Loan, 1990, §8.5.3] and we write l1 = λ1(X) + t,
t ≥ 0. Our aim is now to characterize t and understand its properties. We note that

X + (ε/n)vvT = OTX
[
DX + (ε/n)(OXv)(OXv)T

]
OX .

Since we are interested in eigenvalues, we assume without loss of generality that X is diagonal. If X were
not diagonal, we would just need to replace v by (OXv) in what follows for all the statements to hold.

It is a standard result (see e.g Theorem 8.5.3 in [see Golub and Van Loan, 1990, §8.5.3]) that the variable t
is the unique positive solution of the secular equation

s(t) ,
n

ε
− v2

1

t
−

n∑
i=2

v2
i

(λ1(X)− λi(X)) + t
= 0, (11)

where vi are the coefficients of the vector v; we give an elementary derivation of this result in Subsection 6.3
in the Appendix. We plot the function s(·) for a sample matrix X in Figure 1.

Having assumed that X is diagonal, Golub and Van Loan [1990, Th. 8.5.3] also shows that if vi 6= 0 for
i = 1, . . . , n and ε > 0, then t > 0 and the eigenvalues of X and X + (ε/n)vvT are interlaced, i.e.

λn(X) ≤ λn(X +
ε

n
vvT ) ≤ . . . ≤ λ2(X +

ε

n
vvT ) ≤ λmax(X) < λmax(X +

ε

n
vvT ).

This implies in particular that λmax(X + ε
nvv

T ) has multiplicity 1. By construction, the function

s+(t) ,
n

ε
− v2

1

t

is an upper bound on s(t) on the interval (0,∞). Since both functions are non-decreasing, the positive root
of the equation s+(t) = 0 is a lower bound on the positive root t∗ of the equation s(t) = 0. We therefore
have

t∗ ≥ εv2
1

n
.
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FIGURE 1. Plot of s(t) versus λ1(X) + t. The matrix has dimension four and its spectrum
is here {−2,−2, 0, 1}. The three leading eigenvalues of X + εvvT are the roots of s(t), the
fourth eigenvalue is at -2.

Using interlacing, we also have

λ2(X +
ε

n
vvT ) ≤ λ1(X) ≤ λ1(X) + t∗ = λ1(X +

ε

n
vvT ).

This gives a lower bound on the spectral gap of the perturbed matrix

εv2
1

n
≤ t∗ ≤ λ1(X +

ε

n
vvT )− λ2(X +

ε

n
vvT ) ,

which yields (10) and will allow us to control the smoothness of∇Fk(X).

3.4. Low rank Gaussian smoothing. We now come back to the objective function of Problem (3), written

Fk(X) = E

[
max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)]
,

where zi are i.i.d. N (0, In) and k > 0 is a small constant. We first show that we can differentiate under the
expectation in the definition of Fk(X). This requires a few preliminaries which we now present.

Lemma 3.4. Let λ1(X) + T be the largest eigenvalue of the matrix X + (ε/n)zzT , where X ∈ Sn is a
given deterministic matrix and z ∼ N (0, In). Then the random variable T has a density on [0,∞).

The proof of this lemma is in the Appendix in §6.2.2. Two corollaries immediately follow. The first one
shows that two perturbed eigenvalues obtained from independent rank one perturbations are different with
probability one.

Corollary 3.5. Suppose l1,1 = λmax(X + (ε/n)z1z
T
1 ) and l1,2 = λmax(X + (ε/n)z2z

T
2 ), where z1 and z2

are independent with distribution N (0, In). Then l1,1 6= l1,2 with probability one.

Proof. The result follows from Lemma 3.4 since l1,1−λmax(X) and l1,2−λmax(X) are two independent
draws from a distribution with a density on [0,∞) and P (l1,1 − λmax(X) = 0) = P (l1,2 − λmax(X) =
0) = 0.

The second corollary shows that the maximum of (independent) perturbed eigenvalues is differentiable
with probability one and bounds its Lipschitz constant.
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Corollary 3.6. Let X ∈ Sn and suppose l1,i = λmax(X + (ε/n)ziz
T
i ), where zi

i.i.d∼ N (0, In) for i =
1, . . . , k. The mapping Fk : X → maxi=1,...,k l1,i is differentiable with probability one. Then, if i0 =
argmax1≤i≤k l1,i and φi0 is an eigenvector associated with the eigenvalue l1,i0 , its gradient is

∇Fk(X) = φi0φ
T
i0 . (12)

Also, with probability 1, the local Lipschitz constant of∇Fk is bounded by

L [∇Fk(X)] ≤ 1

Fk(X)− λmax(X)
. (13)

Proof. We first recall that it is well-known (and indeed follows from results in [Kato, 1995]) that if a
matrix M0 has a unique largest eigenvalue, the gradient of M 7→ λmax(M) at M0 is simply φ0φ

T
0 , where

φ0 is an eigenvector associated with λmax(M0).
Corollary 3.5 shows that with probability 1, there exists a unique i0 such that l1,i0 = Fk(X). Furthermore,

since with probability 1, zi0 is not an eigenvector of X , Proposition 3.3 shows that the multiplicity of the
largest eigenvalue ofX+(ε/n)zi0z

T
i0

is one. This implies thatX 7→ λmax(X+(ε/n)zi0z
T
i0

) is differentiable
at X with probability 1. Lemma 6.2 then applies and shows that Fk is differentiable at X with probability 1.
Our reminder on the gradient of M 7→ λmax(M) gives the value of the differential. The last part of the
corollary follows from Lemma 6.3, whose assumptions are clearly satisfied with probability 1.

We now use these preliminary results to prove the main result of this section, namely a bound on the
Lipschitz constant of the gradient of Fk(X) defined above, using the spectral gap bound in (10).

Proposition 3.7. Let {zi}ki=1 be i.i.d. N (0, In), k ≥ 3 be an integer and X ∈ Sn. The function Fk such that

Fk(X) = E

[
max
i=1,...,k

λmax(X + (ε/n)ziz
T
i )

]
is smooth. The Lipschitz constant L of its gradient w.r.t. the Frobenius norm satisfies

L ≤ Ck
n

ε
where Ck =

k

k − 2
.

Proof. The fact that Fk is smooth follows from Equation (12) and the fact that we can interchange
expectation and differentiation here. Details about the validity of this interchange - whose proof requires
care - are in the Appendix in Lemma 6.4. We assume without loss of generality that X is diagonal -
Lemma 6.1 proving that we can do so. Let us call zi the first coordinate of the vector zi. The spectral gap
bound in (10) gives

∀ i, 1 ≤ i ≤ k , λmax(X +
ε

n
ziz

T
i )− λmax(X) ≥ ε

n
z2
i .

It follows that

Fk(X)− λmax(X) ≥ ε

n
max
1≤i≤k

z2
i , and

1

Fk(X)− λmax(X)
≤ n

ε

1

maxi=1,...,k z
2
i

.

The results of Corollary 3.6 then guarantee that with probability 1, we have

L [∇Fk(X)] ≤ n

ε

1

maxi=1,...,k z
2
i

,

and therefore

L [∇Fk(X)] ≤ E

[
n

ε

1

maxi=1,...,k z
2
i

]
≤ E

[
n

ε

1∑k
i=1 z

2
i /k

]
= E

[
n

ε

k

χ2
k

]
8



where χ2
k is χ2 distributed with k degrees of freedom. The fact that

E

[
1

χ2
k

]
=

1

k − 2

whenever k ≥ 3 - see e.g. [Mardia et al., 1979, p. 487] - yields

∀X ∈ Sn , L [∇Fk(X)] ≤ Ck
n

ε
.

The function∇Fk is thus Lipschitz with Lipschitz constant

L ≤ sup
X∈Sn

L [∇Fk(X)] ≤ Ck
n

ε
,

which concludes the proof.

Note that the bound above is a bit coarse; numerical simulations show that for independentN (0, 1) random
variables {zi}3i=1,

E
[
1/max{z2

1, z
2
2, z

2
3}
]

= 1.5...

whileC3 = 3, for example. We could of course use the density of the minimum above to get a more accurate
bound, but then Ck would not have a simple closed form.

3.5. Gradient variance. In this section, we will bound the variance of ∇Fk, the stochastic gradient oracle
approximating∇Fk.

Lemma 3.8. Let X ∈ Sn and zi
i.i.d∼ N (0, In), the gradient of Fk(X) is given by

∇Fk(X) = E[φi0φ
T
i0 ] (14)

where φi0 is the leading eigenvector of the matrix X + ε
nzi0z

T
i0

, and

i0 = argmax
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)
.

We have
E
[
‖φi0φTi0 −E[φi0φ

T
i0 ]‖2F

]
= 1−Tr

(
∇Fk(X)2

)
≤ 1, (15)

where Tr (∇Fk(X)) = 1 by construction.

Proof. Equation (14) follows from Equation (12) and the fact that we can interchange expectation and dif-
ferentiation here (see Lemma 6.4 for details). We now focus on the variance E

[
‖φi0φTi0 −E

[
φi0φ

T
i0

]
‖2F
]
.

Recall that for any symmetric matrix M , ‖M‖2F = Tr(MTM) = TrM2. The matrix φi0φ
T
i0
−E

[
φi0φ

T
i0

]
is symmetric. So we can rewrite

‖φi0φTi0 −E
[
φi0φ

T
i0

]
‖2F = Tr (φi0φ

T
i0 −E

[
φi0φ

T
i0

]
)2 .

Using the fact that φTi0φi0 = 1, we see that (φi0φ
T
i0

)2 = φi0φ
T
i0

. Therefore,

E
[
Tr (φi0φ

T
i0)2
]

= E
[
Trφi0φ

T
i0

]
= E

[
φTi0φi0

]
= 1 .

Recalling that E
[
φi0φ

T
i0

]
= ∇Fk(X), we have shown that Tr (∇Fk(X)) = 1. We also see that

E
[
Tr
(
φi0φ

T
i0 −E

[
φi0φ

T
i0

])2]
= Tr (∇Fk(X))−Tr

(
∇Fk(X)2

)
= 1−Tr

(
∇Fk(X)2

)
≤ 1 .

which is the desired result.

Furthermore, we show in Lemma 6.5 in the Appendix that∇Fk is diagonalizable in the same basis as X .
In particular, when X is diagonal, so is ∇Fk. Simply using the fact that φi0 is an eigenvector, we have of
course

‖φi0φTi0 −E[φi0φ
T
i0 ]‖2F ≤ 4 (16)
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which means that the gradient will naturally satisfy the “light-tail” condition A2 in [Lan, 2012] for σ2 = 4.
The bound in (15) together with the proof above (in particular Equation (33)) show that when the spec-
tral gaps λ1(X) − λi(X) are large, the diagonal of ∇Fk(X) is approximately sparse. In that scenario,
Tr(∇Fk(X)2) is close to Tr(∇Fk(X)), hence close to one, and the variance of the gradient oracle is small.

3.6. A phase transition. We can push our analysis if the impact of the low rank perturbation a little bit
further. We focus again on the properties of a random rank one perturbation of a deterministic matrix X ,
specifically X(ε) = X + (ε/n)zzT , where z ∼ N (0, In). As we will see, the bounds we obtained above
are quite conservative and the Lipschitz constant of the gradient is in fact much lower than n/ε when the
spectrum of X is well-behaved (in a sense that will be made clear later). In particular, we will observe that
there is a phase transition phenomenon in ε. Let us call T = λmax(X(ε)) − λmax(X). If the perturbation
scale ε is small, T is of order 1/n (the worst-case bound we obtained above). If ε is large, T is of order one.
And if ε has a critical value, then T is OP (1/

√
n).

The next theorem is asymptotic in nature but is informative in practice even for moderate size matrices.
We make the dependence on n, the dimension of the matrices we are working with, explicit everywhere.
This undoubtedly makes for somewhat cumbersome notations but also makes the statement of the results
less ambiguous. We will work under the following assumptions:

A1 Xn ∈ Sn. Its eigenvalues are denoted λ1(n) ≥ λ2(n) ≥ . . . ≥ λn(n). λ1(n) has multiplicity
ln ∈ N. There exists a constant l ∈ N such that ln ≤ l for all n. We call γn = λ1(n) − λln+1(n)
and assume that there exists a constant γ such that γn ≥ γ > 0. We call λ1(n)−λi(n) = γn + δi,n,
for i > l(n). Of course, δi,n ≥ 0.

A2 εn is a sequence in R. We assume that εn � 1, i.e lim infn→∞ εn > 0 and lim supn→∞ εn <∞.
A3 We assume that there exists a constant C, independent of n such that

1

γ2
>

1

n

n∑
j=ln+1

1

(γn + δj,n)2
>

1

n

n∑
j=ln+1

1

(εn + γn + δj,n)2
> C .

Theorem 3.9 (Phase transition for the largest eigenvalue: rank one perturbation). Assume that As-
sumptions A1-A3 above are satisfied and consider the matrix

Xn(εn) = Xn +
εn
n
zzT , where z ∼ N (0, In) .

Define ε0,n by

1

ε0,n
=

1

n

n∑
j=ln+1

1

γn + δj,n
.

Call, for i.i.d N (0, 1) random variables {zj,n}nj=1, χ2
ln

=
∑ln

j=1 z
2
j,n,

ξ1,n =
1√
n

n∑
j=ln+1

z2
j,n − 1

γn + δj,n
= OP (1) and ζ1,n =

1

n

n∑
j=ln+1

z2
j,n

(γn + δj,n)2
= OP (1) .

We have the following three situations:
(1) If 0 < εn < ε0,n and lim infn→∞[ε0,n − εn] > 0, as n→∞,

λmax[Xn(εn)] = λmax[Xn] +
W1,n

n
+
W2,n

n3/2
+OP

(
1

n2

)
,

where

W1,n =
χ2
ln

1/εn − 1/ε0,n
and W2,n =

W1,nξ1,n

1/εn − 1/ε0,n
.
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(2) If εn = ε0,n, as n→∞,

λmax[Xn(εn)] = λmax[Xn] +
W1,n√
n

+OP

(
1

n

)
,

where

W1,n =
ξ1,n +

√
ξ2

1,n + 4χ2
ln
ζ1,n

2ζ1,n
.

(3) If εn > ε0,n and lim infn→∞[εn − ε0,n] > 0, call t0,n > 0, the (unique) positive solution of

1

εn
=

1

n

n∑
j=ln+1

1

t0,n + γn + δj,n
.

Note that t0,n ≤ (1− ln/n)εn. Then, as n→∞,

λmax[Xn(εn)] = λmax[Xn] + t0,n +
W1,n√
n

+OP

(
1

n

)
.

Here, W1,n =
ξ(t0,n)
ζ(t0,n) , where

ξ(t0,n) =
1√
n

n∑
j=ln+1

z2
j,n − 1

t0,n + γn + δj,n
= OP (1) , and

ζ(t0,n) =
1

n

n∑
j=ln+1

1

(t0,n + γn + δj,n)2
= O(1) .

Proof. The strategy is the following. We are looking for the zeros of a certain random function - defined
in the secular equation - which can be seen as a perturbation of a deterministic function. Hence, it is natural
to use ideas from asymptotic root finding problems [see Miller, 2006, pp. 36-43], to expand the solution in
powers of the size of the perturbation. We note that a similar idea was used in [Nadler, 2008], which focused
on a different random matrix problem. We now turn to the proof.

3.6.1. Preliminaries. Let us call

gln,n(t) =
1

n

n∑
j=ln+1

1

t+ γn + δj,n
,

hln,n(t) =
1

n

n∑
j=ln+1

z2
j,n

t+ γn + δj,n
,

hn(t) =

∑ln
j=1 z

2
j,n

n

1

t
+ hln,n(t) .

Recall that if λmax[Xn(εn)] = λmax[Xn] + T , T is the unique positive solution of the equation

1

εn
= hn(T ) =

∑ln
j=1 z

2
j,n

n

1

T
+

1

n

n∑
j=ln+1

z2
j,n

T + γn + δj,n
. (17)

It is clear that T ≥ (εn/n)
∑ln

j=1 z
2
j,n. Also, h′n(t) < 0 on (0,∞), so hn is invertible. We note that

var

 1

n

n∑
j=ln+1

z2
j,n − 1

t+ γn + δj,n

 =
1

n

 1

n

n∑
j=ln+1

2

(t+ γn + δj,n)2

 ≤ 2

n

1

γ2
= O

(
1

n

)
.
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It therefore follows from Chebyshev’s inequality that the error made when replacing hln,n by gln,n when
seeking the root of Equation (17) is OP (1/

√
n).

Our strategy is to expand T in powers (possibly non-integer) of 1/n. If we can find an approximate
solution t(m) of Equation (17), such that

|hn(t(m))− 1

εn
| = OP (n−β) , for some β ,

we claim that
|t(m)− T | = OP (n−β) .

This is because hn is, at zj,n fixed, a Lipschitz function on (
εn

∑ln
j=1 z

2
j,n

n ,∞), and its Lipschitz constant
is bounded below with high-probability on any compact subinterval of this interval. Hence, we have, if
‖h−1

n ‖L,t(m),T is the Lipschitz constant of h−1
n over an interval to which both t(m) and T belong,

|t(m)− T | = |h−1
n (hn(t(m)))− h−1

n (hn(T ))| ≤ ‖h−1
n ‖L,t(m),T |hn(t(m))− 1

εn
| = OP (n−β) .

Note that if we can show that |h′n(y)| > Cnb in an interval containing both t(m) and T , then ‖h−1
n ‖L,t(m),T ≤

n−b/C and we get by the same token

|hn(t(m))− 1

εn
| = OP (n−β) =⇒ |t(m)− T | = OP (n−(β+b)) .

More details about these estimates are given in 3.6.2, where we carry out a detailed proof.
To summarize, if we can come up with t(m) which is a near solution of the equation hn(t) = 1/εn, it will

be a good approximation of T . The quality of the approximation is detailed in the estimates above. In the
proof below, we will exhibit such t(m)’s and, from them, get fine approximations of T . That is our strategy.

We finally recall that by definition

1

ε0,n
= gln,n(0) =

1

n

n∑
j=ln+1

1

γn + δj,n
.

Intuitive explanations The following might help in giving the reader a sense of where the results come
from. We wish to find an approximation of the root T of the equation 1/εn = hn(T ). The overall strategy
is to write a Laurent-series expansion of hn around xn, a real such that hn(xn)− 1/εn is small. Practically,
calling Ak,xn(hn) our expansion to order k of hn around xn, we solve exactly the equation Ak,xn(hn)(t) =
1/εn. This strategy amounts practically to dropping various OP terms in our expansions of hn and solving
the corresponding equations. Let us call x∗n the solution of Ak,xn(hn)(t) = 1/εn. Our proof shows that T is
indeed close to x∗n, to various order of accuracy.

More specifically, we break hn into a component that stays bounded when t → 0 - this is what hln,n is -
and a component that behaves like 1/(nt) as t→ 0.

Cases 1) and 2) of the Theorem In these cases, it is clear that if c > 0, limt→c hn(t) < 1/εn with
high-probability. This suggests that T → 0 with high-probability. Hence our strategy is to write hln,n(t) =
Pln,n(t) +OP (tα), where Pln,n is a polynomial and α an integer, i.e expand hln,n in powers of t for t close
to 0, and instead of solving hn(T ) = 1/εn, solve the approximating equation hn(x)−hln,n(x)+Pln,n(x) =
1/εn. This simply amounts to dropping the OP (tα) term from our (Laurent-series) expansion of hn(t) in
a neighborhood of 0. This latter equation is a polynomial equation - hence it is easy to solve. Call x∗n its
solution. By construction, it is fairly clear that x∗n is such that hn(x∗n) is close to 1/εn. The proof makes this
statement fully rigorous and pushes further to give rigorous statements concerning T − x∗n, which is really
the quantity we are interested in.

Case 3) of the Theorem In this case, it is clear that T has to remain bounded away from 0, since
hln,n(0) > 1/εn with probability going to 1. Hence, we employ the same strategy as the one described
above, except that we expand hn(t) around t0,n, a non-random sequence bounded away from 0 picked such

12



that hn(t0,n)− 1/εn → 0 in probability. hn is linearized around t0,n to yield an approximating polynomial
Pn,t0,n(t) of degree 1 and a remainder of the form |t − t0,n|α. Our approximation x∗n of T is simply the
root of the equation Pn,t0,n(t) = 1/εn. Once again, this amounts to dropping the OP (|t − t0,n|α) from
our expansion of hn(t). The proof ensures that x∗n has all the properties announced in the Theorem - in
particular that it is close to T .

3.6.2. Case εn < ε0,n. We treat this case in full detail and go faster on the two other ones, since the ideas
are similar. Recall that the equation defining T is

1

εn
= hn(T ) =

∑ln
j=1 z

2
j,n

n

1

T
+ hln,n(T ) .

In this case, gln,n(0) = 1
ε0,n

< 1
εn

. Let us first localize T . Denoting χ2
ln

=
∑ln

j=1 z
2
j,n, and using

hn(t) ≥ χ2
ln
/(nt) as well as the fact that hn is decreasing, we see that T ≥ (χ2

ln
/n)εn. On the other hand,

hn(t) ≤ χ2
ln
/(nt)+hln,n(0). Recall that hln,n(0) = gln,n(0)+OP (n−1/2) = 1/ε0,n+OP (n−1/2). Simple

algebra then gives that T ≤ (χ2
ln
/n)εn/(1 − εnhln,n(0)). Of course, in the situation we are investigating,

εnhln,n(0) is bounded away from 1 with probability going to 1 as n→∞.
Let us now expand the last term above, i.e hln,n(t), in powers of t’s. Because h′ln,n is uniformly bounded

in probability for t in a neighborhood of 0, we have, for small t,

hln,n(t) =
1

n

n∑
j=ln+1

z2
j,n

γn + δj,n
+OP (t) =

1

ε0,n
+

1√
n
ξ1,n +OP (t) ,

where ξ1,n = 1√
n

∑n
j=ln+1

z2j,n−1

γn+δj,n
= OP (1). We see that by taking

t(2) =
W1

n

(
1 +

1√
n

ξ1,n
1
εn
− 1

ε0,n

)
, with W1 =

χ2
ln

1
εn
− 1

ε0,n

,

we have

hn(t(2))− hn(T ) = hn(t(2))− 1

εn
= OP (1/n) .

It is clear that both t(2) and T are contained in the interval I =
(
χ2
ln
εn/n, 2εnχ

2
ln
υn/n

)
, where υn =

max[1/(1− εnhln,n(0)), 1/(1− εn/ε0,n)]. The mean value theorem gives

|t(2)− T | ≤ |hn(t(2))− hn(T )|
inft∈I |h′n(t)|

.

Of course, |h′n(t)| ≥ χ2
ln
/(nt2) + |h′ln,n(0)| ≥ χ2

ln
/(nt2). So we see that inft∈I |h′n(t)| ≥ nRn, where Rn

is a positive random variable bounded away from 0 with probability going to 1, since we assume that εn and
ln remain bounded. We conclude that

|t(2)− T | = OP (|hn(t(2))− hn(T )|/n) = OP (n−2) , as announced in Theorem 3.9.

3.6.3. Case εn = ε0,n. We now have, for small t, using the fact that gln,n(0) = 1/ε0,n = 1/εn,

hn(t) =
χ2
ln

n

1

t
+

1

εn
+

1

n

n∑
j=ln+1

z2
j,n − 1

γn + δj,n
− tζ1,n +OP (t2) ,
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where ζ1,n = 1
n

∑n
j=ln+1

z2j,n
(γn+δj,n)2

= OP (1). Because ξ1,n = 1√
n

∑n
j=ln+1

z2j,n−1

γn+δj,n
= OP (1), we see that

now, T has to be of order 1/
√
n, since hn(T ) = 1/εn. Using the ansatz t(1) = α/

√
n, we see that

hn(t(1))− 1

εn
= OP

(
1

n

)
, if α =

ξ1,n +
√
ξ2

1,n + 4χ2
ln
ζ1,n

2ζ1,n
.

In a neighborhood of α/
√
n, hn is Lipschitz with Lipschitz constant bounded away from 0, with probability

going to 1. Hence, as argued in 3.6.1 and detailed in 3.6.2, we can conclude that

T =
α√
n

+OP (
1

n
) .

3.6.4. Case εn > ε0,n. Recall that the equation defining T is

1

εn
=
χ2
ln

n

1

T
+

1

n

n∑
j=ln+1

z2
j,n − 1

T + γn + δj,n
+

1

n

n∑
j=ln+1

1

T + γn + δj,n
.

When εn > ε0,n, we can find t0,n bounded away from 0 such that

1

εn
=

1

n

n∑
j=ln+1

1

t0,n + γn + δj,n
.

t0,n is furthermore bounded - in n - under our assumptions.
By writing t = t0,n + η, for η small, after expanding hn around t0,n, we see that we have

hn(t) =
χ2
ln

nt0,n
+

1√
n
ξ(t0,n) +

1

εn
− ηζ(t0,n) +OP

(
max

[
η√
n
, η2

])
,

where

ξ(t0,n) =
1√
n

n∑
j=ln+1

z2
j,n − 1

t0,n + γn + δj,n
= OP (1) , and ζ(t0,n) =

1

n

n∑
j=ln+1

1

(t0,n + γn + δj,n)2
= OP (1) .

Let us call

t(1) = t0,n +
1√
n

ξ(t0,n)

ζ(t0,n)
.

Our assumptions and the fact that t0,n ≤ εn guarantee that ζ(t0,n) is bounded below as n becomes large.
The expansion above shows that

1

εn
− hn(t(1)) = OP (1/n) .

Because, with probability going to 1, hn is Lipschitz with Lipschitz constant bounded below in a neighbor-
hood of t0,n, we conclude as in 3.6.1 that

T = t0,n +
1√
n

ξ(t0,n)

ζ(t0,n)
+OP

(
1

n

)
,

which concludes the proof.

The phase transition can be further explored in the situation where εn − ε0,n is infinitesimal in n but not
exactly zero. We are especially concerned in this paper with random variables of the type

max
i=1,...,k

λmax(Xn + (εn/n)ziz
T
i )− λmax(Xn)

for i.i.d zi’s. The previous theorem gives us an idea of the scale of this difference, which clearly depends on
εn and the whole spectrum of Xn. It is also clear that taking a max over finitely many k’s does not change
anything to the previous result as far as scale is concerned. The previous theorem shows that our uniform
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bound on the inverse of the gap cannot be improved: in case (1) of the previous theorem, the gap between
the two largest eigenvalues of Xn(εn) scales like 1/n, the rate we obtained in our non-asymptotic bounds.
However, in many situations, the gap is much greater than 1/n, usually of order at least 1/

√
n, and the

worst case bound on the Lipschitz constant of Fk(X) is very conservative.

4. STOCHASTIC COMPOSITE OPTIMIZATION

In this section, we will develop a variant of the algorithm in [Lan, 2012] which allows for adaptive (mono-
tonic) scaling of the step size parameter. For the sake of completeness, we first recall the key definitions in
[Lan, 2012], adopting the same notation, with only a few minor modifications to allow the full problem to
be stochastic. We focus on the following optimization problem

min
x∈Q

Ψ(x) := f(x) + h(x), (18)

where Q ⊂ Rn is a compact convex set. We let ‖ · ‖ be a norm and write ‖ · ‖∗ the dual norm. We assume
that we only observe noisy oracles for f(x) and h(x) written

f(x, ξ) and h(x, ξ),

for some random variable ξ ∈ Rd; we write Ψ(x, ξ) := f(x, ξ) + h(x, ξ) with Ψ(x) = E[Ψ(x, ξ)]. We also
assume that Ψ(·, ξ) is convex for any ξ ∈ Rd, and that Ψ(x, ξ) ≥ Ψ(x, 0) a.s. with

E[Ψ(x∗, ξ)]−Ψ(x∗, 0) ≤ µ
for some µ > 0 at the optimum of problem (18), with µ typically of order ε. The value of µ is typically
controlled by the magnitude of the noise ξ. The function f(x) is assumed to be convex with Lipschitz
continuous gradient

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, for all x, y ∈ Q,
and h(x) is also assumed to be a convex Lipschitz continuous function with

|h(x)− h(y)| ≤ M‖x− y‖, for all x, y ∈ Q.
Furthermore, we assume that we observe a subgradient of Ψ through a stochastic oracle G(x, ξ), satisfying

E[G(x, ξ)] = g(x) ∈ ∂Ψ(x), (19)

E[‖G(x, ξ)− g(x)‖2∗] ≤ σ2. (20)

We let ω(x) be a distance generating function, i.e. a function such that

Qo =

{
x ∈ Q : ∃y ∈ Rp, x ∈ argmin

u∈Q
[yTu+ ω(u)]

}
is a convex set. The function ω(x) is strongly convex on Qo with modulus α with respect to the norm ‖ · ‖,
which means

(y − x)T (∇ω(y)−∇ω(x)) ≥ α‖y − x‖2, x, y ∈ Qo.
We then define a prox-function V (x, y) on Qo ×Q as follows:

V (x, y) ≡ ω(y)− [ω(x) +∇ω(x)T (y − x)]. (21)

It is nonnegative and strongly convex with modulus α with respect to the norm ‖ · ‖. The prox-mapping
associated to V is then defined as

PQ,ωx (y) ≡ argmin
z∈Q

{yT (z − x) + V (x, z)}. (22)

This prox-mapping can be rewritten

PQ,ωx (y) = argmin
z∈Q

{zT (y −∇ω(x)) + ω(z)},
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and the strong convexity of ω(·) means that PQ,ωx (·) is Lipschitz continuous with respect to the norm ‖ · ‖
with modulus 1/α (see Nemirovski [2004] or [Hiriart-Urruty and Lemaréchal, 1993, Vol. II, Th. 4.2.1]).
Finally, we define the ω diameter of the set Q as

Dω,Q ≡ (max
z∈Q

ω(z)−min
z∈Q

ω(z))1/2, (23)

and let
xω = argmin

x∈Q
ω(x),

which satisfies
α

2
‖x− xω‖2 ≤ V (xω, x) ≤ ω(x)− ω(xω) ≤ D2

ω,Q, for all x ∈ Q.

[Lan, 2012, Corollary 1] implies the following result on the complexity of solving (3) using the AC-SA
algorithm in [Lan, 2012, §3].

Proposition 4.1. Let N > 0, and write F∗k the optimal value of problem (3). Suppose that the sequences
Xt, X

md
t , Xag

t are computed as in [Lan, 2012, Corollary 1] using the stochastic gradient oracle in (28).
After N iterations of the AC-SA algorithm in [Lan, 2012, §3], we have

E[Fk(X
ag
N+1)− F∗k] ≤

8nCkD
2
ω,Q

εN(N + 2)
+

4
√

2Dω,Q√
Nq

. (24)

Proof. Using the bound on the variance of the stochastic oracle G(X, z), we know that G satisfies (19)
with σ2 = 1/q. Section 3 also shows that the Lipschitz constant of the gradient is bounded by Ckn/ε. If we
pick ‖ · ‖2F /2 as the prox function, [Lan, 2012, Corollary 1] yields the desired result.

Setting N = 2Dω,Q
√
n/ε and q = max{1, Dω,Q/(ε

√
n)} in the convergence bound above will then ensure

E[Fk(XN ) − F∗k] = O(ε). Because our bounds on the Lipschitz constant are usually very conservative,
in the section that follows, we detail a version of the AC-SA algorithm with adaptive (but monotonically
decreasing) step-size scaling parameter.

4.1. Stochastic composite optimization with line search. The algorithm in [Lan, 2012, §3] uses worst
case values of the Lipschitz constant L and of the gradient’s quadratic variation σ2 to determine step sizes
at each iteration. In practice, this is a conservative strategy and slows down iterations in regions where
the function is smoother. In the deterministic case, adaptive versions of the optimal first-order algorithm
in [Nesterov, 1983] have been developed by Nesterov [2007b] among others. These algorithms run a few
line search steps at each iteration to determine the optimal step size while guaranteeing convergence. The
algorithm in [Lan, 2012] is a generalization of the first-order methods in [Nesterov, 1983, 2003] and, in
what follows, we adapt the line search steps in Nesterov [2007b] to the stochastic algorithm of [Lan, 2012,
§3]. Here, we will study the convergence properties of an adaptive variant of the algorithm for stochastic
composite optimization in [Lan, 2012, §3], with monotonic line search.

In this section, we first modify the convergence lemma in [Lan, 2012, Lemma 5] to adapt it to the line
search strategy detailed in Algorithm 1. Note that our method requires testing the line search exit condition
using two oracle calls, the current one in ξt and the next one in ξt+1. This last oracle call is of course
recycled at the next iteration.

Lemma 4.2. Assume that Ψ(·, ξt) is convex for any given sample of the r.v. ξt. Let xt, xmdt , xagt be computed
as in Algorithm 1, with βt = (t + 1)/2. Suppose also that γ and these points satisfy the line search exit
condition in line 9, i.e.

Ψ(xagt+1, ξt+1) ≤ Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t+1 − x

md
t 〉+

αβt
4γt
‖xagt+1 − x

md
t ‖2 + 2M‖xagt+1 − x

md
t ‖
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Algorithm 1 Adaptive algorithm for stochastic composite optimization.

Input: An initial point xag = x1 = xw ∈ Rn, an iteration counter t = 1, the number of iterations N , line
search parameters γmin, γmax, γd, γ > 0, with γd < 1.

1: Set γ = γmax.
2: for t = 1 to N do
3: Define xmdt = 2

t+1xt + t−1
t+1x

ag
t

4: Call the stochastic gradient oracle to get G(xmdt , ξt).
5: repeat
6: Set γt = (t+1)γ

2 .
7: Compute the prox mapping xt+1 = Pxt(γtG(xmdt , ξt)).
8: Set xagt+1 = 2

t+1xt+1 + t−1
t+1x

ag
t .

9: until Ψ(xagt+1, ξt+1) ≤ Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t+1−xmdt 〉+

αγd

4γ ‖x
ag
t+1− xmdt ‖2 + 2M‖xagt+1−

xmdt ‖ or γ ≤ γmin. If exit condition fails, set γ = γγd and go back to step 5.
10: Set γ = max

{
γmin, γ

}
.

11: end for
Output: A point xagN+1.

then, for every x in the feasible set, we have

βtγt[Ψ(xagt+1, ξt+1)−Ψ(x, 0)] + V (xt+1, x) ≤ (βt − 1)γt[Ψ(xagt , ξt)−Ψ(x, 0)] + V (xt, x)

+γt(Ψ(x, ξt)−Ψ(x, 0)) +
4M2γ2

t

α
.

Proof. As in [Lan, 2012, Lemma 5], we write dt = xt+1 − xt and use the parameter βt = (t+ 1)/2 for
step sizes so that xagt+1 − xmdt = dt/βt. If the current iterates satisfy the line search exit condition, the fact
that α‖dt‖2/2 ≤ V (xt, xt+1) by construction yields

βtγtΨ(xagt+1, ξt+1) ≤ βtγt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t+1 − x

md
t 〉] +

α

4
‖dt‖2 + 2γtM‖dt‖

≤ βtγt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t+1 − x

md
t 〉] + V (xt, xt+1)− α

4
‖dt‖2 + 2γtM‖dt‖.

Using the convexity of Ψ(·, ξt) we then get

βtγt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t+1 − x

md
t 〉]

= (βt − 1)γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), x
ag
t − xmdt 〉] + γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), xt+1 − xmdt 〉]

≤ (βt − 1)γtΨ(xagt , ξt) + γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), xt+1 − xmdt 〉].

Combining these last two results and using the fact that bu− au2/2 ≤ b2/(2a) whenever a > 0, we obtain

βtγtΨ(xagt+1, ξt+1) ≤ (βt − 1)γtΨ(xagt , ξt) + γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), xt+1 − xmdt 〉]

+V (xt, xt+1)− α

4
‖dt‖2 + 2γtM‖dt‖

≤ (βt − 1)γtΨ(xagt , ξt) + γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), xt+1 − xmdt 〉]

+V (xt, xt+1) +
4γ2

tM2

α
.

For any x in the feasible set, we can then use the properties of the prox mapping detailed in [Lan, 2012,
Lemma 1], with p(·) = γt〈G(xmdt , ξt), · − xmdt 〉 together with the convexity of Ψ(·, ξt) and the definition of
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xt+1 in Algorithm 1 to show that

γt[Ψ(xmdt , ξt) + 〈G(xmdt , ξt), xt+1 − xmdt 〉] + V (xt, xt+1)

≤ γtΨ(xmdt , ξt) + γt〈G(xmdt , ξt), x− xmdt 〉+ V (xt, x)− V (xt+1, x)

≤ γtΨ(x, ξt) + V (xt, x)− V (xt+1, x) .

Combining these last results shows that

βtγtΨ(xagt+1, ξt+1) ≤ (βt − 1)γtΨ(xagt , ξt) + γtΨ(x, ξt) + V (xt, x)− V (xt+1, x) +
4γ2

tM2

α
,

and subtracting βtγtΨ(x, 0) from both sides yields the desired result.

We are now ready to prove the main convergence result, adapted from [Lan, 2012, Corollary 1]. We
simply stitch together the convergence results we obtained in Lemma 4.2 for the line search phase of the
algorithm, with that of [Lan, 2012, Lemma 5] for the second phase where γ = γmin, writing the switch
time Tγ . Note that the step size is still increasing in the second phase of the algorithm because γt =
γmin(t+ 1)/2.

Proposition 4.3. Let N > 0, and write Ψ(x∗, 0) the optimal value of problem (18). Suppose that the
sequences xt, xmdt , xagt are computed as in Algorithm 1, with line search parameter γ initially set to γ =
γmax with

γmax ≤
√

6αDω,Q

(N + 2)3/2(4M2 + σ2)1/2
and γmin = min

{ α

2L
, γmax

}
(25)

with γd < 1. After N iterations of Algorithm 1, we have

E[Ψ(xagN+1)−Ψ(x∗, 0)] ≤
8LD2

ω,Q

αN2
+

8

N2γmin
E

[
2(4M2 + σ2)

α

N∑
t=1

γ2
t

]
+

(Tγ + 2)2γmaxµ

N22γmin
(26)

and a simpler, but coarser bound is given by

E
[
Ψ(xagN+1)−Ψ(x∗, 0)

]
≤

8LD2
ω,Q

αN2
+

8Dω,Q

√
4M2 + σ2

√
N

(
γmax

γmin
ρN + 1− ρN

)
+

(Tγ + 2)2γmaxµ

N22γmin
,

(27)
where ρN = (Tγ + 2)3/(N + 2)3.

Proof. Lemma 4.2 applied at x∗ shows

βtγt[Ψ(xagt+1, ξt+1)−Ψ(x∗, 0)] + V (xt+1, x
∗) ≤ (βt − 1)γt[Ψ(xagt , ξt)−Ψ(x∗, 0)] + V (xt, x

∗)

+
4M2γ2

t

α
+ γt(Ψ(x∗, ξt)−Ψ(x∗, 0))

hence, having assumed Ψ(x, ξt)−Ψ(x, 0) ≥ 0 a.s.,

(βt+1 − 1)γt[Ψ(xagt+1, ξt+1)−Ψ(x∗, 0)] ≤ βtγt[Ψ(xagt+1, ξt+1)−Ψ(x∗, 0)]

≤ (βt − 1)γt[Ψ(xagt , ξt)−Ψ(x∗, 0)] +
4M2γ2

t

α
+γt(Ψ(x∗, ξt)−Ψ(x∗, 0)) + V (xt, x

∗)− V (xt+1, x
∗)

whenever the line search successfully terminates, with the last term satisfying

E[γt(Ψ(x∗, ξt)−Ψ(x∗, 0))] ≤ γmax(t+ 1)

2
E[Ψ(x∗, ξt)−Ψ(x∗, 0)] ≤ γmax(t+ 1)

2
µ
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using again Ψ(x∗, ξt) − Ψ(x∗, 0) ≥ 0 a.s. When the line search fails, γt = γmin(t + 1)/2 is deterministic
and [Lan, 2012, Lem. 5 & Th. 2] show that

(βt+1 − 1)γt[Ψ(xagt+1)−Ψ(x∗, 0)] ≤ (βt − 1)γt[Ψ(xagt )−Ψ(x∗, 0)] + V (xt, x
∗)− V (xt+1, x

∗) + ∆(x∗)

where

∆(x∗) ≤ γt〈δt, x∗ − xt〉+
2(4M2 + ‖δt‖2∗)γ2

t

α
.

with δt = G(xmdt , ξt)− g(xmdt ) and γt〈δt, x∗ − xt〉 ≤ γt‖δt‖∗‖x∗ − xt‖. We call t = Tγ + 1 the iteration
where the line search first fails. Combining these last results, using β1 = 1, we obtain

(βN+1 − 1)γN E[Ψ(xagN+1)−Ψ(x∗, 0)]

≤ D2
ω,Q +

Tγ∑
t=1

E

[
4M2γ2

t

α

]
+

Tγ∑
t=1

γmax(t+ 1)

2
µ+ (βTγ+1 − 1)γTγ E[Ψ(xagTγ+1)−Ψ(xagTγ+1, ξTγ+1)]

+
N∑

Tγ+1

E

[
γt〈δt, x∗ − xt〉+

2(4M2 + ‖δt‖2∗)γ2
t

α

]

≤ D2
ω,Q +

Tγ∑
t=1

E

[
4M2γ2

t

α

]
+

N∑
Tγ+1

E

[
2(4M2 + ‖δt‖2∗)γ2

t

α

]
+

(Tγ + 2)2γmaxµ

4

≤ D2
ω,Q + E

[
2(4M2 + σ2)

α

N∑
t=1

γ2
t

]
+

(Tγ + 2)2γmaxµ

4

because E[Ψ(xagTγ )−Ψ(xagTγ , ξt)] = 0. Using the fact that
∑N

t=1(t+ 1)q ≤ (N + 2)q+1/(q+ 1) for q = 1, 2

then yields the coarser bound.

We observe that, as in [Nesterov, 2007b], allowing a line search slightly increases the complexity bound,
by a factor (

γmax

γmin
ρ(Tγ , N) + 1− ρ(Tγ , N)

)
,

where ρ(Tγ , N) = (Tγ + 2)3/(N + 2)3. We will see however that overall numerical performance can
significantly improve because the algorithm takes longer steps.

4.2. Stochastic composite optimization for semidefinite optimization. We can use the results above to
solve problem (3). In this case,

Ψ(X) = E [Ψ(X, z)] = E

[
max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)]
and by construction Ψ(X, z) ≥ Ψ(X, 0) = λmax(X). Recall, that with this choice of oracle, Section 2
shows

λmax(X) ≤ E

[
max
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)]
≤ λmax(X) + kε

so µ = kε in Proposition 4.3. We use the following gradient oracle

G(X, z) =
1

q

q∑
l=1

φlφ
T
l (28)

where each φl is a leading eigenvector of the matrix X + ε
nzi0z

T
i0

, with

i0 = argmax
i=1,...,k

λmax

(
X +

ε

n
ziz

T
i

)
,
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where zi are i.i.d. Gaussian vectors zi ∼ N (0, In) and k > 0 is a small constant (typically 3) and q is used
to control the variance. The Lipschitz constant of the gradient is bounded by (6) with

L ≤ n

ε

k

(k − 2)

and the variance of the gradient oracle is bounded by 1/q withM = 0 in the results above.

5. NUMERICAL EXPERIMENTS

We test the algorithm detailed above on a maximum eigenvalue minimization problem over a hypercube,
a problem used in approximating sparse eigenvectors [d’Aspremont et al., 2007]. We seek to solve

minimize λmax(A+X)
subject to −ρ ≤ Xij ≤ ρ, for i, j = 1, . . . , n

(29)

which is a semidefinite program in the matrix X ∈ Sn. Since randomly generated matrices A have a highly
structured spectrum, we use a covariance matrix from the gene expression data set in [Alon et al., 1999] to
generate the matrix A ∈ Sn, varying the number of genes to change the problem dimension n (we select
the n genes with the highest variance) and normalizing the matrix A so that its spectral norm is one. We set
ρ = max{diag(A)}/2 in (29).

We also test performance on the classical MaxCut relaxation. The primal semidefinite program is written

maximize Tr(CX)
subject to diag(X) = 1, X � 0,

in the variable X ∈ Sn. The objective matrix C is sampled from the Wishart distribution with C =
GTG/‖G‖22 where G is a standard Gaussian matrix. Here, we solve the dual, written

min λmax(C + diag(w))− 1Tw (30)

in the variable w ∈ Rn. The problem is unconstrained, and we add a bound on the Euclidean norm of
the vector w. The prox function used in both examples (where the feasible sets are an hypercube and an
Euclidean ball) is the square Euclidean norm, which means that the prox is simply an Euclidean projection
of the matrix X in (29) (with the projection taken elementwise) and of the vector w in (30).

We first compare the performance of Algorithm 1 with that of the corresponding deterministic algorithms,
ACSA as detailed in Lan [2012] and the accelerated first-order method (with line search) in [Nesterov,
2007b, §4] after smoothing problem (29) as in [Nesterov, 2007a; d’Aspremont et al., 2007]. We set a fixed
number of outer iterations for Algorithm 1 and record the number of iterations (and eigenvector evaluations,
these numbers differ because of line search steps) required by the algorithm in [Nesterov, 2007b, §4] to
reach the best objective value attained by the stochastic method. We set ε = 5 × 10−2, q = 0.1/ε, k = 3
and the maximum number of iterations to O(

√
n) in the stochastic algorithm. In line with the discussion of

Section 3.6, we scale down the Lipschitz constant by a factor 100 in both stochastic and deterministic algo-
rithms. This significantly speeds up the algorithms with no apparent effect on convergence, thus confirming
that the worst case bounds are indeed somewhat conservative.

To provide a complexity benchmark that is both hardware and implementation independent, we record
the total number of eigenvectors used by each algorithm to reach a given objective value (the matrix ex-
ponential thus counts as n eigenvectors). We report these results in Tables 2 and 3 for DSPCA (29) and
MaxCut respectively. We observe that, for the DSPCA tests, the total number of eigenvectors computed
is significantly lower, while the number of iterations is much higher for the stochastic code. The tradeoff
is much less favorable for the MaxCut experiments. In Figure 2 we plot the objective value reached as a
function of the number of eigenvectors computed for both experiments, when n = 1000. We again see that
the behavior of the stochastic algorithm is much better for DSPCA than for MaxCut. In Figure 4, we plot the
spectrum of the solution matrices for both problems. We notice that the leading eigenvalues are much more
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separated in the DSPCA problem which at least partly explains the difference in performance. More im-
portantly, the deterministic implementation of the ACSA algorithm in [Lan, 2012] seems to be significantly
slower than that of the smooth algorithm in [Nesterov, 2007a]. Improving the numerical performance of the
ACSA algorithm itself thus seems to be the key to a competitive implementation of the results detailed here.

Stoch. Stoch. ACSA ACSA Det. Det.
n # iters. # eigvs. # iters. # eigvs. # iters. # eigvs.

50 707 1266 51 2550 16 3700
100 1000 1806 50 5000 12 5800
200 1414 2532 55 11000 28 24800
500 2236 8016 60 30000 12 29000

1000 3162 18990 65 65000 12 56000
2000 4472 21444 66 132000 14 132000

TABLE 2. Number of iterations and total number of eigenvectors computed by Algorithm 1
(Stoch.), the ACSA algorithm in Lan [2012] and the algorithm in [Nesterov, 2007b, §4]
(Det.) (both with exponential smoohting) to reach identical objective values when solving
the DSPCA relaxation in (29).

Stoch. Stoch. ACSA ACSA Det. Det.
n # iters. # eigvs. # iters. # eigvs. # iters. # eigvs.

50 3536 9534 217 10850 2 400
100 5000 30024 353 35300 4 1600
200 7071 42438 537 107400 6 4400
500 11180 67086 545 272500 6 9000

1000 15811 94872 601 601000 6 16000
2000 22361 134178 377 754000 4 20000

TABLE 3. Number of iterations and total number of eigenvectors computed by Algorithm 1
(Stoch.), the ACSA algorithm in Lan [2012] and the algorithm in [Nesterov, 2007b, §4]
(Det.) (both with exponential smoohting) to reach identical objective values when solving
the MaxCut relaxation in (30).

In both algorithms, the cost of each iteration is dominated by that of computing gradients. The cost of
each gradient computation in Algorithm 1 is dominated by the cost of computing the leading eigenvector of
q perturbed matrices, which is O(qn2 log n). The cost of each gradient computation in [Nesterov, 2007b,
§4] is dominated by the cost of computing a matrix exponential, which is O(n3). This means that the ratio
between these costs grows as O(n/(q log n)).

In Figure 3 we plot the sequence of line search parameters γ for the stochastic algorithm together with the
values of the Lipschitz constantL used in the deterministic smoothing algorithm, when solving problem (29)
with n = 500. We observe that both algorithms initially make longer steps, then slow down as they get closer
to the optimum (where the leading eigenvalues are clustered).

6. APPENDIX

In this Appendix, we recall several useful results related to the algorithm presented here. Subsection 6.1
summarizes the complexity of computing one leading eigenvector of a symmetric matrix (versus computing
the entire spectrum). In Subsection 6.2, we prove a number of technical results concerning the function Fk
and its components. In particular, we prove Theorem 3.2 linking the local Lipschitz constant of the gradient
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DSPCA (left) and MaxCut (right) relaxations.
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FIGURE 3. Line search parameters γ for the stochastic algorithm (left) together with the
values of the inverse of the Lipschitz constant L used in the deterministic smoothing algo-
rithm (right).

and the spectral gap. Finally, we show in Subsection 6.3 how the secular equation can be generalized to
perturbations of higher rank, and we discuss extensions of our smoothing argument using GUE matrices.

6.1. Computing one leading eigenvector of a symmetric matrix. The complexity results detailed above
heavily rely on the fact that extracting one leading eigenvector of a symmetric matrix X ∈ Sn can be done
by computing a few matrix vector products. This simple fact is easy to prove using the power method when
the eigenvalues of X are well separated, and Krylov subspace methods making full use of the matrix vector
products converge even faster. However, the problem becomes more delicate when the spectrum of X is
clustered. The section that follows briefly summarizes how modern numerical methods produce eigenvalue
decompositions in practice.

We start by recalling how packages such as LAPACK Anderson et al. [1999] form a full eigenvalue
(or Schur) decomposition of a symmetric matrix X ∈ Sn. The algorithm is strikingly stable and, despite
its O(n3) complexity, often competitive with more advanced techniques when the matrix X is small. We
then discuss the problem of approximating one leading eigenpair of X using Krylov subspace methods
with complexity growing as O(n2 log n) with the dimension (or less when the matrix is structured). In
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FIGURE 4. Histogram of eigenvalues for the matrix solutions to the sparse PCA (left) and
MaxCut (right) problems for n = 1000. For clarity, the graph on the left is truncated above 50.

practice, we will see that the constants in these bounds differ significantly, with the cost of a full eigenvalue
decompositions (and matrix exponentials) growing as 4n3/3 while computing one leading eigenpair has
cost cn2, with c in the hundreds.

6.1.1. Full eigenvalue decomposition. Full eigenvalue decompositions are computed by first reducing the
matrix X to symmetric tridiagonal form using Householder transformations, then diagonalizing the tridi-
agonal factor using iterative techniques such as the QR or divide and conquer methods for example (see
[Stewart, 2001, Chap. 3] for an overview). The classical QR algorithm (see [Golub and Van Loan, 1990,
§8.3]) implicitly relied on power iterations to compute the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix with complexity O(n3), however more recent methods such as the MRRR algorithm by
Dhillon and Parlett [2003] solve this problem with complexity O(n2). Starting with the third version of
LAPACK, the MRRR method is part of the default routine for diagonalizing a symmetric matrix and is
implemented in the STEGR driver (see Dhillon et al. [2006]).

Overall, the complexity of forming a full Schur decomposition of a symmetric matrix X ∈ Sn is then
4n3/3 flops for the Householder tridiagonalization, followed by O(n2) flops for the Schur decomposition
of the tridiagonal matrix using the MRRR algorithm.

6.1.2. Computing one leading eigenpair. We now give a brief overview of the complexity of computing
leading eigenpairs using Krylov subspace methods and we refer the reader to [Stewart, 2001, §4.3], [Golub
and Van Loan, 1990, §8.3, §9.1.1] or Saad [1992] for a more complete discussion. Successful termination
of a deterministic power or Krylov method can never be guaranteed since in the extreme case where the
starting vector is orthogonal to the leading eigenspace, the Krylov subspace contains no information about
leading eigenpairs, so the results that follow are stochastic. [Kuczynski and Wozniakowski, 1992, Th.4.2]
show that, for any matrix X ∈ Sn (including matrices with clustered spectrum), starting the algorithm at
a random u1 picked uniformly over the sphere means the Lanczos decomposition will produce a leading
eigenpair with relative precision ε, i.e. such that |λ− λmax| ≤ ελmax, in

kLan ≤ log(n/δ2)

4
√
ε

iterations, with probability at least 1− δ. This is of course a highly conservative bound and in particular, the
worst case matrices used to prove it vary with kLan.

This means that computing one leading eigenpair of the matrixX requires computing at most kLan matrix
vector products (we can always restart the code in case of failure) plus 4nkLan flops. When the matrix is
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dense, each matrix vector product costs n2 flops, hence the total cost of computing one leading eigenpair
of X is

O

(
n2 log(n/δ2)

4
√
ε

)
flops. When the matrix is sparse, the cost of each matrix vector product is O(s) instead of O(n2), where
s is the number of nonzero coefficients in X . Idem when the matrix X has rank r < n and an explicit
factorization is known, in which case each matrix vector product costs O(nr) which is the cost of two n× r
matrix vector products, and the complexity of the Lanczos procedure decreases accordingly.

The numerical package ARPACK by Lehoucq et al. [1998] implements the Lanczos procedure with a
reverse communication interface allowing the user to compute efficiently the matrix vector product Xuj .
However, it uses the implicitly shifted QR method instead of the more efficient MRRR algorithm to compute
the Ritz pairs of the matrix Tk ∈ Sk.

6.2. Technical results concerning Fk and its components.

6.2.1. General remarks on rotational invariance. We use repeatedly in the paper the fact that the type of
smoothing we devised has some rotational invariance properties, which allows us to perform our compu-
tations on diagonal matrices without losing generality. We summarize the results we need and use in the
following statement.

Lemma 6.1. Let X be a deterministic matrix in Sn. X is diagonalizable in an orthonormal basis and we
writeX = OTXDXOX , whereDX is a diagonal matrix containing the eigenvalues ofX andOX is a matrix
of eigenvectors of X . Let {zi}ki=1 be k i.i.d N (0, In) random vectors. Let ν be in R and call

Fk(X) = max
1≤i≤k

λmax(X + νziz
T
i ) .

Then
Fk(X)

L
= Fk(DX) .

Furthermore, if φ[Fk(X)] is an eigenvector associated with Fk(X), we have

φ[Fk(X)]
L
= OTXφ[Fk(DX)] .

Proof. We observe that

X + νziz
T
i = OTX

[
DX + ν(OXzi)(OXzi)T

]
OX .

Now it is a standard property of the normal distribution that if {zi}ki=1 are i.i.d N (0, In), then {OXzi}ki=1
are i.i.d N (0, In), for any (deterministic) orthonormal matrix OX . The results we announced follow imme-
diately.

6.2.2. Existence of a density for T . In Lemma 3.4, we were interested in T = λmax(X + ε/nzzT ) −
λmax(X). We prove Lemma 3.4 here, showing that T has a density on [0,∞) when z ∼ N (0, In).

Proof. [of Lemma 3.4] As usual, we call {λi}ni=1 the decreasingly ordered eigenvalues of X and assume
here that λmax(X) has multiplicity l < n (if l = n there is nothing to show, since then X is proportional to
In). By rotational invariance of the standard Gaussian distribution, we can and do assume thatX is diagonal
in what follows (see Lemma 6.1 for details, if needed). As we have seen before, T is therefore the only
positive root of the equation

0 = s(T ) =
n

ε
−
∑l

i=1 z
2
i

T
−

n∑
i=l+1

z2
i

(λ1 − λi) + T
,
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and note that s(t) is increasing in t when t > 0. Hence, for any given t > 0,

P (T ≥ t) = P (s(T ) ≥ s(t)) = P (0 ≥ s(t))

= P

(∑l
i=1 z

2
i

t
+

n∑
i=l+1

z2
i

(λ1 − λi) + t
≥ n

ε

)
,

=

∫ ∞
1
ε

pt(u)du , I(t) ,

where pt is the density of the random variable

Yt =
1

n

(∑l
i=1 z

2
i

t
+

n∑
i=l+1

z2
i

(λ1 − λi) + t

)
.

If the integral I(t) can be differentiated under the integral sign, then we can differentiate P (T ≥ t) and we
will have established the existence of a density for T and hence for λ1 + T . Now, pt(x) is a very smooth
function of both t and x. Indeed, it is a convolution of n− l densities that are smooth in t and x. As a matter
of fact, recall that if X has density p and t > 0, X/t has density tp(t·). Recall also that a random variable
with χ2

l distribution has density (see e.g Mardia et al. [1979], p. 487)

pl(x) =
2−l/2

Γ(l/2)
xl/2−1 exp(−x/2) 1x∈(0,∞) .

So it is clear that for any l, any x > 0, any t > 0, and any α ≥ 0, t → (t + α)pl((t + α)x) is C∞ in
t. Applying this result in connection to [Durrett, 2010, Th. A.5.1], we see that Yt has a density which is a
smooth function of t > 0. Indeed, it is C∞ on (0,∞). Moreover, it is easy to see that the conditions of
[Durrett, 2010, Th. A.5.1] are satisfied for pt, which guarantees that we can differentiate under the integral
sign. This shows that for any t > 0, the function π such that π(t) = P (T ≥ t) is differentiable in t. It
is also clear that P (T = 0) is 0, so this distribution has no atoms at 0. We conclude that T has a density
on [0,∞).

6.2.3. Controlling the Hessian of λmax(X). Consider the map F0 : Sn → R such that F0(X) = λmax(X).
We want to show that its gradient is Lipschitz continuous, when the largest eigenvalue of X has multiplicity
one and control the local Lipschitz constant. To do so, we compute

γ(X,Y ) = lim
t→0

∂2F0(X + tY )/∂t2 ,

where ‖Y ‖F = 1, and Y is symmetric. It is standard that the local Lipschitz constant - with respect to
Frobenius norm - of∇F0 is

L [∇F0(X)] = sup
Y ∈Sn:‖Y ‖F=1

γ(X,Y ) .

Let us call λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn the ordered eigenvalues of X . Very importantly we assume that λ1

has multiplicity one. If not, it is easy to see that the function λmax(X) is continuous but not differentiable.
We refer the reader to [Kato, 1995; Overton and Womersley, 1995; Lewis and Sendov, 2002] for a more
complete discussion. Recall that in this situation Theorem 3.2 stated that

L [∇F0(X)] =
1

λmax(X)− λ2(X)
. (31)

We now prove this statement.
Proof. [of Theorem 3.2] The strategy is to first exhibit a matrix Yc in Sn that will give us the right-hand

side of Equation (31) as a lower bound. And then we will show that indeed this bound is the best one can
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do. We will rely heavily on the following classical result from the analytic perturbation theory of matrices.
We can use [Kato, 1995, p.81] or [Lewis and Sendov, 2002] to get, for small t

F0(X + tY ) = λmax(X) + tφT1 Y φ1 + t2
n∑
j=2

1

λ1(X)− λj(X)
(φT1 Y φj)

2 + o(t2) ,

where φ1 is an eigenvector (of the matrix X) corresponding to the eigenvalue λ1 and φj is an eigenvector
(of X) corresponding to the eigenvalue λj . Here we have crucially used the fact that λ1(X) has multiplicity
one. We conclude that

γ(X,Y ) = lim
t→0

∂2F0(X + tY )

∂t2
= 2

n∑
j=2

1

λ1(X)− λj(X)
(φT1 Y φj)

2 , (32)

Finding a lower bound for L [∇F0(X)]. LetO be an orthonormal matrix that transforms the canonical basis
(e1, . . . , en) into the orthonormal basis (φ1, . . . , φn). In other words, Oei = φi and hence OTφi = ei. Let
us call P0 the matrix that exchanges e1 and e2 and send the other ej’s to 0. In other words, the 2× 2 upper

left block of P0 is the matrix
(

0 1
1 0

)
and P0 is zero everywhere else. Now call

Yc =
1√
2
OP0OT .

Note that Yc ∈ Sn. Since OTφi = ei, we see that Ycφ1 = φ2/
√

2, Ycφ2 = φ1/
√

2, and Ycφj = 0 if j > 2.
Further, ‖Yc‖2F = TrY T

c Yc = TrY 2
c = TrOP 2

0OT /2 = ‖P0‖2F /2 = 1. Now, φT1 Ycφj = δ2,j‖φ1‖2/
√

2.
Hence,

γ(X,Yc) = lim
t→0

∂2F0(X + tYc)

∂t2
=

2

2

1

λ1(X)− λ2(X)
,

and therefore,

L [∇F0(X)] ≥ 1

λ1(X)− λ2(X)
.

Finding an upper bound for L [∇F0(X)]. On the other hand, we clearly have, for j ≥ 2, 0 ≤ 1/(λ1(X) −
λj(X)) ≤ 1/(λ1(X)− λ2(X)). Therefore,

n∑
j=2

1

λ1(X)− λj(X)
(φT1 Y φj)

2 ≤ 1

λ1(X)− λ2(X)

n∑
j=2

(φT1 Y φj)
2 .

Since {φj}nj=1 form an orthonormal basis, and Y is symmetric,

n∑
j=1

(φT1 Y φj)
2 = ‖Y φ1‖22 .

As a matter of fact φT1 Y φj is just the coefficient of the vector Y Tφ1 = Y φ1 in its representation in the basis
of the φi’s. We therefore have

n∑
j=2

1

λ1(X)− λj(X)
(φT1 Y φj)

2 ≤ 1

λ1(X)− λ2(X)

(
‖Y φ1‖22 − (φT1 Y φ1)2

)
.

Let us call ỹi,j the (i, j)-th entry of the matrix that represents Y in the basis of the φi’s. Since ‖Y ‖2F = 1,∑
i,j

ỹ2
i,j = 1 .
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Using the symmetry of Y , we therefore see that

2
n∑
j=2

ỹ2
1,j + ỹ2

1,1 ≤ 1 .

Now, ‖Y φ1‖22 =
∑n

j=1 ỹ
2
1,j and (φT1 Y φ1)2 = ỹ2

1,1. Hence,

(
‖Y φ1‖22 − (φT1 Y φ1)2

)
=

n∑
j=2

ỹ2
1,j ≤

1− ỹ2
1,1

2
≤ 1

2
.

We conclude that

∀Y ∈ Sn, ‖Y ‖F = 1 , γ(X,Y ) ≤ 2

2

1

λ1(X)− λ2(X)
,

and therefore

L [∇F0(X)] = sup
Y ∈Sn,‖Y ‖F=1

γ(X,Y ) ≤ 1

λ1(X)− λ2(X)
.

Since we have matching upper and lower bounds for L [∇F0(X)], we have established Theorem 3.2.

6.2.4. Differentials of maximum of several differentiable functions. We need the following elementary and
well-known results at several points in the paper. We put them in this Appendix for the convenience of the
reader.

Lemma 6.2. Consider the function Ψk = max1≤i≤k ψk, where ψ1, . . . , ψk are Gâteaux-differentiable func-
tions from D ⊂ Rd to R and k is an integer. Let int(D) be the interior of D. Let x0 ∈ int(D) be such that
there exists i0 ∈ {1, . . . , k} such that ψi0(x0) > ψj(x0) for all j 6= i0. Then, Ψk is Gâteaux-differentiable
at x0 with

∇GΨk(x0) = ∇Gψi0(x0) .

Furthermore, when ψj’s are Fréchet-differentiable, so is Ψk at x0.

The proof shows that the result extends to higher order derivatives when they exist.
Proof. This is simply a restatement of the results of Proposition 7.2.7 in [Schirotzek, 2007], or [Hiriart-
Urruty and Lemaréchal, 2001] Theorem 4.4.2 and Corollary 4.4.4. We give the key idea and a proof of this
easy fact for the sake of completeness.

Indeed, let Ij be the set of points y such that ψj(y) ≥ ψl(y) for all l 6= j. We call 1Ij the function
taking value 1 on Ij and 0 elsewhere. LetN(x) be equal to card {j, 1 ≤ j ≤ k : ψj(x) = Ψk(x)}. Note that
N(x) =

∑k
j=1 1Ij (x). It is clear that 1 ≤ N(x) ≤ k. We also have

Ψk(x) =

∑k
j=1 ψj(x)1Ij (x)

N(x)
.

Under our assumptions on x0, it is clear that N(x0) = 1. Furthermore, in a neighborhood V (x0) of x0, we
have N(x) = 1 by continuity of the functions ψj’s. Of course, V (x0) is open, by definition of a neighbor-
hood. It follows that for all x in V (x0), we have Ψk(x) = ψi0(x). It now follows from the definition of
Gâteaux-differentiability that Ψk is Gâteaux-differentiable at x0 with the same Gâteaux-differential as ψi0 .
The result in the case of Fréchet differentiable functions ψj’s holds for the same reasons and is established
by the same analysis.

We have the following corollary.
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Lemma 6.3. SupposeX ∈ Sn and v1, . . . , vk are vectors in Rn. Denote by Fk(X) = max1≤i≤k λmax(X+
viv

T
i ). Suppose that X and {vi}ki=1 are such that there exists a unique i0 such that

λmax(X + vi0v
T
i0) = Fk(X) .

Suppose further that the largest eigenvalue of X + vi0v
T
i0

has multiplicity one. Then

L [∇Fk(X)] =
1

λmax(X + vi0v
T
i0

)− λ2(X + vi0v
T
i0

)
.

It follows that for i0 = argmax1≤i≤k λmax(X + viv
T
i ), if Fk(X) 6= λmax(X),

L [∇Fk(X)] ≤ 1

λmax(X + vi0v
T
i0

)− λmax(X)
=

1

Fk(X)− λmax(X)
.

Proof. The proof of Lemma 6.2 shows that under our assumptions, Fk coincides locally with λmax(X +
vi0v

T
i0

). Hence the local Lipschitz constant of ∇Fk is the same as that of X 7→ λmax(X + vi0v
T
i0

). One of
our assumptions is that the largest eigenvalue of X + vi0v

T
i0

has multiplicity 1. In that situation, Theorem
3.2 guarantees that the local Lipschitz constant of X 7→ λmax(X + vi0v

T
i0

) is

1

λmax(X + vi0v
T
i0

)− λ2(X + vi0v
T
i0

)
.

So we have established that

L [Fk(X)] =
1

λmax(X + vi0v
T
i0

)− λ2(X + vi0v
T
i0

)
.

We now recall that by Cauchy’s interlacing theorem (Theorem 4.3.4 in Horn and Johnson [1990]), λ2(X +
vi0v

T
i0

) ≤ λmax(X). We can therefore conclude that

L [Fk(X)] =
1

λmax(X + vi0v
T
i0

)− λmax(X)
,

since we have assumed that λmax(X) 6= λmax(X + vi0v
T
i0

) = Fk(X).

6.2.5. Interchanging expectation and differentiation for Fk.

Lemma 6.4. We can interchange expectation and differentiation for Fk so that

∇Fk(X) = E
[
φi0φ

T
i0

]
using the notation of Lemma 3.8.

Proof. Fk is convex as an average of convex functions. To show that it is differentiable, it is there-
fore enough to show that it is Gâteaux-differentiable (see Hiriart-Urruty and Lemaréchal [2001], Corollary
D.2.1.4). Let X0 be given. We use the notation

Fk(X0) =

∫
Fk(X0; z)µ(dz)

to make things simpler in this proof. Of course, Fk(X0; z) = max1≤i≤k λmax(X0 + ε
nziz

T
i ). (Compared to

the main text, we have now made the dependence on z explicit as it is needed below to address a potential
measure theoretic problem.) µ(dz) is just the joint distribution of zi’s, for i = 1, . . . , k. To make notations
simple in this proof, we use z to denote (zi)

k
i=1.

We know that Fk(X0; z) has a subdifferential for all X0 and all z, since it is the maximum of k functions
with a subdifferential (see Hiriart-Urruty and Lemaréchal [2001], Theorem D.4.4.2). The spectral norm of
the elements of this subdifferential is bounded by 1, since they are a convex combination of matrices of
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spectral norm at most 1 (see Hiriart-Urruty and Lemaréchal [2001], Theorem D.4.4.2 and Equation (5.1.3)
p. 195 in that book, which characterizes the subdifferential of the largest eigenvalue mapping of a symmetric
matrix).
Suppose Y0 is a fixed matrix, with ‖Y0‖2 = 1 without loss of generality, where ‖Y ‖2 is the spectral norm of
the symmetric matrix Y . By the mean value theorem for functions with a subdifferential (see Hiriart-Urruty
and Lemaréchal [2001], Theorem D.2.3.4) we have, if we call X0,t = X0 + tY0

Fk(X0 + tY0; z)− Fk(X0; z) = t

∫ 1

0
< ∂Fk(X0,tu; z), Y0 > du ,

where ∂Fk(X0,tu; z) is any choice of subgradient of Fk(X0,tu; z) and < A,B >= TrATB for the sym-
metric matrices we are working with. (We use the same notation in this proof for subgradients and subdif-
ferentials since it does not create confusion.)
Because ‖∂Fk(X0,tu)‖2 ≤ 1, we can apply Fubini’s theorem to get

Fk(X0 + tY0)− Fk(X0)

t
=

∫ 1

0
du

∫
< ∂Fk(X0,tu; z), Y0 > µ(dz) .

Now let η > 0 be given and let

Aη = {z : ∀i , 1 ≤ i ≤ k , λmax(X +
ε

n
ziz

T
i )− λmax(X) > η} ,

Bη = {z : ∃i0 : ∀j 6= i0 , 1 ≤ j ≤ k , λmax(X +
ε

n
zi0z

T
i0) ≥ λmax(X +

ε

n
zjz

T
j ) + η} ,

Eη = Aη ∩ Bη .

By continuity of the maps involved, Eη is clearly measurable with respect to Lebesgue measure and there-
fore µ. Equation (10) in Proposition 3.3 implies that limη→0 µ(Aη) = 1. Lemma 3.4 also implies that
limη→0 µ(Bη) = 1. We conclude that limη→0 µ(Eη) = 1.

This implies that∣∣∣∣∣
∫
< ∂Fk(X0,tu; z), Y0 > µ(dz)−

∫
Eη
< ∂Fk(X0,tu; z), Y0 > µ(dz)

∣∣∣∣∣ ≤ nµ(Ecη)→ 0 as η → 0 ,

since the absolute value of the integrand is bounded by n. For the same reasons, as η → 0,∣∣∣∣∣
∫ 1

0
du

∫
< ∂Fk(X0,tu; z), Y0 > µ(dz)−

∫ 1

0
du

∫
Eη
< ∂Fk(X0,tu; z), Y0 > µ(dz)

∣∣∣∣∣ ≤ nµ(Ecη)→ 0.

When |t| < η/4, it is clear that for all z ∈ Aη, and all u ∈ [0, 1], we have

∀i , 1 ≤ i ≤ k , λmax(X + tuY0 +
ε

n
ziz

T
i )− λmax(X + tuY0) > η/2 .

As matter of fact, we have

λmax(X + tuY0 +
ε

n
ziz

T
i )− λmax(X + tuY0) = λmax(X + tuY0 +

ε

n
ziz

T
i )− λmax(X +

ε

n
ziz

T
i )

+ λmax(X +
ε

n
ziz

T
i )− λmax(X)

+ λmax(X)− λmax(X + tuY0)

By Weyl’s inequality, |λmax(X + tuY0 + ε
nziz

T
i )−λmax(X + ε

nziz
T
i )| ≤ |t|u‖Y0‖ ≤ η/4 and |λmax(X)−

λmax(X + tuY0)| ≤ η/4 for the same reason. By the same reasoning, if z ∈ Bη, when |t| < η/4, for all
u ∈ [0, 1],

λmax(X + tuY0 +
ε

n
zi0z

T
i0) ≥ λmax(X + tuY0 +

ε

n
zjz

T
j ) +

η

2
.
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This shows that for z ∈ Eη, when |t| < η/4, Fk(X0,tu; z) is differentiable for all u and so its subdiffer-
ential is reduced to a singleton. Therefore,

∀z ∈ Eη , 0 ≤ u ≤ 1, and |t| < η/4 , ∂Fk(X0,tu; z) = ∇Fk(X0,tu; z) .

We know in fact that under the aforementioned conditions Fk(X0,tu; z) is twice differentiable as a function
of tu (see Kato [1995], pp.80-81) and therefore the gradient ∇Fk(X0,tu; z) is continuous (as a function of
tu). So we have, pointwise in z ∈ Eη and u ∈ [0, 1],

lim
t→0
∇Fk(X0,tu; z) = ∇Fk(X0; z) .

Using the fact that ∇Fk(X0,tu; z) is bounded (it is a rank 1 matrix of norm 1), we can use the dominated
convergence theorem and Fubini’s theorem to conclude that

lim
t→0

∫ 1

0
du

∫
Eη
< ∂Fk(X0,tu; z), Y0 > µ(dz) = lim

t→0

∫ 1

0
du

∫
Eη
< ∇Fk(X0,tu; z), Y0 > µ(dz)

=

∫
Eη
< ∇Fk(X0; z), Y0 > µ(dz) .

Finally, because < ∂Fk(X0; z), Y0 > is bounded and because Eη is a decreasing family of sets, we see that

lim
η→0

∫
Eη
< ∇Fk(X0; z), Y0 > µ(dz) =

∫
< ∂Fk(X0; z), Y0 > µ(dz) ,

by the dominated convergence theorem. Naturally, the previous equality is true for any choice of sub-
gradients on the set of (µ-)measure 0 where the subdifferential Fk(X0; z) is not reduced to a singleton.
Furthermore,

lim
t→0

Fk(X0 + tY0)− Fk(X0)

t
=<

∫
∂Fk(X0; z)µ(dz), Y0 > .

So we conclude that Fk is Gâteaux-differentiable at X0 and hence differentiable, since Fk is convex. The
previous expression is valid for any subgradient of Fk(X0; z). Since with probability 1 the subdifferential
is a singleton, we can also write

∇Fk(X0) =

∫
∇(Fk(X0; z))µ(dz)

In the particular situation we are considering, this can also be re-written as

∇Fk(X0) = E
[
φi0φ

T
i0

]
.

which is the desired result.

We now show that the gradient is diagonalizable in the same basis as X .

Lemma 6.5. The matrix ∇Fk(X) is diagonalizable in the same basis as X . In particular, when X is
diagonal, so is∇Fk.

Proof. Call λi(X) the eigenvalues of X in decreasing order. As above, zi
i.i.d∼ N (0, In) implies that no

zi is an eigenvector of X with probability one. We call l1,i = λmax(X + ε
nziz

T
i ) and φi the correspond-

ing eigenvector. With probability 1, φi is uniquely defined, up to sign, since l1,i has multiplicity 1 with
probability 1.

(i) X diagonal. We first focus on the case where X is diagonal. Our strategy is to show that the off-
diagonal entries of φi0φ

T
i0

have a (marginal) distribution that is symmetric around 0.
30



In what follows we use the notation zi(j) to denote the j-th coordinate of the vector zi. It is well-known
([see Golub and Van Loan, 1990, §8.5.3], Theorem 8.5.3) that when X is diagonal, the j-th coordinate of φi
is given by

φi(j) = c
zi(j)

l1,i − λj
, (33)

where c > 0 is a normalizing factor. Recall that l1,i is the largest root of χ(λ) = 0, where

χ(λ) = 1 +
n

ε

∑l
j=1[zi(j)]

2

λ1(X)− λ
+
n

ε

n∑
j=l+1

[zi(j)]
2

λj(X)− λ
.

This equation shows in particular that l1,i’s depend on zi’s only through the absolute values of the coordinates
of these vectors. Let us now pick j0, an integer such that 1 ≤ j0 ≤ n. Suppose that we change the
j0-th coordinates of the vectors zi’s to their opposites. Call l̃1,i and φ̃i the corresponding eigenvalue and
eigenvectors. As we have just seen,

l̃1,i = l1,i ,∀i .
In particular, i0 is unaffected by this sign change operation.
On the other hand,

∀i ,
[
φ̃iφ̃

T
i

]
(l,m) =

{
−
[
φiφ

T
i

]
(l,m) if l 6= m and m = j0 or l = j0 ,[

φiφ
T
i

]
(l,m) otherwise .

However, since zi’s have a symmetric distribution, their distribution is unaffected by a change of sign to one
of the coefficients. So it is clear that

∀i , φ̃iφ̃
T
i
L
= φiφ

T
i .

So for all i, the distribution of the off-diagonal entries of the matrix φiφTi is symmetric around 0, since it is
equal in law to its opposite. (We have just shown it for the off-diagonal entries for the j0-th row and columns,
but since there was nothing special about j0, it is true for all the off-diagonal entries.) Furthermore, since
the value of i0 is unaffected by the sign change operation we discussed, we have shown that the off-diagonal
entries of the matrix φi0φ

T
i0

have a symmetric distribution. Since φTi0φi0 = 1, the entries of the matrix φi0φ
T
i0

are bounded and therefore have a mean. This mean must be zero for the off-diagonal entries since they have
a symmetric distribution. So we have shown that E

[
φi0φ

T
i0

]
is a diagonal matrix when X is diagonal.

(ii) X not diagonal. When X is not diagonal, we simply diagonalize X into X = OTXDXOX and use
rotational invariance of the distribution of the zi’s to see that[

φi0(X)φi0(X)T
] L

= OTX
[
φi0(DX)φi0(DX)T

]
OX ,

where by a slight abuse of notation we have denoted by φi0(X) an eigenvector associated with max1≤j≤k l1,j .
Since we have already seen that E

[
φi0(DX)φi0(DX)T

]
is diagonal, we have shown that E

[
φi0(X)φi0(X)T

]
is diagonal in the basis that diagonalizes X .

6.3. On the secular equation and higher-order perturbations. We give an elementary proof of the valid-
ity of the secular equation, which avoids matrix representations. Though simple and possibly well-known,
the advantage of our derivation is that it extends easily to higher rank perturbation. More precisely, let us
consider the matrix

M1 = M + U , (34)

where U is a symmetric matrix. We assume without loss of generality that M is diagonal. We write
U =

∑k
j=1 vjv

T
j . We do not require the vj to be orthogonal and they could also be complex valued in what

follows.
31



Let us call λ1 ≥ λ2 ≥ . . . ≥ λn the eigenvalues of M . Our aim is to compute the characteristic
polynomial of M1 and relate it to that of M . We call

PM1(λ) = det(M1 − λIn) ,

PM (λ) = det(M − λIn) ,

Mλ = M − λIn .

Assuming for a moment that λ is not an eigenvalue of M , we clearly have M1 − λIn = Mλ(In +M−1
λ U).

We call G(λ) the k × k matrix with (i, j) entry vTj M
−1
λ vi.

We have
PM1(λ) = det(Mλ) det(In +M−1

λ U) = PM (λ) det(Ik +G(λ)) ,

since det(In +AB) = det(Ik +BA) for rectangular matrices A and B whenever AB is n× n and BA is
k × k. The previous formula can be used to study the eigenvalues of finite rank perturbations of M , since
they are the zeros of the characteristic polynomial PM1 .

Let us focus on the case where U has rank one, that is U = vvT . Since we assume wlog that M is
diagonal, we have, when k = 1,

det(Ik +G(λ)) = det(1 + vTM−1
λ v) = 1 +

n∑
i=1

v2
i

λi − λ
.

We therefore get, when λ is not an eigenvalue of M ,

PM1(λ) =

[
n∏
i=1

(λi − λ)

](
1 +

n∑
i=1

v2
i

λi − λ

)
, (35)

from which the secular equation follows. From Equation (35), it is also clear that if λi is an eigenvalue of
M with multiplicity m > 1, λi is also an eigenvalue of M1 with multiplicity m− 1.

6.4. GUE smoothing. In this section, we discuss possible extensions of the stochastic regularization tech-
niques, their efficiency and regularity. We have chosen to analyze the rank one perturbation scheme - and
slight variants of it - because of its numerical efficiency and mathematical simplicity. However, many other
random smoothing algorithms are possible and modern random matrix theory offers tools to understand
their properties. We expect that some of them will lead to better worst case bounds than the order n bound
on the Lipschitz constant of the gradient for the rank one Gaussian perturbations we have considered here.

A case in point is the following. Consider a matrix U from the Gaussian Unitary Ensemble (GUE).
Matrices from GUE are Hermitian random matrices with complex Gaussian entries, i.i.d NC (0, 1) above
the diagonal and i.i.dN (0, 1) on the diagonal. Recall that if zC isNC (0, 1), zC = (z1 + iz2)/

√
2, where z1

and z2 are independent with distribution N (0, 1).
In what follows, X is a deterministic matrix and U is a random GUE matrix. We assume, without loss

of generality, that the largest eigenvalue of X is bounded, for instance λmax(X) = 1 (if not, we can always
shift X by a multiple of In, which takes care of the problem).

A natural smoothing of λmax(X) is FGUE(X) = E [λmax(X + (ε/
√
n)U)], where U is a GUE matrix.

This type of matrices belong to the so-called “deformed GUE”. Johansson [2007] is an important paper in
this area and contains a result, Theorem 1.12, that is not exactly suited to our problem but quite close, perhaps
despite the appearances. Before we proceed, we note that showing that FGUE(X) is an ε-approximation of
λmax(X) is immediate from standard results on GUE matrices (see Trotter [1984], Davidson and Szarek
[2001]).

In a nutshell, random matrix theory indicates that λmax(X + (ε/
√
n)U) undergoes a phase transition as

ε changes when X is not a multiple of In. If ε is sufficiently large (more details follow), the behavior of
λmax(X+ (ε/

√
n)U) is driven by the GUE component and the spacing between the two largest eigenvalues

is of order n−2/3. On the other hand, if ε is not large enough, we remain essentially in a perturbative regime
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and the spacing between the two largest eigenvalues is larger than n−2/3. A very detailed study of the phase
transition should be possible, too. However, all these results are asymptotic. Non-asymptotic results could
be obtained (the machinery to obtain results such as Johansson’s is non-asymptotic) but would be hard to
interpret and exploit. We therefore keep this discussion at an informal level.

Smoothing by a GUE matrix should give a worst case bound on L [∇FGUE ] of order n2/3, which is better
than the worst case bound of n we have when we smooth with rank one matrices (but requires generating
O(n2) random numbers instead of O(n)). GUE smoothing might therefore improve the performance of
the algorithm since the cost of generating these random variables is typically dominated by the cost of
computing a leading eigenvector of the perturbed matrix.

Let us give a bit more quantitative details. Based on Johansson’s work and the solution to a similar
problem in a different context (El Karoui [2007]), it is clear that the condition for the spacings to be of order
n−2/3 is the following (this result might be available in the literature but we have not found a reference).
Call Λn the spectral distribution of the n× n matrix Xn, i.e the probability distribution that puts mass 1/n
at each of the n eigenvalues of Xn. Call wc the solution in (λmax(Xn),∞) of∫

dΛn(t)

(wc − t)2
=

1

ε2
.

Call G the class of matrices for which

lim inf
n→∞

[wc − λmax(Xn)] > 0 .

Then, looking carefully at Johansson’s and El Karoui’s work, it should be possible to show that: if the
sequence of matrices Xn is in G, then, if Xn(ε) = Xn + ε/

√
nU ,

n2/3λmax(Xn(ε))− αn
βn

=⇒ TW2 ,

where

αn = wc + ε2
∫
dΛn(t)

wc − t
and βn = ε2

(∫
dΛn(t)

(wc − t)3

)1/3

and TW2 is the Tracy-Widom distribution appearing in the study of GUE [see Tracy and Widom, 1994].
The same is true for the joint distribution of the k largest eigenvalues, where k is a fixed integer, and TW2

is replaced by the corresponding limiting joint distribution for the k largest eigenvalues of a GUE matrix.
When the matrixXn is not in G, then the top two eigenvalues should have spacing greater than n−2/3. We

expect that if Xn has some sufficiently separated eigenvalues with multiplicity higher than one, the spacings
there are at least n−1/2, by analogy with Capitaine et al. [2009] and Baik et al. [2005]. To quantify what
“sufficiently separated” means, we could suppose that Xn is a completion of a (n− k0)× (n− k0) matrix
Xn−k0,0 which is in G, to which we add k0 eigenvalues λmax(Xn), all equal and greater than λmax(Xn−k0,0),
with λmax(Xn) greater than and bounded away from wc(Xn−k0,0). Calling Λn−k0,0 the spectral distribution
of Xn−k0,0, we should have

n1/2λmax(Xn(ε))− α̃n
β̃n

=⇒ λmax (GUEk0×k0) ,

where α̃n = λmax(Xn) + ε2
∫ dΛn−k0,0(t)

λmax(Xn)−t and β̃n = ε
(

1− ε2
∫ dΛn−k0,0(t)

(λmax(Xn)−t)2

)1/2
.

The same is true for the k0 largest eigenvalues of Xn(ε) and λmax(GUEk0×k0) is replaced by the corre-
sponding joint distribution for the k0 × k0 GUE.

In light of the integrability problems we had in the rank one perturbation case for the inverse spectral gap
1/(l1(Xn(ε))− l2(Xn(ε))), it is natural to ask whether such problems would arise with a GUE smoothing.
For this informal discussion, we limit ourselves to answering this question for GUE (and not deformed
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GUE). We recall that the joint density of the eigenvalues {li,GUE}ni=1 of a n× n GUE matrix is

C exp(−
n∑
i=1

l2i,GUE/2)
∏

1≤i<j≤n
|li,GUE − lj,GUE |2 ,

where C is a normalizing constant. So we see immediately that 1/(l1,GUE − l2,GUE) is integrable in the
GUE setting. (The formula above is often stated for the unordered eigenvalues of a GUE matrix. The
functional form of the density is unchanged by ordering, because of the symmetry. The domain of definition
and the constant change when considering ordered eigenvalues, but this has no bearing on the question of
integrability.)

The smoothing could also be done by a matrix from the Gaussian Orthogonal Ensemble (GOE), where
the entries above the diagonal are i.i.d N (0, 1) and the entries on the diagonal are i.i.d N (0, 2). We do not
know of a result corresponding to Johansson’s in that case, though we would expect that the behavior of the
top eigenvalues is the same as described above, with TW2 replace by TW1, the Tracy-Widom distribution
appearing in the study of GOE. From an algorithmic point of view, the two methods should therefore be
equivalent.
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J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for non-null complex sample covariance
matrices. Ann. Probab., 33(5):1643–1697, 2005.

A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization : analysis, algorithms, and engineering
applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics : Mathematical
Programming Society, Philadelphia, PA, 2001.

S. Burer and R.D.C. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank
factorization. Mathematical Programming, 95(2):329–357, 2003.

Mireille Capitaine, Catherine Donati-Martin, and Delphine Féral. The largest eigenvalues of finite rank deformation
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